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1. Introduction

In these notes, we study the simplest kinetic model for a magnetized plasma: elec-
trostatic drift kinetics. In the electrostatic limit, the magnetic field is assumed to be
determined by very strong external magnets. The plasma energy is small compared to
the magnetic energy, and the plasma is unable to modify the magnetic field. Thus, in ad-
dition to assuming that the plasma is quasineutral, λD/L� 1 and ω/ωpe � 1, and that
the plasma is magnetized, ρs∗ � 1 and ω/Ωs � 1, the electrostatic limit is characterized
by

β =
2µ0p

B2
� 1. (1.1)

Here λD =
√
ε0Te/e2ne is the Debye length, ωp =

√
e2ne/ε0me is the plasma frequency,

ε0 and µ0 are the vacuum permittivity and permeability, and p =
∑
s ps =

∑
s nsmsv

2
ts/2

is the plasma pressure.
To show that β � 1 leads to electrostatic drift kinetics, we need to discuss the typical

time and length scales of the problem. We will show that the electric field is well described
by an electrostatic potential φ, E ' −∇φ. Since the electrostatic potential φ will be
generated by the plasma, we expect it to be comparable to the characteristic plasma
energy, that is, eφ/T ∼ 1, and hence

|E| = |∇φ| ∼ T

eL
. (1.2)

Thus, the most natural ordering for electrostatic drift kinetics is the low flow regime,
although there are situations in which an electrostatic electric field can be in the high
flow regime. In the low flow regime, the particle motion is split into the fast parallel
motion, with v‖ ∼ vts, and the slow perpendicular drifts vE + vκ + v∇B ∼ ρs∗vts. We
are interested in phenomena related to the drifts, that is, we will study phenomena with
the characteristic frequency

ω ∼ |vE + vκ + v∇B |
L

∼ ρi∗
vti
L
, (1.3)

where we are assuming that the main ions s = i are the dominant species. Importantly,
the difference between the perpendicular and parallel velocities leads to a separation
between the characteristic parallel length L‖ ∼ |b̂ · ∇ ln fs|−1 ∼ |b̂ · ∇ lnφ|−1 and the
characteristic perpendicular length L ∼ |∇⊥ ln fs|−1 ∼ |∇⊥ lnφ|−1 of the distribution

functions and the potential. Imposing that v‖b̂ · ∇fs ∼ (vE + vκ + v∇B) · ∇fs, we find

L

L‖
∼ |vE + vκ + v∇B |

v‖
∼ ρi∗ � 1. (1.4)

Thus, L‖ is typically much larger than L. Note that L‖ is the characteristic parallel
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length of the potential and the distribution functions, and not of the magnetic field B.
The shape of B is determined by external magnets.

We have explained above that for low β, the magnetic field is not generated by the
plasma, but by external sources. Indeed, the ratio between the magnetic field generated
by currents in the plasma, Bp, and the total magnetic field, B, is of the order of the
parameter β, Bp/B ∼ β � 1, as we proceed to show. We start from Ampere’s law,

∇×Bp = µ0J +
1

c2
∂E

∂t
. (1.5)

We can estimate the size of the current density of the plasma, J, from the size of the
perpendicular current J⊥. Using that fs = 〈fs〉ϕ + f̃s, with f̃s ∼ ρs∗fs, we find

J ∼ J⊥ =
∑

s

Zse

∫
fsv⊥ d3v =

∑
Zse

∫
fs(w⊥ + vE) d3v

=
∑

s

Zse

∫
2πB〈f̃sw⊥〉ϕ dv‖ dµ+

��
�
��*

0 due to quasineutrality∑

s

ZsensvE ∼ eneρi∗vti ∼
p

BL
. (1.6)

The displacement current c−2(∂E/∂t) is small compared to this current. Using that the
speed of light is given by c2 = (ε0µ0)−1, and employing ω ∼ ρi∗vti/L and |E| ∼ T/eL,
we find

c−2|∂E/∂t|
µ0|J|

∼ λ2D
L2
� 1 (1.7)

Then, we can safely neglect the displacement current compared to the plasma current in
Ampere’s equation (1.5), leading to

Bp

B
∼ µ0|J|L

B
∼ β � 1, (1.8)

as predicted above. The magnetic field is mostly generated by currents external to the
plasma, giving

∇×B ' 0 (1.9)

within the plasma. Since the plasma is unable to modify the background magnetic field,
we consider B a given field that we do not need to determine.

We finish by showing that the electric field is indeed electrostatic for β � 1. In general,
the electric field has an electrostatic piece and an inductive piece,

E = −∇φ+ EA, (1.10)

where EA is the inductive electric field. For external magnetic fields with no time depen-
dence, Faraday’s law implies

∇×EA = −∂B
∂t

= −∂B
p

∂t
∼ β ρi∗vtiB

L
∼ β T

eL2
, (1.11)

leading to an inductive piece of the electric field, EA, of order

|EA| ∼ β T
eL
� |∇φ| ∼ T

eL
. (1.12)

proving that the electric field is electrostatic.
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2. Electrostatic drift kinetics

In the electrostatic limit, the low flow drift kinetic equation becomes

∂〈fs〉ϕ
∂t

+ ṙDK · ∇〈fs〉ϕ + v̇DK‖
∂〈fs〉ϕ
∂v‖

+ µ̇DK
∂〈fs〉ϕ
∂µ

= 0, (2.1)

where

ṙDK = (v‖ + vB)b̂− 1

B
∇φ× b̂ + vκ + v∇B , (2.2)

v̇DK‖ = −b̂ ·
[
Zse

ms
∇φ+ (µ+ µ1)∇B

]
− v‖

Ωs
(b̂× κ) ·

(
Zse

ms
∇φ+ µ∇B

)

− v‖b̂ · ∇vB , (2.3)

µ̇DK = −v‖b̂ · ∇µ1 + b̂ ·
(
Zse

ms
∇φ+ µ∇B

)
∂µ1

∂v‖
. (2.4)

Here vκ = (v2‖/Ωs)b̂ × κ, v∇B = (µ/Ωs)b̂ × ∇B, vB = (msµ/Zse)b̂ · ∇ × b̂ and µ1 =

−(v‖µ/Ωs)b̂ · ∇ × b̂. According to (1.9), ∇× b̂ ' b̂×∇ lnB. Thus, b̂ · ∇ × b̂ ' 0, and
vB and µ1 can be neglected, giving

∂〈fs〉ϕ
∂t

+

(
v‖b̂−

1

B
∇φ× b̂ + vκ + v∇B

)
· ∇〈fs〉ϕ

−
(
b̂ +

v‖

Ωs
b̂× κ

)
·
(
Zse

ms
∇φ+ µ∇B

)
∂〈fs〉ϕ
∂v‖

= 0. (2.5)

To close the problem, we need an equation for φ. We use quasineutrality,

0 =
∑

s

Zsens =
∑

s

Zse

∫
2πB〈fs〉ϕ dv‖ dµ. (2.6)

The potential appears implicitly in this equation through the gyroaveraged distribution
functions 〈fs〉ϕ.

3. Drift waves

To understand the behavior of a low β, magnetized plasma, we consider a simple slab
configuration. We consider a constant and uniform magnetic field B = Bẑ (see figure 1).
In this magnetic field, the drift kinetic equation simplifies to

∂〈fs〉ϕ
∂t

+

(
v‖ẑ−

1

B
∇φ× ẑ

)
· ∇〈fs〉ϕ −

Zse

ms
ẑ · ∇φ∂〈fs〉ϕ

∂v‖
= 0. (3.1)

We use this equation to study the response to small perturbations of a plasma composed
of one ion species of charge Ze and mass mi, and electrons of charge −e and mass me.
We consider a steady state without electric field (φ = 0). Then, the drift kinetic equation
becomes v‖ẑ · ∇〈fs〉ϕ = 0. Thus, any distribution function constant along magnetic field
lines will be a solution. We choose Maxwellian distribution functions for both electrons
and ions,

〈fs〉ϕ(x, v‖, µ) = fMs(x, v‖, µ) ≡ ns(x)

(
ms

2πTs(x)

)3/2

exp

(
−
ms(v

2
‖/2 + µB)

Ts(x)

)
. (3.2)
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Figure 1. Magnetized plasma slab. It is conventional to assume that the gradients of density
and temperature point in the negative x direction.

The densities ns and temperatures Ts only depend on x (see figure 1). Electrons and ions
must satisfy quasineutrality,

Zni(x) = ne(x). (3.3)

We also assume that the electron and ion temperature are of similar size, that is, Te ∼ Ti.
We perturb this equilibrium. We consider a perturbation to the potential δφ, and

a perturbation to the gyroaveraged distribution function due to this potential δ〈fs〉ϕ.
Linearizing (3.1), we obtain

∂δ〈fs〉ϕ
∂t

+ v‖ẑ · ∇δ〈fs〉ϕ =
1

B
(∇δφ× ẑ) · ∇fMs +

Zse

ms
ẑ · ∇δφ∂fMs

∂v‖
. (3.4)

The perturbations also have to satisfy quasineutrality,

Z

∫
2πB δ〈fi〉ϕ dv‖ dµ =

∫
2πB δ〈fe〉ϕ dv‖ dµ. (3.5)

Considering perturbations of the form δφ = φ̃(x) exp(−iωt+ ikyy+ ikzz) and δ〈fs〉ϕ =
g̃s(x, v‖, µ) exp(−iωt+ ikyy + ikzz), and using

∇fMs = x̂

[
1

ns

dns
dx

+

(
ms(v

2
‖/2 + µB)

Ts
− 3

2

)
1

Ts

dTs
dx

]
fMs (3.6)

and
∂fMs

∂v‖
= −msv‖

Ts
fMs, (3.7)

equation (3.4) becomes

(−iω + ikzv‖)g̃s =

{
iω∗s

[
1 + ηs

(
ms(v

2
‖/2 + µB)

Ts
− 3

2

)]
− ikzv‖

}
Zseφ̃

Ts
fMs, (3.8)

and the quasineutrality equation gives

Z

∫
2πB g̃i dv‖ dµ =

∫
2πB g̃e dv‖ dµ. (3.9)

Here

ω∗s = − kyTs
ZseBLns

(3.10)
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is the drift frequency of species s,

ηs =
Lns

LTs

, (3.11)

and the density and temperature scale lengths Lns and LTs are defined by

LQ = −
(

d

dx
lnQ

)−1
. (3.12)

Due to quasineutrality (see (3.3)), Lne = Lni = Ln.
Since Te ∼ Ti, the thermal speeds of ions and electrons are very different, vte/vti ∼√
mi/me � 1. Thus, there exist modes that satisfy

kzvti � ω ∼ ω∗e ∼ ω∗i � kzvte. (3.13)

Electrons and ions respond differently to waves in this frequency range. For electrons,
equation (3.8) becomes

(−��>
small

iω + ikzv‖)g̃e =

{

���
���

���
���

���
���:

small

−iω∗e

[
1 + ηe

(
me(v

2
‖/2 + µB)

Te
− 3

2

)]
+ ikzv‖

}
eφ̃

Te
fMe. (3.14)

Then, the electrons give a simple Maxwell-Boltzmann response,

g̃e '
eφ̃

Te
fMe. (3.15)

The ions satisfy the equation

(−iω +��
�* small

ikzv‖)g̃i =

{
−��

�* small
ikzv‖ + iω∗i

[
1 + ηi

(
mi(v

2
‖/2 + µB)

Ti
− 3

2

)]}
Zeφ̃

Ti
fMi, (3.16)

giving

g̃i ' −
ω∗i
ω

[
1 + ηi

(
mi(v

2
‖/2 + µB)

Ti
− 3

2

)]
Zeφ̃

Ti
fMi. (3.17)

Using equations (3.15) and (3.17) in the quasineutrality equation (3.9), we obtain the
dispersion relation for waves that satisfy (3.13),

−Z
2ni
Ti

ω∗i
ω

=
ne
Te
. (3.18)

Using Zni = ne and (ZTe/Ti)ω∗i = −ω∗e, we find that the wave frequency is

ω = ω∗e =
kyTe
eBLn

. (3.19)

The phase and group velocity of this wave are

v∗e = − Te
eneB

b̂×∇ne =
Te

eBLne

ŷ. (3.20)

In figure 2 we give a physical picture for the drift wave. Note that our derivation does
not give the structure of the mode in the x direction. To calculate the structure in x, we
would need higher order terms in ρs∗.

Almost any low frequency (ω � Ωi � Ωe) perturbation to a magnetized plasma with
gradients will move with a velocity of the order of the drift velocity in (3.20). The drift
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Figure 2. Sketch of a drift wave. An initial perturbed plasma density contour is sketched as
a solid wavy line. The density below this line is higher than above it. Due to the electron
Maxwell-Boltzmann response, caused by a parallel gradient not shown in the figure, there is a
potential difference between the high and the low density region. This potential difference causes
an electric field and hence an E ×B drift, shown in the figure. The E ×B drift moves ions in
such a way that the density contour simply moves in the y direction. The density contour at a
later time is sketched as a dashed wavy line.

velocity and the drift frequency are ubiquitous in plasma physics, and it is very common
to find references to ω∗ and v∗ in the literature. The derivation that we have followed
is based on kzvti � ω, but waves with kzvti ∼ ω will have frequencies of the order of
ω∗e as well. In general, however, drift waves with kzvti ∼ ω will decay due to Landau
damping. It is also possible to find unstable drift wave modes that grow by tapping the
thermodynamic energy contained in plasma gradients.

4. Ion Temperature Gradient (ITG) instability

To demonstrate that drift waves can become unstable, we first consider perturbations
that satisfy the assumptions in (3.13) and later we generalize the calculation to include
perturbations with kzvti ∼ ω. In both cases the electrons follow the Maxwell-Boltzmann
response in (3.15).

4.1. Fluid limit of the ITG instability

In this subsection, we will look for perturbation that satisfy the assumptions in (3.13).
The difference between the derivation that follows and the derivation of the drift wave
in section 3 is that, for the derivation that follows, we consider cases with a large ion
temperature gradient, LTi � Ln. We assume that ηi = Ln/LTi � 1, and we expand the
equations assuming that

kzvti
ω
∼ 1√

ηi
� 1. (4.1)

Equation (3.8) for the ions can be written as

g̃i =
1

ω − kzv‖

{
−ω∗i

[
1 + ηi

(
mi(v

2
‖/2 + µB)

Ti
− 3

2

)]
+ kzv‖

}
Zeφ̃

Ti
fMi. (4.2)

Using (4.1), we can Taylor expand (ω − kzv‖)−1 for typical values of v‖,

1

ω − kzv‖
=

1

ω

[
1 +

kzv‖

ω
+
k2zv

2
‖

ω2
+O(η

−3/2
i )

]
. (4.3)
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Note that by Taylor expanding, we have converted a resonant denominator into a smooth
function. Resonant denominators have been treated in the notes for Kinetic Theory
(Schekochihin 2015) with the help of Laplace transforms and Landau contours. We
will come back to resonant denominators in the next subsection. For this subsection,
it is sufficient to know that by employing equation (4.3), we will miss terms of order
exp(−ω2/k2zv

2
ti) ∼ exp(−ηi) � 1. Using (4.3), the perturbation to the ion distribution

function becomes

g̃i = −ω∗i
ω

[(
mi(v

2
‖/2 + µB)

Ti
− 3

2

)(
ηi +

ηikzv‖

ω︸ ︷︷ ︸
∼η1/2i

+
ηik

2
zv

2
‖

ω2︸ ︷︷ ︸
∼1

)

+1 +O(η
−1/2
i )

]
Zeφ̃

Ti
fMi. (4.4)

Note that we are keeping terms of different size in the expansion in η−1i � 1. This may
seem surprising, but it will become clear why we do so.

Substituting (3.15) and (4.4) into the quasineutrality equation (3.9), we obtain the
dispersion relation

−Z
2ni
Ti

ω∗i
ω

(
ηik

2
zTi

miω2
+ 1

)
=
ne
Te
. (4.5)

Note that all the terms of order ηi and η
1/2
i in (4.4) do not contribute to the density. We

kept small terms in the expansion in η−1i � 1 because the small terms were the only ones
that ended up contributing to the density. Using Zni = ne and (ZTe/Ti)ω∗i = −ω∗e, we
can rewrite the dispersion relation (4.5) as

ω3 − ω∗eω2 − k2zTi
mi

ω∗eηi = 0. (4.6)

The general solution to (4.6) is

ω =
ω∗e
3

[
1 +

(
A+

√
A2 − 1

)1/3
exp

(
2πir

3

)

+
(
A−

√
A2 − 1

)1/3
exp

(
−2πir

3

)]
, (4.7)

where r = 0, 1, 2, and

A = 1 +
27

2

k2zTiηi
miω2

∗e
. (4.8)

According to (4.7), the plasma is stable when the three solutions are purely real (when
two solutions are complex, at least one of them has a positive imaginary part, leading to
instability). All the solutions are purely real and hence stable when A+

√
A2 − 1 is the

complex conjugate of A−
√
A2 − 1, that is, when |A| 6 1, or equivalently

− 4

27
6
k2zTiηi
miω2

∗e
6 0. (4.9)

For ηi outside of this interval, the plasma is unstable (in fact, the plasma is always
unstable in the limit ηi � 1, but for ηi in the interval (4.9), the growth rate is very
small). We can find simple unstable solutions in some limits. For example, for ηi > 0 and
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k2zTiηi/miω
2
∗e � 1, the growing solution is

ω ' i

√
k2zTiηi
mi

, (4.10)

whereas for k2zTiηi/miω
2
∗e � 1, the growing solution is

ω '
(
k2zTi
mi
|ω∗eηi|

)1/3
(
−1

2

ω∗eηi
|ω∗eηi|

+

√
3

2
i

)
. (4.11)

To give a physical picture for the fluid ITG instability, we consider first the lowest
order term in equation (4.4),

g̃i ' −
(
mi(v

2
‖/2 + µB)

Ti
− 3

2

)
kyφ̃

Bω

d lnTi
dx

fMi. (4.12)

Note that to lowest order, the instability is mostly a fluctuation in the ion tempera-
ture. Indeed, an ion Maxwellian with a small electron temperature perturbation δTi =
T̃i(x) exp(−iωt+ ikyy + ikzz)� Ti gives

ni

(
mi

2π(Ti + δTi)

)3/2

exp

(
−
mi(v

2
‖/2 + µB)

Ti + δTi

)
' fMi

+

(
mi(v

2
‖/2 + µB)

Ti
− 3

2

)
δTi
Ti
fMi (4.13)

Comparing this result with equation (4.12), we find the ion temperature perturbation

T̃i = −kyφ̃
Bω

dTi
dx

. (4.14)

This temperature perturbation is the equivalent to the density perturbation shown in
figure 2: the fluctuating E×B drift brings into the magnetic field line of interest plasma
with higher or lower temperature depending on the direction of the drift. Equation (4.14)
can in fact be obtained from the intuitive energy equation −iωT̃i + ṽE · x̂(dTi/dx) ' 0,
with ṽE = −ix̂kyφ̃/B. In this simplified energy equation, we have been able to neglect
the energy transport along magnetic field lines because the orderings in (4.1) imply the
gradients along magnetic field lines are small. However, the parallel gradients become
important for the ion flow. Multiplying the ion version of equation (3.4) by miv‖ and
integrating over velocity, we find an equation for the perturbed ion parallel velocity
ũi‖ = n−1i

∫
g̃iv‖ d3v,

−iωnimiũi‖ + ikz

∫
g̃imiv

2
‖ d3v = −����

�: small in η−1i � 1
Zniikzφ̃. (4.15)

Using the lowest order result (4.12) in the second term in the left side of (4.15), we obtain
−iωnimiũi‖+ ikzniT̃i ' 0, that is, the ion temperature perturbation drives flow because
it exerts a pressure force along magnetic field lines. The resulting parallel velocity enters
in the ion continuity equation

−iωñi + ikzniũi‖ + ṽE · x̂
dni
dx

= 0, (4.16)

that can be found by integrating over velocity the ion version of equation (3.4). Here,
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Im(u)

Re(u) Re(u) Re(u)

Im(u) Im(u)

SC
C

Figure 3. Landau contours for integration of resonant denominators such as the one in (4.19).
For Im(ζi) > 0, the contour is the real line, as expected. For Im(ζi) 6 0, the contour surrounds
ζi to ensure that the integral is an analytic continuation of the integral with Im(ζi) > 0. For
Im(ζi) = 0, the part of the contour that surrounds ζi is a semi-circumference, SC, whereas for
Im(ζi) < 0, the piece of the contour that surrounds ζi is a a complete circumference, C.

ñi =
∫
g̃i d3v is the perturbed ion density, and it is related to the perturbed elec-

trostatic potential via quasineutrality and the electron Maxwell-Boltzmann response,
Zñi = ne(eφ̃/Te). Note that equation (4.16) gives the stable drift wave solution in (3.19)
if we neglect the parallel flow term ikzniũi‖. Since the ordering in (4.1) assumes that the
parallel gradients are small, it is tempting to neglect this term, but for large ηi, the ion
temperature gradient is large and it drives large pressure perturbations. These pressure
perturbations push the plasma along magnetic field lines and give rise to a very large ion
parallel flow that can destabilize the drift wave by significantly modifying the ion density
perturbations.

4.2. Kinetic ITG instability

To obtain analytical results, we have assumed that ηi � 1 and that kzvti/ω � 1. These
assumptions limit the validity of the results. It is possible to solve the dispersion relation
for ηi ∼ 1 numerically. For ηi ∼ 1, we cannot assume kzvti/ω � 1. Thus, we have to
integrate the ion distribution function in (4.2) without Taylor expanding the resonant
denominator. The part of the integral over µ is straightforward. For the integral over
v‖, we change to the variable u = (kz/|kz|)(v‖/vti), where vti =

√
2Ti/mi. Then, the

perturbed ion density is

∫
g̃i d3v =

Zeφ̃

Ti

ni√
π

∫

CL

{
ω∗i
|kz|vti

[
1 + ηi

(
u2 − 1

2

)]
− u
}

exp(−u2)

u− ζi
du. (4.17)

Here

ζi =
ω

|kz|vti
(4.18)

and CL is the Landau contour, explained in detail in (Schekochihin 2015). The resonant
denominator in (4.2) indicates that for the time t, we need to use a Laplace transform
instead of a Fourier transform. For the Laplace transform, we assume that Im(ω) > 0.
Thus, for Im(ω) > 0, the Landau contour is simply the real axis. For Im(ω) 6 0, to
ensure that

∫
g̃i d3v is analytic for all ω, we have to choose other contours that avoid

ζi, as shown in figure 3. To reduce the size of the expressions, it is useful to define the
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Figure 4. Real frequency ωr and growth rate γ for the ITG instability as a function of
|kz|vti/ω∗e for different values of ηi in a plasma with Z = 1 and Te = Ti.

plasma dispersion function

Z(ζi) =
1√
π

∫

CL

exp(−u2)

u− ζi
du. (4.19)

Using this function, we obtain

1√
π

∫

CL

u exp(−u2)

u− ζi
du =

1√
π

∫

CL

(u− ζi) exp(−u2)

u− ζi
du+

ζi√
π

∫

CL

exp(−u2)

u− ζi
du

=
1√
π

∫ ∞

−∞
exp(−u2) du+

ζi√
π

∫

CL

exp(−u2)

u− ζi
du = 1 + ζiZ(ζi) (4.20)

and

1√
π

∫

CL

u2 exp(−u2)

u− ζi
du =

1√
π

∫

CL

(u2 − ζ2i ) exp(−u2)

u− ζi
du+

ζ2i√
π

∫

CL

exp(−u2)

u− ζi
du

=
1√
π

∫ ∞

−∞
(u+ ζi) exp(−u2) du+

ζ2i√
π

∫

CL

exp(−u2)

u− ζi
du = ζi + ζ2i Z(ζi)

(4.21)

With these results, equation (4.17) becomes

∫
g̃i d3v =

Zeφ̃

Ti
ni

{
ω∗iηiζi
|kz|vti

− 1 +

[
ω∗i
|kz|vti

(
1 + ηi

(
ζ2i −

1

2

))
− ζi

]
Z(ζi)

}
. (4.22)

Substituting this equation and (3.15) into the quasineutrality equation (3.9), we obtain
the dispersion relation

ω∗eηiζi
|kz|vti

+
ZTe
Ti

+ 1 +

[
ω∗e
|kz|vti

(
1 + ηi

(
ζ2i −

1

2

))
+
ZTe
Ti

ζi

]
Z(ζi) = 0. (4.23)

where we have used Zni = ne and (ZTe/Ti)ω∗i = −ω∗e.
We can solve the dispersion relation (4.23) numerically using a more convenient form
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of the plasma dispersion function,

Z(ζi) = exp(−ζ2i )

[
i
√
π − 2

∫ ζi

0

exp(w2) dw

]
(4.24)

(see Appendix A to see why the plasma dispersion function can be written in this way).
In figure 4, for a plasma with ZTe/Ti = 1, the complex frequency ω = ωr +iγ of the ITG
instability is plotted as a function of |kz|vti/ω∗e for different values of ηi. The instability
grows for |kz|vti/ω∗e smaller than a certain value that depends on ηi and ZTe/Ti. The
approximate result in (4.7) suggests that the growth rate increases with increasing kz
without bound, but this trend, which we obtained by assuming kzvti/ω � 1, is only valid
up to values of kz such that kzvti/ω ∼ 1.

We proceed to calculate the maximum value that |kz|vti/ω∗e can take for instability to
exist. At this value of |kz|vti/ω∗e, the growth rate vanishes. The complex frequency ω is
such that both the real and the imaginary parts of the dispersion relation (4.23) vanish.
For zero growth rate, ω and hence ζi are purely real. For a purely real ζi, the imaginary
part of the plasma dispersion function is Im(Z(ζi)) =

√
π exp(−ζ2i ) and cannot vanish

(this result can be obtained from (4.24) or from the Landau contour for Im(ζi) = 0
sketched in figure 3). Thus, to set the imaginary part of the dispersion relation (4.23) to
zero, the term that multiplies Z(ζi) must vanish, giving

ω∗e
|kz|vti

(
1 + ηi

(
ζ2i −

1

2

))
+
ZTe
Ti

ζi = 0. (4.25)

If this equation is satisfied, the dispersion relation (4.23) implies that

ω∗eηiζi
|kz|vti

+
ZTe
Ti

+ 1 = 0. (4.26)

Solving equations (4.25) and (4.26) simultaneously, we find that the growth rate vanishes
for

|kz|vti
ω∗e

∣∣∣∣
max

=

√
ηi(ηi − 2)

1 + ZTe/Ti
. (4.27)

This calculation gives the maximum value that |kz|vti/ω∗e can take for instability to
exist. Since we have used the fact that the growth rate is zero at this particular value
of |kz|vti/ω∗e, it might be surprising that this calculation has not given the solution
kz = 0 since figure 4 clearly shows zero growth rate at that value of kz. This apparent
contradiction is resolved by the fact that for kz → 0 both the growth rate and the real
frequency vanish in such a way that ζi is finite, that is, ω ∝ kz for kz → 0. In general, ζi
for kz → 0 is not purely real, and we cannot use the procedure that led to (4.27).

From equation (4.27), we can deduce the values of ηi for which the plasma becomes
stable. For some values of ηi, the maximum value that |kz|vti/ω∗e can take for instability
to exist, given in (4.27), does not exist. When this happens, the plasma is stable. Thus,
the plasma is stable for 0 < ηi < 2. For all the other values of ηi, the ITG instability
exists.

Finally, our derivations above suggest that ITG modes with large ky would grow faster
since the growth rate is proportional to ω∗e. However, the drift kinetic model is only
valid for kyρi � 1. For kyρi ∼ 1 the ITG mode is stabilized by finite gyroradius effects.
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Appendix A. Alternative expression for the plasma dispersion
function

In this Appendix, we show that the plasma dispersion function, defined in (4.19), can
be written as in equation (4.24). To do so, we first consider the case Im(ζi) > 0. In this
case, we can write

1

u− ζi
= i

∫ ∞

0

exp(−iλ(u− ζi)) dλ. (A 1)

Using this result, the plasma dispersion function in (4.19) becomes

Z(ζi) =
i√
π

∫

CL

du

∫ ∞

0

dλ exp(−u2 − iλ(u− ζi)). (A 2)

Integrating in u by completing the square in the exponential, we find

Z(ζi) = i

∫ ∞

0

exp

(
−λ

2

4
+ iλζi

)
dλ. (A 3)

Using the integration variable v = λ/2− iζi, this integral becomes

Z(ζi) = 2i exp(−ζ2i )

∫ ∞

−iζi
exp

(
−v2

)
dv. (A 4)

This integral can be calculated by splitting it into two integrals

Z(ζi) = 2i exp(−ζ2i )

[∫ ∞

0

exp
(
−v2

)
dv −

∫ −iζi
0

exp
(
−v2

)
dv

]
. (A 5)

Realizing that the first integral is
∫∞
0

exp
(
−v2

)
dv =

√
π/2 and rewriting the second

integral using the integration variable w = iv, we finally obtain (4.24). The same result
can be obtained for Im(ζi) < 0 using

1

u− ζi
= −i

∫ ∞

0

exp(iλ(u− ζi)) dλ (A 6)

and recalling the Landau contour (shown in figure 3) has a part that surrounds ζi, giving

Z(ζi) = − i√
π

∫

CL

du

∫ ∞

0

dλ exp(−u2 + iλ(u− ζi))

= 2i
√
π exp(−ζ2i )− i

∫ ∞

0

exp

(
−λ

2

4
− iλζi

)
dλ. (A 7)


