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1. Introduction

In these notes, we study the simplest kinetic model for a magnetized plasma: elec-
trostatic drift kinetics. In the electrostatic limit, the magnetic field is assumed to be
determined by very strong external magnets. The plasma energy is small compared to
the magnetic energy, and the plasma is unable to modify the magnetic field. Thus, in ad-
dition to assuming that the plasma is quasineutral, A\p/L < 1 and w/wpe < 1, and that
the plasma is magnetized, ps. < 1 and w/Qs < 1, the electrostatic limit is characterized
by

2p0p
p=2L <. (1.1)

Here Ap = y/€oTe/en. is the Debye length, w, = /€2n./eom. is the plasma frequency,
€0 and po are the vacuum permittivity and permeability, and p = Y ps = > nsm,vi, /2
is the plasma pressure.

To show that 8 <« 1 leads to electrostatic drift kinetics, we need to discuss the typical
time and length scales of the problem. We will show that the electric field is well described
by an electrostatic potential ¢, E ~ —V¢. Since the electrostatic potential ¢ will be
generated by the plasma, we expect it to be comparable to the characteristic plasma
energy, that is, e¢/T ~ 1, and hence

T
Bl = V|~ —. (1.2)

Thus, the most natural ordering for electrostatic drift kinetics is the low flow regime,
although there are situations in which an electrostatic electric field can be in the high
flow regime. In the low flow regime, the particle motion is split into the fast parallel
motion, with v ~ v, and the slow perpendicular drifts vg + v + Vyp ~ psitis. We
are interested in phenomena related to the drifts, that is, we will study phenomena with
the characteristic frequency

lvetvetves| v

L Pix L )

where we are assuming that the main ions s = ¢ are the dominant species. Importantly,
the difference between the perpendicular and parallel velocities leads to a separation
between the characteristic parallel length Ljj ~ [b-VIn fi|~' ~ |b-VIng|~! and the
characteristic perpendicular length L ~ |V In fi|™* ~ |V In¢|~! of the distribution
functions and the potential. Imposing that UHB Vs~ (Vg +ve+vyp) - Vs, we find

(1.3)

L |vE+vi+vys|
Ly Y|

Thus, L) is typically much larger than L. Note that L is the characteristic parallel
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length of the potential and the distribution functions, and not of the magnetic field B.
The shape of B is determined by external magnets.

We have explained above that for low g, the magnetic field is not generated by the
plasma, but by external sources. Indeed, the ratio between the magnetic field generated
by currents in the plasma, BP, and the total magnetic field, B, is of the order of the
parameter 8, B? /B ~ § < 1, as we proceed to show. We start from Ampere’s law,

1 OE
2 ot
We can estimate the size of the current density of the plasma, J, from the size of the
perpendicular current J ;. Using that fs = (fs), + fs, with fs ~ pe. fs, we find

JNJL=§:z¢/fwl&v:§:Z¢/}qwl+vmd%

V xB? = Lod + (15)

0 due to quasineutrality

= ; Zse/27rB<fSwJ_></J dvy dp —&—/Z/Z{é{s:@ ~ N Pix Vg ~ % (1.6)

The displacement current ¢~2(0E/dt) is small compared to this current. Using that the
speed of light is given by ¢® = (eguo) ™!, and employing w ~ p;.vy /L and |E| ~ T/eL,
we find

-2 2

c?|OE/Ot] A3

—_— e~ = K1 1.7

tolJ| L? .7

Then, we can safely neglect the displacement current compared to the plasma current in
Ampere’s equation (1.5), leading to

B polJ|L
B B

~B <, (1.8)

as predicted above. The magnetic field is mostly generated by currents external to the
plasma, giving

VxB~0 (1.9)

within the plasma. Since the plasma is unable to modify the background magnetic field,
we consider B a given field that we do not need to determine.

We finish by showing that the electric field is indeed electrostatic for 8 < 1. In general,
the electric field has an electrostatic piece and an inductive piece,

E=-V¢+E", (1.10)

where E4 is the inductive electric field. For external magnetic fields with no time depen-
dence, Faraday’s law implies

OB - oBP pi*’l)m'B T

VxEA=-—""=— ~ ~ B, 1.11
ot ot p L ﬁeL2 ( )
leading to an inductive piece of the electric field, E4, of order
T T
EA| ~ f— ~—. 1.12
B~ B <V~ — (1.12)

proving that the electric field is electrostatic.
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2. Electrostatic drift kinetics

In the electrostatic limit, the low flow drift kinetic equation becomes

<fb><,0 DK DKa<fé> pr N fs)e
ot +r V<f5> + v ” 8'0 + 78# =0, (2.1)
where
~ 1 ~
DK _ (v +vB)b — EV(ﬁ xb+v,+vyg, (2.2)
.DK _A ) Zse _ UH Zse
ot =-b [mg (L+m)VB| - 0. (b x k) o~
—’U”B~V’UB, (2.3)
P oty b (2 om
o = U”b Vi, +b <ms (%H . (2.4)

Here v, = (vﬁ/Q )b x Kk, vop = (11/Q%)b X VB, vp = (msp/Zse)b -V x b and i, =
— (v /)b - V x b. According to (1.9), V x b~b x VInB. Thus, b-V x b ~ 0, and
vp and [i; can be neglected, giving

<fs> + ( Y| fv¢ X b+ v, +VVB> “V{fs)e
R . s I fs
- (b + %’Lb X m) ~ (ij>+ /NB) g:)lw =0. (2.5)

To close the problem, we need an equation for ¢. We use quasineutrality,

O=ZZsens ZZ 6/271'3 fs)e dyj dp. (2.6)

The potential appears implicitly in this equation through the gyroaveraged distribution
functions (fs).

3. Drift waves

To understand the behavior of a low 8, magnetized plasma, we consider a simple slab
configuration. We consider a constant and uniform magnetic field B = Bz (see figure 1).
In this magnetic field, the drift kinetic equation simplifies to

<f9><,o Zse a<f3>q:

mg z V¢ 81}“

+ (v|z - —V(;ﬁ X z) “V{fs)p — =0. (3.1)

We use this equation to study the response to small perturbations of a plasma composed
of one ion species of charge Ze and mass m;, and electrons of charge —e and mass m..
We consider a steady state without electric field (¢ = 0). Then, the drift kinetic equation
becomes v}z - V(fs), = 0. Thus, any distribution function constant along magnetic field
lines will be a solution. We choose Maxwellian distribution functions for both electrons
and ions,

mg 3/2 mg ,U2 2+ B
<fs>¢(ac,v”,,u) = st(vaHvﬂ) = ng () (27T'Ts($)> eXp <_(|/M)> . (3.2)

Ts(x)



4 Feliz 1. Parra

2
Vn:_d_nf( B = Bz
dx
or——[2]s g
x

FI1GURE 1. Magnetized plasma slab. It is conventional to assume that the gradients of density
and temperature point in the negative x direction.

The densities n, and temperatures T only depend on z (see figure 1). Electrons and ions
must satisfy quasineutrality,

Zni(z) = ne(z). (3.3)
We also assume that the electron and ion temperature are of similar size, that is, T, ~ T;.
We perturb this equilibrium. We consider a perturbation to the potential d¢, and

a perturbation to the gyroaveraged distribution function due to this potential §(fs).
Linearizing (3.1), we obtain

04(fs)e . 1 ; Zse., Ofms
. Vo = — . s . —_ 4
ot + )z Vé{f ><P B(V&b X Z) Vs + o z-Vigp aUH (3.4)
The perturbations also have to satisfy quasineutrality,
Z/27TB 0(fi)p doydp = /27TB d(fe)p dvj dp. (3.5)

Considering perturbations of the form d¢ = gzNS(x) exp(—iwt +ikyy +ik.z) and 6(fs), =
Gs(x, vy, u) exp(—iwt + ik,y + ik.z), and using

2
Vi (PURED ) L o
and
s = T (3.7)
equation (3.4) becomes
(—iw + ik )gs = {iw*s 141, (mS(U'/TQ; #5) ;)] lkzv} Z}jéfM& (3.8)
and the quasineutrality equation gives
Z / 21 B g; dv) dp = /27rB Ge dvy dp. (3.9)
Here
Wis = Pyl (3.10)

~ ZyeBL,,
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is the drift frequency of species s,
L,,

= DBs 3.11
s 7 ) ( )

and the density and temperature scale lengths L, and Ly, are defined by

d -1
Lo=— (dx In Q) . (3.12)

Due to quasineutrality (see (3.3)), Ln, = Ly, = L.
Since T, ~ T;, the thermal speeds of ions and electrons are very different, v /vy ~
v/m;i/me > 1. Thus, there exist modes that satisfy

kv K w ™ Wae ~ Wi K K Uge. (3.13)

Electrons and ions respond differently to waves in this frequency range. For electrons,
equation (3.8) becomes

small

small 3 b
(—id™+ ik.v))ge = {iw*e - 2) + ikzv|}§fije. (3.14)

Then, the electrons give a simple Maxwell-Boltzmann response,

ed
Je = e- 1
Je = 7 avi (3.15)
The ions satisfy the equation
small small m;(v3/2+uB) 3 Ted
. . S . I iV ep
(—iw +ng = {—M—I— iwe; |1+ <Ti ) T fai, (3.16)
giving
Wi mi(vii/2+pB) 3\ | Zed
Gi ~ — Ly [ —I——2_ 2 .. 3.17
g - l +1 ( T o )| 1 Ju (3.17)

Using equations (3.15) and (3.17) in the quasineutrality equation (3.9), we obtain the
dispersion relation for waves that satisfy (3.13),

2
_Z Ny Wai  MNe

= —. 3.18
Using Zn; = ne and (ZT./T;)ws; = —wxe, we find that the wave frequency is
kT,
= Whe = ———. 1
w=w BL. (3.19)
The phase and group velocity of this wave are
T, - T.
ve = — b e = . 2
M en.B xvn eBL,, Y (3:20)

In figure 2 we give a physical picture for the drift wave. Note that our derivation does
not give the structure of the mode in the x direction. To calculate the structure in z, we
would need higher order terms in pg.,.

Almost any low frequency (w < Q; < Q) perturbation to a magnetized plasma with
gradients will move with a velocity of the order of the drift velocity in (3.20). The drift
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— Initial density
B E x B driftbrings Density contour | | oniour
® x |lowdensity at later time
Vn /

Electricfield produced by E x B driftbrings
electron adiabatic
response: N X ¢

high density

FIGURE 2. Sketch of a drift wave. An initial perturbed plasma density contour is sketched as
a solid wavy line. The density below this line is higher than above it. Due to the electron
Maxwell-Boltzmann response, caused by a parallel gradient not shown in the figure, there is a
potential difference between the high and the low density region. This potential difference causes
an electric field and hence an E x B drift, shown in the figure. The E x B drift moves ions in
such a way that the density contour simply moves in the y direction. The density contour at a
later time is sketched as a dashed wavy line.

velocity and the drift frequency are ubiquitous in plasma physics, and it is very common
to find references to w, and v, in the literature. The derivation that we have followed
is based on k,vy; < w, but waves with k,v;; ~ w will have frequencies of the order of
wse as well. In general, however, drift waves with k,v;; ~ w will decay due to Landau
damping. It is also possible to find unstable drift wave modes that grow by tapping the
thermodynamic energy contained in plasma gradients.

4. Ton Temperature Gradient (ITG) instability

To demonstrate that drift waves can become unstable, we first consider perturbations
that satisfy the assumptions in (3.13) and later we generalize the calculation to include
perturbations with k,v;; ~ w. In both cases the electrons follow the Maxwell-Boltzmann
response in (3.15).

4.1. Fluid limit of the ITG instability

In this subsection, we will look for perturbation that satisfy the assumptions in (3.13).
The difference between the derivation that follows and the derivation of the drift wave
in section 3 is that, for the derivation that follows, we consider cases with a large ion
temperature gradient, Ly, < L,. We assume that 0, = L, /L, > 1, and we expand the

equations assuming that
kzvti 1
w Vi

Equation (3.8) for the ions can be written as

_ mi(vﬁ/2+uB) 3
i T, B)

<1. (4.1)

k} 2 (2)

. 1
P = T T Wk
g w — k‘Z’U”

Using (4.1), we can Taylor expand (w — kzv”)*l for typical values of v,

1 1 k. kg”ﬁ —3/2
S S N R YOI . 43
w—kov w [ + w + w? +0m: ) (43)
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Note that by Taylor expanding, we have converted a resonant denominator into a smooth
function. Resonant denominators have been treated in the notes for Kinetic Theory
(Schekochihin 2015) with the help of Laplace transforms and Landau contours. We
will come back to resonant denominators in the next subsection. For this subsection,
it is sufficient to know that by employing equation (4.3), we will miss terms of order
exp(—w?/k2v%) ~ exp(—mn;) < 1. Using (4.3), the perturbation to the ion distribution
function becomes

N Wi mi(U2/2 +uB) 3 nik,v ?7¢k3®2

o e ) I I

9i n;i + -
w T; 2 w w

——  —

TR
_ Zeg
+1+4O0(n; 1/2) T‘(beVhW (4.4)

Note that we are keeping terms of different size in the expansion in n; ! « 1. This may
seem surprising, but it will become clear why we do so.
Substituting (3.15) and (4.4) into the quasineutrality equation (3.9), we obtain the

dispersion relation
Z2n; wy (k2T Ne
— +1)=—. 4.5

T, w \ mjw? T. (4.5)
Note that all the terms of order n; and nil /% in (4.4) do not contribute to the density. We
kept small terms in the expansion in ;" 1"« 1 because the small terms were the only ones
that ended up contributing to the density. Using Zn; = n, and (Z7./T;)ws; = —Wse, We
can rewrite the dispersion relation (4.5) as

k2T,
wS _ w*ew2 _ Mz

wWye; = 0. (4.6)

(2

The general solution to (4.6) is

Wxe

3

w =

1+ (A + VA2 - 1) v exp (QFiT)

3

3

n (A - Jﬁ)w exp (— 2”) ] , (4.7)

where 7 =0, 1, 2, and
27 k2T

A=1 .
+ 2 mw?,

(4.8)
According to (4.7), the plasma is stable when the three solutions are purely real (when
two solutions are complex, at least one of them has a positive imaginary part, leading to
instability). All the solutions are purely real and hence stable when A 4+ v/ A% — 1 is the
complex conjugate of A — /A2 — 1, that is, when |A| < 1, or equivalently

4 KT
< Bt ), (4.9)

~
27 7 miw?,

For 7); outside of this interval, the plasma is unstable (in fact, the plasma is always
unstable in the limit n; > 1, but for 7; in the interval (4.9), the growth rate is very
small). We can find simple unstable solutions in some limits. For example, for 7; > 0 and
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k2T;m;/miw?, < 1, the growing solution is

k‘2Ti A
we iy | (4.10)
m;

whereas for k2T;n; /m;w?, > 1, the growing solution is

kQTi 1/3 1 *elli 3
w ( - w*em|) Waelli V3, (4.11)

7 _5 |w*e7h’| 2

To give a physical picture for the fluid ITG instability, we consider first the lowest
order term in equation (4.4),

. (mi(vﬁ/ﬂuB) 3>kyq~5d1nTi

T 5 i (4.12)

gi =~ Bw dz

Note that to lowest order, the instability is mostly a fluctuation in the ion tempera-
ture. Indeed, an ion Maxwellian with a small electron temperature perturbation 67; =
T;(z) exp(—iwt + ikyy + ik.2z) < T; gives

mi 3/2 m;(vi/2 + pB)
ni(27r(Ti+6Ti)> R N = fui

m; U2 A

T, 2T

Comparing this result with equation (4.12), we find the ion temperature perturbation

. kddT,

Li= Bw dz
This temperature perturbation is the equivalent to the density perturbation shown in
figure 2: the fluctuating E x B drift brings into the magnetic field line of interest plasma
with higher or lower temperature depending on the direction of the drift. Equation (4.14)
can in fact be obtained from the intuitive energy equation —iwT; + v - %X(dT;/dz) ~ 0,
with vg = —if(kygz;/ B. In this simplified energy equation, we have been able to neglect
the energy transport along magnetic field lines because the orderings in (4.1) imply the
gradients along magnetic field lines are small. However, the parallel gradients become
important for the ion flow. Multiplying the ion version of equation (3.4) by m;v and
integrating over velocity, we find an equation for the perturbed ion parallel velocity
g =n; " [ gy d®o,

(4.14)

_smalling; ' <1

Using the lowest order result (4.12) in the second term in the left side of (4.15), we obtain
—iwngmgt;) +ik.n;T; ~ 0, that is, the ion temperature perturbation drives flow because
it exerts a pressure force along magnetic field lines. The resulting parallel velocity enters
in the ion continuity equation

. dn;

—iwn; + ik‘zni’&iu + Vg -X dz =0, (4.16)

that can be found by integrating over velocity the ion version of equation (3.4). Here,
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Im(¢;) >0 Im(¢;) =0 Im(¢;) <0

Im(u) Im(u) Im(u)
) gl
—————— - === —————-—>§i——- = ==
Re(u) ~ ’Re(u) 11 Re(u)
/ S
[~
e e

FIGURE 3. Landau contours for integration of resonant denominators such as the one in (4.19).
For Im(¢;) > 0, the contour is the real line, as expected. For Im({;) < 0, the contour surrounds
¢i to ensure that the integral is an analytic continuation of the integral with Im({;) > 0. For
Im({;) = 0, the part of the contour that surrounds ¢; is a semi-circumference, SC, whereas for
Im(¢;) < 0, the piece of the contour that surrounds (; is a a complete circumference, C'.

o= [G d3v is the perturbed ion density, and it is related to the perturbed elec-
trostatic potential via quasineutrality and the electron Maxwell-Boltzmann response,
Zn; = ne(ed/T.). Note that equation (4.16) gives the stable drift wave solution in (3.19)
if we neglect the parallel flow term ik.n;%;. Since the ordering in (4.1) assumes that the
parallel gradients are small, it is tempting to neglect this term, but for large 7;, the ion
temperature gradient is large and it drives large pressure perturbations. These pressure
perturbations push the plasma along magnetic field lines and give rise to a very large ion
parallel flow that can destabilize the drift wave by significantly modifying the ion density
perturbations.

4.2. Kinetic ITG instability

To obtain analytical results, we have assumed that n; > 1 and that k,vy;/w < 1. These
assumptions limit the validity of the results. It is possible to solve the dispersion relation
for n; ~ 1 numerically. For n; ~ 1, we cannot assume k,v;;/w < 1. Thus, we have to
integrate the ion distribution function in (4.2) without Taylor expanding the resonant
denominator. The part of the integral over pu is straightforward. For the integral over
v|, we change to the variable u = (k./|k.|)(v)/ve), where vy = +/2T;/m;. Then, the
perturbed ion density is

_ Zed n; Wi 1 exp(—u?)
. d3u = 14m(u?=2]] - ————du. 4.1
/g v Ti V7 Jey {|kz|vn- { o <u 2)] u} u=G a ()

Here

(4.18)

and Cf, is the Landau contour, explained in detail in (Schekochihin 2015). The resonant
denominator in (4.2) indicates that for the time ¢, we need to use a Laplace transform
instead of a Fourier transform. For the Laplace transform, we assume that Im(w) > 0.
Thus, for Im(w) > 0, the Landau contour is simply the real axis. For Im(w) < 0, to
ensure that [ g; d3v is analytic for all w, we have to choose other contours that avoid
(i, as shown in figure 3. To reduce the size of the expressions, it is useful to define the
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FIGURE 4. Real frequency w, and growth rate v for the ITG instability as a function of
|k |vei /wse for different values of n; in a plasma with Z =1 and T, = T;.

plasma dispersion function

G L[ ezt
Z2(¢G) = ﬁ/cL s du. (4.19)

Using this function, we obtain

L[ ey, L[ Qo) & [ epCi),,
Cr o Cr G o u—=G
1 > i —u2
= ﬁ /_OO exp(—u?) du + \57? o exi)(z_)du =14+ GZ(¢) (4.20)
and
Cr o Co 6 o UG
_ L= ‘ 2 2 exp(=u?) . o
- ﬁ /—oo(u+ C’) eXp<_u )du+ ﬁ . Tgldu - Cz + Ci Z(Cz)

(4.21)

With these results, equation (4.17) becomes

_ 3 _ Zed JwsiniGi Wai (2 LYY A
Joo= TS -1+ [ (1o (@-3)) - o 20 )

Substituting this equation and (3.15) into the quasineutrality equation (3.9), we obtain
the dispersion relation

w*eniCi ZT@ Wie 2 1 ZTe
1 1 i | (& — = il Z2(¢) =0. 4.23
el T [pie (e (@ - 3) ) + e 2) (1.23)
where we have used Zn; = n. and (Z7T./T;)ws; = —Wxe.

We can solve the dispersion relation (4.23) numerically using a more convenient form
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of the plasma dispersion function,
Gi
Z(6) = exp(—¢?) [i\/%— 2/ exp(wQ)dwl (4.24)
0

(see Appendix A to see why the plasma dispersion function can be written in this way).
In figure 4, for a plasma with ZT,/T; = 1, the complex frequency w = w, +iv of the ITG
instability is plotted as a function of |k,|vs; /wy. for different values of 7;. The instability
grows for |k,|vy; /wse smaller than a certain value that depends on n; and ZT./T;. The
approximate result in (4.7) suggests that the growth rate increases with increasing k,
without bound, but this trend, which we obtained by assuming k,vs; /w < 1, is only valid
up to values of k, such that k vy /w ~ 1.

We proceed to calculate the maximum value that |k, |vy; /wye can take for instability to
exist. At this value of |k.|vi; /wse, the growth rate vanishes. The complex frequency w is
such that both the real and the imaginary parts of the dispersion relation (4.23) vanish.
For zero growth rate, w and hence (; are purely real. For a purely real (;, the imaginary
part of the plasma dispersion function is Im(Z((;)) = /7 exp(—(?) and cannot vanish
(this result can be obtained from (4.24) or from the Landau contour for Im(¢;) = 0
sketched in figure 3). Thus, to set the imaginary part of the dispersion relation (4.23) to
zero, the term that multiplies Z(¢;) must vanish, giving

Wse 1 ZT,
- lon <1 +n; (C? — 2)) + T G =0. (4.25)

If this equation is satisfied, the dispersion relation (4.23) implies that

WxeT)iGi ZTe
;¢ n
|F2 [ves T;

+1=0. (4.26)

Solving equations (4.25) and (4.26) simultaneously, we find that the growth rate vanishes

for
| mi(ni —2)
= . 4.2
max 1 + ZTS/T’L ( 7)

This calculation gives the maximum value that |k, |vs;/ws. can take for instability to
exist. Since we have used the fact that the growth rate is zero at this particular value
of |k.|vti/wse, it might be surprising that this calculation has not given the solution
k. = 0 since figure 4 clearly shows zero growth rate at that value of k,. This apparent
contradiction is resolved by the fact that for k, — 0 both the growth rate and the real
frequency vanish in such a way that (; is finite, that is, w o< k, for k, — 0. In general, (;
for k, — 0 is not purely real, and we cannot use the procedure that led to (4.27).

From equation (4.27), we can deduce the values of n; for which the plasma becomes
stable. For some values of 7;, the maximum value that |k, |v; /wse can take for instability
to exist, given in (4.27), does not exist. When this happens, the plasma is stable. Thus,
the plasma is stable for 0 < 7; < 2. For all the other values of 7;, the ITG instability
exists.

Finally, our derivations above suggest that ITG modes with large k, would grow faster
since the growth rate is proportional to w,.. However, the drift kinetic model is only
valid for kyp; < 1. For kyp; ~ 1 the ITG mode is stabilized by finite gyroradius effects.

|kz‘vti

Wie
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Appendix A. Alternative expression for the plasma dispersion
function
In this Appendix, we show that the plasma dispersion function, defined in (4.19), can
be written as in equation (4.24). To do so, we first consider the case Im(¢{;) > 0. In this
case, we can write
1 o0
= i/ exp(—iA(u — ¢;)) dA. (A1)
u—G 0

Using this result, the plasma dispersion function in (4.19) becomes

2(¢) = ﬁ i

Integrating in uw by completing the square in the exponential, we find

du/o dX exp(—u® —iX(u — §;)). (A2)

o] 2
Z() = i/ exp (—Z + ix\(i> dA. (A3)
0
Using the integration variable v = A/2 — i(;, this integral becomes
Z2(G) = Ziexp(—CiZ)/ exp (—v?) do. (A4)
—ic

This integral can be calculated by splitting it into two integrals

0 —i¢;
Z(&) = 2iexp(—¢?) l/o exp (—v2) dv —/0 exp (—v2) dv] . (A5)

Realizing that the first integral is [~ exp (—v?) dv = /7/2 and rewriting the second
integral using the integration variable w = iv, we finally obtain (4.24). The same result
can be obtained for Im(¢;) < 0 using

1 P
u—G

and recalling the Landau contour (shown in figure 3) has a part that surrounds (;, giving

—i/ooo exp(i(u — ¢)) dA (A6)

Z(G) = _ﬁ/c du/oDO dX exp(—u® +iX(u — ;)

= 2iy/mexp(—¢?) — 1/00 exp <A42 - i/\(i) dA. (A7)
0



