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PART I

Kinetic Theory of Plasmas

1. Kinetic Description of a Plasma

We shall study a gas consisting of charged particles—ions and electrons. In general,
there may be many different species of ions, with different masses and charges, and, of
course, only one type of electrons.

I will index particle species by α (α = e for electrons, α = i for ions). Each is
characterised by its mass mα and charge qα = Zαe, where e is the magnitude of the
electron charge and Zα is a positive or negative integer (e.g., Ze = −1).

1.1. Quasineutrality

We shall always assume that plasma is neutral overall:∑
α

qαNα = eV
∑
α

Zαn̄α = 0, (1.1)

where Nα is the number of the particles of species α, n̄α = Nα/V is their mean number
density and V the volume of the plasma. This condition is known as quasineutrality.

1.2. Weak Interactions

Interaction between charged particles is governed by the Coulomb potential:

U
(
r

(α)
i , r

(α′)
j

)
= − qαqα′

|r(α)
i − r(α′)

j |
, (1.2)

where by r
(α)
i I mean the position of the i-th particle of species α. It is a safe bet that

we will only be able to have a nice closed kinetic description if the gas is approximately
ideal, i.e., if particles interact weakly, viz.,

kBT � U ∼ e2

∆r
∼ e2n1/3, (1.3)

where kB is the Boltzmann constant, which will henceforth be absobed into the tem-
perature T , and ∆r ∼ n−1/3 is the typical interparticle distance. Let us see what this
condition means and implies physically.

1.3. Debye Shielding

Let us consider a plasma in thermodynamic equilibrium (as one does in statistical
mechanics, I will refuse to discuss, for the time being, how exactly it got there). Take one
particular particle, of species α. It creates an electric field around itself, E = −∇ϕ; all
other particles sit in this field (Fig. 1)—and, indeed, also affect it, as we will see below.
In equilibrium, the densities of these particles ought to satisfy Boltzmann’s formula:

nα′(r) = n̄α′ e
−qα′ϕ(r)/T ≈ n̄α′

(
1− qα′ϕ

T

)
, (1.4)

where n̄α′ is the mean density of the particles of species α′ and ϕ(r) is the electrostatic
potential, which depends on the distance r from our “central” particle. As r →∞, ϕ→ 0
and nα′ → n̄α′ . The exponential can be Taylor-expanded provided the weak-interaction
condition (1.3) is satisfied (eϕ� T ).
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Figure 1. A particle amongst particles and its Debye sphere.

By the Gauss–Poisson law, we have

∇ ·E = −∇2ϕ = 4πqαδ(r) + 4π
∑
α′

qα′nα′

≈ 4πqαδ(r) + 4π
∑
α′

qα′ n̄α′︸ ︷︷ ︸
= 0 by

quasineutral-
ity

−

(∑
α′

4πn̄α′q
2
α′

T

)
︸ ︷︷ ︸

≡ 1/λ2
D

ϕ. (1.5)

In the first line of this equation, the first term on the right-hand side is the charge
density associated with the “central” particle and the second term is the charge density
of the rest of the particles. In the second line, I used the Taylor-expanded Boltzmann
expression (1.4) for the particle densities and then the quasineutrality (1.1) to establish
the vanishing of the second term. The combination that has arisen in the last term as
a prefactor of ϕ has dimensions of inverse square length, so we define the Debye length
to be

λD ≡

(∑
α

4πn̄αq
2
α

T

)−1/2

. (1.6)

Using also the obvious fact that the solution of (1.5) must be spherically symmetric, we
recast this equation as follows

1

r2

∂

∂r
r2 ∂ϕ

∂r
− 1

λ2
D

ϕ = −4πqαδ(r). (1.7)

The solution to this that asymptotes to the Coulomb potential ϕ → qα/r as r → 0 and
to zero as r →∞ is

ϕ =
qα
r
e−r/λD . (1.8)

Thus, in a quasineutral plasma, charges are shielded on typical distances ∼ λD.
Obviously, this statistical calculation only makes sense if the “Debye sphere” has very

many particles in it, viz., if

nλ3
D � 1 . (1.9)

Let us check that this is the case:

nλ3
D ∼ n

(
T

ne2

)3/2

=

(
T

n1/3e2

)3/2

� 1, (1.10)
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provided the weak-interaction condition (1.3) is satisfied. The quantity nλ3
D is called the

plasma parameter.

1.4. Micro- and Macroscopic Fields

This calculation tells us something very important about electromagnetic fields in a
plasma. Let E(micro)(r, t) and B(micro)(r, t) be the exact microscopic fields at a given
location r and time t. These fields are responsible for interactions between particles.
On distances l � λD, these will be just the two-particle interactions—binary collisions
between particles in vacuo, just like in a neutral gas (except the interparticle potential
is the Coulomb potential). In contrast, on distances l & λD, individual particles’ fields
are shielded and what remains are fields due to collective influence of large numbers of
particles—macroscopic fields:

E(micro) = 〈E(micro)〉︸ ︷︷ ︸
≡ E

+δE, B(micro) = 〈B(micro)〉︸ ︷︷ ︸
≡ B

+δB, (1.11)

where the macroscopic fields E and B are averages over some intermediate scale l such
that

∆r ∼ n−1/3 � l� λD. (1.12)

Such averaging (or “coarse-graining”) is made possible by the condition (1.9).

Thus, plasma has a new feature compared to neutral gas: because the Coulomb
potential is long-range (∝ 1/r), the fields decay on a length scale that is long compared
to the interparticle distances [λD � ∆r ∼ n−1/3 according to (1.9)] and so, besides
interactions between individual particles, there are also collective effects: interaction of
particles with mean macroscopic fields due to all other particles.

Before I use this approach to construct a description of the plasma as a continuum (on
scales� l), let us check that particles travel sufficiently long distances between collisions
in order to feel the macroscopic fields, viz., that their mean free path is λmfp � λD. The
mean free path can be estimated in terms of the collision cross-section σ:

λmfp ∼
1

nσ
∼ T 2

ne4
(1.13)

because σ ∼ d2 and the effective distance d by which particles have to approach each other
in order to have significant Coulomb interaction is inferred by balancing the Coulomb
potential energy (1.2) with the particle temperature, e2/d ∼ T . Using (1.13) and (1.6),
we find

λmfp

λD
∼ T 2

ne4

(
ne2

T

)1/2

∼ nλ3
D � 1, q.e.d. (1.14)

Thus, it makes sense to talk about a particle travelling long distances experiencing the
macroscopic fields exerted by the rest of the plasma collectively before being deflected
by a much larger, but also much shorter-range, microscopic field of another individual
particle.
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1.5. Maxwell’s Equations

The exact microscopic fields satisfy Maxwell’s equations and, since Maxwell’s equations
are linear, so do the macroscopic fields: by direct averaging,

∇ · 〈E(micro)〉 = 4π〈σ(micro)〉, (1.15)

∇ · 〈B(micro)〉 = 0, (1.16)

∇× 〈E(micro)〉+
1

c

∂〈B(micro)〉
∂t

= 0, (1.17)

∇× 〈B(micro)〉 − 1

c

∂〈E(micro)〉
∂t

=
4π

c
〈j(micro)〉. (1.18)

The new quantities here are the averages of the microscopic charge density σ(micro) and
the microscopic current density j(micro). How do we calculate them?

Clearly, they depend on where all the particles are at any given time and how fast
these particles move. We can assemble all this information in one function:

Fα(r,v, t) =

Nα∑
i=1

δ3
(
r − r(α)

i (t)
)
δ3
(
v − v(α)

i (t)
)
, (1.19)

where r
(α)
i (t) and v

(α)
i (t) are the exact phase-space coordinates of particle i of species

α at time t, i.e., these are the solutions of the exact equations of motion for all these
particles moving in the microscopic fields E(micro)(t, r) and B(micro)(t, r). The function
Fα is called the Klimontovich distribution function. It is a random object (i.e., it fluctuates
on scales ∼ n−1/3 � λD) because it depends on the exact particle trajectories, which
depend on the exact microscopic fields. In terms of this distribution function,

σ(micro)(r, t) =
∑
α

qα

∫
dv Fα(r,v, t), (1.20)

j(micro)(r, t) =
∑
α

qα

∫
dv vFα(r,v, t). (1.21)

We now need to average these quantities for use in (1.15) and (1.18). We shall assume
that the average over microscales (1.12) and the ensemble average (i.e., the average over
many different initial conditions for individual particles) are the same. The ensemble
average of Fα is an object familiar from the kinetic theory of gases (Dellar 2015), the
so-called one-particle distribution function:

〈Fα〉 = f1α(r,v, t) (1.22)

(I shall henceforth omit the subscript 1). If we learn how to compute fα, then we can
average (1.20) and (1.21), substitute them into (1.15) and (1.18), and have the following
set of macroscopic Maxwell’s equations:

∇ ·E = 4π
∑
α

qα

∫
dv fα(r,v, t), (1.23)

∇ ·B = 0, (1.24)

∇×E +
1

c

∂B

∂t
= 0, (1.25)

∇×B − 1

c

∂E

∂t
=

4π

c

∑
α

qα

∫
dv vfα(r,v, t). (1.26)
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1.6. Vlasov–Landau Equation

We now need an evolution equation for fα(r,v, t), hopefully in terms of the macroscopic
fields E(r, t) andB(r, t), so we can couple it to (1.23–1.26) and thus have a closed system
of equations describing our plasma.

The process of deriving it starts with Liouville’s theorem and is a direct generalisation
of the BBGKY procedure familiar from gas kinetics (e.g., Dellar 2015)1 to the somewhat
more cumbersome case of a plasma:

—many species α;
—presence of forces due to the macroscopic fields E and B;
—Coulomb potential for interparticle collisions, with some attendant complications

to do with its long-range nature: in brief, use Rutherford’s cross section and cut off
long-range interactions at λD (this is described in many textbooks and plasma-physics
courses: see, e.g., Parra 2019a, Kunz 2021, or a shortcut in §11.6 of these Lectures).

The result of this derivation is

∂fα
∂t

+ {fα, H1α} =

(
∂fα
∂t

)
c

. (1.27)

The Poisson bracket contains H1α, the Hamiltonian for a single particle of species α
moving in the macroscopic fields E and B—all the microscopic fields δE are gone into
the collision operator on the right-hand side, of which more will be said shortly (§1.8).2

Technically speaking, one ought to be working with canonical variables, but dealing
with canonical momenta of charged particles in a magnetic field is an unnecessary
complication, so I shall stick to the (r,v) representation of the phase space. Then (1.27)
takes the form of Liouville’s equation, but with microscopic fields hidden inside the
collision operator [see (1.41)]:

∂fα
∂t

+
∂

∂r
·
(
ṙfα

)
+

∂

∂v
·
(
v̇fα

)
=

(
∂fα
∂t

)
c

, (1.28)

where

ṙ = v, v̇ =
qα
mα

(
E +

v ×B
c

)
. (1.29)

This gives us the Vlasov–Landau equation:

∂fα
∂t

+ v ·∇fα +
qα
mα

(
E +

v ×B
c

)
· ∂fα
∂v

=

(
∂fα
∂t

)
c

. (1.30)

Any other macroscopic force that the plasma might be subject to (e.g., gravity) can
be added to the Lorentz force in the third term on the left-hand side, as long as its
divergence in velocity space is (∂/∂v) · force = 0. Equation (1.30) is closed by Maxwell’s
equations (1.23–1.26).

1.7. Klimontovich’s Version of BBGKY

By way of a technical digression, let me outline the (beginning of the) derivation of (1.30) due
to Klimontovich (1967). Consider the Klimontovich distribution function (1.19) and calculate

1In §1.7, I will sketch Klimontovich’s version of this procedure (Klimontovich 1967).
2δB turns out to be irrelevant as long as the particle motion is non-relativistic, v/c� 1.
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its time derivative: by the chain rule,

∂Fα
∂t

=−
∑
i

dr
(α)
i (t)

dt
·
[
∂

∂r
δ3(r − r(α)

i (t)
)
δ3(v − v(α)

i (t)
)]

−
∑
i

dv
(α)
i (t)

dt
·
[
∂

∂v
δ3(r − r(α)

i (t)
)
δ3(v − v(α)

i (t)
)]
. (1.31)

First, because r
(α)
i (t) and v

(α)
i (t) obviously do not depend on the phase-space variables r and

v, the derivatives ∂/∂r and ∂/∂v can be pulled outside, so the right-hand side of (1.31) can be
written as a divergence in phase space. Secondly, the particle equations of motion give us

dr
(α)
i (t)

dt
= v

(α)
i (t), (1.32)

dv
(α)
i (t)

dt
=

qα
mα

[
E(micro)(r(α)

i (t), t
)

+
v

(α)
i (t)×B(micro)

(
r

(α)
i (t), t

)
c

]
, (1.33)

which are to be substituted into the right-hand side of (1.31)—after it is written in the divergence

form. Since the time derivatives of r
(α)
i (t) and v

(α)
i (t) inside the divergence multiply delta

functions identifying r
(α)
i (t) with r and v

(α)
i (t) with v, r

(α)
i (t) may be replaced by r and v

(α)
i (t)

by v in the right-hand sides of (1.32) and (1.33) when they go into (1.31). This gives (wrapping
all the sums of delta functions back into Fα)

∂Fα
∂t

= −∇ · (vFα)− ∂

∂v
·
[
qα
mα

(
E(micro)(r, t) +

v ×B(micro)(r, t)

c

)
Fα

]
. (1.34)

Finally, because r and v are independent variables and the Lorentz force has zero divergence in
v space, Fα satisfies exactly

∂Fα
∂t

+ v ·∇Fα +
qα
mα

(
E(micro) +

v ×B(micro)

c

)
· ∂Fα
∂v

= 0 . (1.35)

This is the Klimontovich equation. There is no collision integral here because microscopic fields
are explicitly present. The equation is closed by the microscopic Maxwell’s equations:

∇ ·E(micro) = 4π
∑
α

qα

∫
dv Fα(r,v, t), (1.36)

∇ ·B(micro) = 0, (1.37)

∇×E(micro) +
1

c

∂B(micro)

∂t
= 0, (1.38)

∇×B(micro) − 1

c

∂E(micro)

∂t
=

4π

c

∑
α

qα

∫
dv vFα(r,v, t). (1.39)

Now let us separate the microscopic fields into mean (macroscopic) and fluctuating parts
according to (1.11); also

Fα = 〈Fα〉︸︷︷︸
≡ fα

+ δFα. (1.40)

Maxwell’s equations are linear, so averaging them gives the same equations for E and B in
terms of fα [see (1.23–1.26)] and for δE and δB in terms of δFα. Averaging the Klimontovich
equation (1.35) gives the Vlasov–Landau equation:

∂fα
∂t

+ v ·∇fα +
qα
mα

(
E +

v ×B
c

)
· ∂fα
∂v

= − qα
mα

〈(
δE +

v × δB
c

)
· ∂δFα
∂v

〉
≡
(
∂fα
∂t

)
c

. (1.41)
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The macroscopic fields in the left-hand side satisfy the macroscopic Maxwell’s equations (1.23–
1.26). The microscopic fluctuating fields δE and δB inside the average in the right-hand side
satisfy microscopic Maxwell’s equations with fluctuating charge and current densities expressed
in terms of δFα. Thus, the right-hand side is quadratic in δFα. In order to close this equation, we
need an expression for the correlation function 〈δFαδFα′〉 in terms of fα and fα′ . This is basically
what the BBGKY procedure plus truncation of velocity integrals based on an expansion in 1/nλ3

D

achieve. The result is the Landau collision operator (or the more precise Lenard–Balescu one;
see §§11.5 and 11.6).

Further details are a bit complicated (see Klimontovich 1967), but my aim here was just to
show how the fields are split into macroscopic and microscopic ones, with the former appearing
explicitly in the kinetic equation and the latter wrapped up inside the collision operator. The
presence of the macroscopic fields and the consequent necessity for coupling the kinetic equation
with Maxwell’s equations for these fields is the main mathematical difference between the kinetics
of neutral gases and the kinetics of plasmas.

1.8. Collision Operator

Finally, a few words about the plasma collision operator (or “collision integral”), first
derived explicitly by Landau (1936) (the same considerations apply to the the more
general operator due to Lenard 1960 and Balescu 1960). It describes two-particle collisions
both within the species α and with other species α′ and so depends both on fα and on
all other fα′ . Its derivation is left to you as an exercise in BBGKY’ing, calculating cross
sections and velocity integrals (or in googling; shortcut: see Parra 2019a, Kunz 2021,
or Swanson 2008).3 In these Lectures, I shall focus on collisionless aspects of plasma
kinetics. Whenever a need arises for invoking the collision operator, the important things
about it for us will be its properties:
• conservation of particles (within each species α),∫

dv

(
∂fα
∂t

)
c

= 0; (1.42)

• conservation of momentum,∑
α

∫
dvmαv

(
∂fα
∂t

)
c

= 0 (1.43)

(same-species collisions conserve momentum, whereas different-species collisions conserve
it only after summation over species—there is friction of one species against another; e.g.,
the friction of electrons against the ions is the Ohmic resistivity of the plasma, known as
“Spitzer resistivity”: see Parra 2019a, Kunz 2021, or Helander & Sigmar 2005);
• conservation of energy, ∑

α

∫
dv

mαv
2

2

(
∂fα
∂t

)
c

= 0; (1.44)

• Boltzmann’s H-theorem: the kinetic entropy

S = −
∑
α

∫∫
drdv fα ln fα (1.45)

cannot decrease, and, as S is conserved by all the collisionless terms in (1.30), the collision

3A somewhat unorthodox derivation of both the Lenard–Balescu and Landau operators will
be given in §§11.5 and 11.6, respectively, as a by-product of a discussion of collisionless (sic)
relaxation.
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operator must have the property that

dS

dt
= −

∑
α

∫∫
drdv

(
∂fα
∂t

)
c

ln fα > 0, (1.46)

with equality obtained if and only if fα is a local Maxwellian;
• unlike the Boltzmann operator for neutral gases, the Landau operator expresses

the cumulative effect of many glancing (rather than “head-on”) collisions (due to the
long-range nature of the Coulomb interaction) and so it is a Fokker–Planck operator:4(

∂fα
∂t

)
c

=
∂

∂v
·
∑
α′

(
Aαα′ [fα′ ] + Dαα′ [fα′ ] ·

∂

∂v

)
fα, (1.47)

where the drag Aαα′ (vector) and diffusion Dαα′ (matrix) coefficients are integral (in v
space) functionals of fα′ . The Fokker–Planck form (1.47) of the Landau operator means
that it describes diffusion in velocity space and so will erase sharp gradients in fα with
respect to v—a property that we will find very important in §5.

1.9. So What’s New and What Now?

Let me summarise the new features that have appeared in the kinetic description of a
plasma compared to that of a neutral gas.

• First, particles are charged, so they interact via Coulomb potential. The collision
operator is, therefore, different: the cross-section is the Rutherford cross-section, most
collisions are glancing (with interaction on distances up to the Debye length), leading to
diffusion of the particle distribution function in velocity space. Mathematically, this is
manifested in the collision operator in (1.30) having the Fokker–Planck structure (1.47).

One can spin out of the Vlasov–Landau equation (1.30) a theory that is analogous
to what is done with Boltzmann’s equation in gas kinetics (Dellar 2015): derive
fluid equations, calculate viscosity, thermal conductivity, Ohmic resistivity, etc., of a
collisionally dominated plasma, i.e., of a plasma in which the collision frequency of
the particles is much greater than all other relevant time scales. This is done in the
same way as in gas kinetics, but now applying the Chapman–Enskog procedure to the
Landau collision operator. This is quite a lot of work—and constitutes core textbook
material (see Parra 2019a; Kunz 2021). In magnetised plasmas especially, the resulting
fluid dynamics of the plasma are quite interesting and quite different from neutral
fluids—we shall see some of this in Part III and Part IV of these Lectures, while the
classic treatment of the transport theory can be found in Braginskii (1965); a great
textbook on collisional transport is Helander & Sigmar (2005) (see Krommes 2018 for a
modernist approach).

• Secondly, Coulomb potential is long-range, so the electric and magnetic fields have a
macroscopic (mean) part on scales longer than the Debye length—a particle experiencing
these fields is not undergoing a collision in the sense of bouncing off another particle,
but is, rather, interacting, via the fields, with the collective of all the other particles.
Mathematically, this manifests itself as a Lorentz-force term appearing in the right-hand

4The simplest example that I can think of in which the collision operator is a velocity-space
diffusion operator of this kind is the gas of Brownian particles [each with velocity described by
Langevin’s equation (6.65)]. This is treated in detail in §6.9 of Schekochihin (2019). In these
Lectures, the general Fokker–Planck form (1.47) emerges in (7.37), and then again, from a
different angle, in (11.22); the Landau operator is (11.36).
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side of the Vlasov–Landau kinetic equation (1.30). The macroscopic E and B fields that
figure in it are determined by the particles via their mean charge and current densities
that enter the macroscopic Maxwell’s equations (1.23–1.26).

In the case of neutral gas, all the interesting kinetic physics is in the collision operator,
hence the focus on transport theory in gas-kinetic literature (see, e.g., the classic mono-
graph by Chapman & Cowling 1991 if you want an overdose of this). In the collisionless
limit, the kinetic equation for a neutral gas,

∂f

∂t
+ v ·∇f = 0, (1.48)

simply describes particles with some initial distribution individualistically flying in
straight lines along their initial directions of travel. In contrast, for a plasma, even the
collisionless kinetics (and, indeed, especially the collisionless—or weakly collisional—
kinetics) is interesting and nontrivial because the particles, via the average properties of
their distribution—charge densities and currents,—collectively modify E and B, which
then act on individual particles and thus modify fα, etc. This “plasma democracy” is
a whole new conceptual world and it is on the effects involving interactions between
particles and fields that I shall focus here, in pursuit of maximum novelty.5

I shall also be in pursuit of maximum simplicity (well, to use Einstein’s dictum, “as
simple as possible, but not simpler”!) and so will mostly restrict my considerations to
the “electrostatic approximation”:

B = 0, E = −∇ϕ. (1.49)

This, of course, eliminates a huge number of interesting and important phenomena
without which plasma physics would not be the voluminous subject that it is, but I cannot
do them justice in just a few lectures (so see Parra 2019b for a course largely devoted
to collisionless magnetised plasmas). Some opportunities for generalising electrostatic
theory to electromagnetic one will be provided in Q-2 and Q-3.

Thus, we shall henceforth consider a simplified kinetic system, called the Vlasov–
Poisson system:

∂fα
∂t

+ v ·∇fα −
qα
mα

(∇ϕ) · ∂fα
∂v

= 0, (1.50)

−∇2ϕ = 4π
∑
α

qα

∫
dv fα. (1.51)

Formally, considering a collisionless plasma6 would appear to be legitimate as long as
the collision frequency is small compared to the characteristic frequencies of any other
evolution that might be going on. What are the characteristic time scales (and length
scales) in a plasma and what phenomena occur on these scales? These questions bring
us to our next theme.

5Similarly interesting things happen when the field tying the particles together is gravity—an
even more complicated situation because, while the potential is long-range, rather like the
Coulomb potential, gravity is not shielded and so all particles feel each other at all distances.
This gives rise to a very sophisticated theory, within which there is no plasma-style distinction
between “collisional” and “collisionless” dynamics (Binney 2018; Fouvry 2021; Hamilton 2022).
6Or, I stress again, a weakly collisional plasma. The collision operator is dropped in (1.50), but
let us not forget about it entirely even if the collision frequency is small; it will make a come
back in §5.
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Figure 2. A displaced population of electrons will set up a quasineutrality-restoring electric
field, leading to plasma oscillations.

2. Equilibrium and Fluctuations

2.1. Plasma Frequency

Consider a plasma in equilibrium, in a happy quasineutral state. Suppose a population
of electrons strays from this equilibrium and upsets quasineutrality a bit (Fig. 2). If they
have shifted by distance δx, the restoring force on each electron will be

meδẍ = −eE = −4πe2neδx ⇒ δẍ = − 4πe2ne
me︸ ︷︷ ︸
≡ ω2

pe

δx, (2.1)

so there will be oscillations at what is known as the (electron) plasma frequency :

ωpe =

√
4πe2ne
me

. (2.2)

Thus, we expect fluctuations of electric field in a plasma with characteristic frequencies
ω ∼ ωpe (these are Langmuir waves; I will derive their dispersion relation formally in
§3.4). These fluctuations are due to collective motions of the particles—so they are still
macroscopic fields in the nomenclature of §1.4.

The time scale associated with ωpe is the scale of restoration of quasineutrality. The
distance an electron can travel over this time scale before the restoring force kicks in,
i.e., the distance over which quasineutrality can be violated, is (using the thermal speed
vthe ∼

√
T/me to estimate the electron’s velocity)

vthe

ωpe
∼
√

T

me

√
me

e2ne
=

√
T

e2ne
∼ λD, (2.3)

the Debye length (1.6)—not surprising, as this is, indeed, the scale on which microscopic
fields are shielded and plasma is quasineutral (§1.3).

Finally, let us check that the plasma oscillations happen on collisionless time scales.
The collision frequency of the electrons is, using (2.3) and (1.14),

νe ∼
vthe

λmfp
=
vthe

ωpe

ωpe

λmfp
∼ λD

λmfp
ωpe � ωpe, q.e.d. (2.4)

2.2. Slow vs. Fast

The plasma frequency ωpe is only one of the characteristic frequencies (the largest)
of the fluctuations that can occur in plasmas. We will think of the scales of all these
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fluctuations as short and of the associated variation in time and space as fast. They occur
against the background of some equilibrium state,7 which is either constant or varies
slowly in time and space. The slow evolution and spatial variation of the equilibrium
state can be due to slowly changing, large-scale external conditions that gave rise to this
state or, as we will discover soon, it can be due to the average effect of a sea of small
fluctuations.

Formally, what we are embarking on is an attempt to set up a mean-field theory,
separating slow (large-scale) and fast (small-scale) parts of the distribution function:

f(r,v, t) = f0(εar,v, εt) + δf(r,v, t), (2.5)

where ε is some small parameter characterising the scale separation between fast and
slow variation (note that this separation need not be the same for spatial and time
scales, hence εa). To avoid clutter, I am dropping the species index where this does not
lead to ambiguity.

For simplicity, I will abolish the spatial dependence of the equilibrium distribution
altogether and consider homogeneous systems:

f0 = f0(v, εt), (2.6)

which also means E0 = 0 (there is no equilibrium electric field). Equivalently, all
our considerations are restricted to scales much smaller than the characteristic system
size. Formally, this equilibrium distribution can be defined as the average of the exact
distribution over the volume of space that we are considering and over time scales
intermediate between the fast and the slow ones:8

f0(v, t) = 〈f(r,v, t)〉 ≡ 1

∆t

∫ t+∆t/2

t−∆t/2
dt′
∫

dr

V
f(r,v, t′), (2.7)

where ω−1 � ∆t� teq, where teq is the equilibrium time scale.

2.3. Multiscale Dynamics

It is convenient to work in Fourier space:

ϕ(r, t) =
∑
k

eik·rϕk(t), f(r,v, t) = f0(v, t) +
∑
k

eik·rδfk(v, t). (2.8)

Then the Poisson equation (1.51) becomes

ϕk =
4π

k2

∑
α

qα

∫
dv δfkα (2.9)

and the Vlasov equation (1.50) written for k = 0 (i.e., the spatial average of the
equation) is

∂f0

∂t
+
∂δfk=0

∂t
= − q

m

∑
k

ϕ−kik ·
∂δfk
∂v

, (2.10)

7Or even just an initial state that is slow to change.
8I use angular brackets to denote this average, but it should be clear that this is not the same
thing as the average (1.11) that separated the macroscopic fields from the microscopic ones. The
latter average was over sub-Debye, inter-particle scales, whereas the new average (2.7) is over
scales that are larger than fluctuation scales but smaller than the system size; both fluctuations
and equilibrium are “macroscopic” in the language of §1.4.
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where we can replace ϕ−k = ϕ∗k because ϕ(r, t) is a real field. Averaging over time
according to (2.7) eliminates fast variation and gives

∂f0

∂t
= − q

m

∑
k

〈
ϕ∗kik ·

∂δfk
∂v

〉
= − ∂

∂v
·

(
q

m

∑
k

ik 〈ϕ∗kδfk〉

)
. (2.11)

The right-hand side of (2.11) describes the slow evolution of the equilibrium (mean)
distribution due to the effect of fluctuations (see §§6 and 11). In practice, the main
question is often how the equilibrium evolves and so we need a closed equation for the
evolution of f0. This should be obtainable, at least in principle, because the fluctuating
fields appearing in the right-hand side of (2.11) themselves depend on f0: indeed, writing
the Vlasov equation (1.50) for the k 6= 0 modes, we find the following evolution equation
for the fluctuations:

∂δfk
∂t

+ ik · v δfk︸ ︷︷ ︸
particle

streaming
(phase
mixing)

=
q

m
ϕkik ·

∂f0

∂v︸ ︷︷ ︸
wave-particle
interaction

(linear)

+
q

m

∑
k′

ϕk′ik
′ · ∂δfk−k

′

∂v︸ ︷︷ ︸
nonlinear

interactions

. (2.12)

The three terms that control the evolution of the perturbed distribution function in (2.12)
represent the three physical effects that I shall focus on in these Lectures. The second
term on the left-hand side describes the free ballistic motion of particles (“streaming”). It
gives rise to the phenomenon of phase mixing (§5) and, in its interplay with plasma waves,
to Landau damping and kinetic instabilities (§3). The first term on the right-hand side
contains the interaction of the electric-field perturbations (waves) with the equilibrium
particle distribution (§3). The second term on the right-hand side captures the nonlinear
interactions between the fluctuating fields and the perturbed distribution—it is negligible
only when fluctuation amplitudes are small enough (which, sadly, they rarely are) and
is responsible for plasma turbulence (§§7.2, 8, and 12.2) and other nonlinear phenomena
(e.g., §12.1).

The programme for determining the slow evolution of the equilibrium is “simple”:
solve (2.12) together with (2.9), calculate the correlation function of the fluctuations,
〈ϕ∗kδfk〉, as a functional of f0, and use it to close (2.11); then proceed to solve the latter.
Obviously, this is impossible to do in most cases. But it is possible to construct a hierarchy
of approximations to the answer and learn much interesting physics in the process.

2.4. Hierarchy of Approximations

2.4.1. Linear Theory

Consider first infinitesimal perturbations of the equilibrium. All nonlinear terms can
then be ignored, (2.11) turns into f0 = const and (2.12) becomes

∂δfk
∂t

+ ik · v δfk =
q

m
ϕkik ·

∂f0

∂v
, (2.13)

the linearised kinetic equation. Solving this together with (2.9) allows one to find oscillat-
ing and/or growing/decaying9 perturbations of a particular equilibrium f0. The theory

9We shall see (§5) that growing/decaying linear solutions imply the equilibrium distribution
giving/receiving energy to/from the fluctuations.
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for doing this is very well developed and contains some of the core ideas that give plasma
physics its intellectual shape (§3).

Physically, the linear solutions will describe what happens over short term, viz., over
times t such that

ω−1 � t� teq and tnl, (2.14)

where ω is the characteristic frequency of the perturbations, teq is the time after which
the equilibrium starts getting modified by the perturbations via (2.11) (which depends
on the amplitude to which they can grow; if perturbations do grow, i.e., the equilibrium
is unstable, they can modify the equilibrium by this mechanism so as to render it stable),
and tnl is the time at which perturbation amplitudes become large enough for nonlinear
interactions between individual modes to matter [second term on the right-hand side
of (2.12); growing perturbations can saturate by this mechanism].

2.4.2. Quasilinear Theory (QLT)

Suppose

teq � tnl, (2.15)

i.e., growing perturbations start modifying the equilibrium before they saturate nonlinearly.
Then the strategy is to solve (2.13) [together with (2.9)] for the perturbations, use the
result to calculate their correlation function needed in the right-hand side of (2.11), then
work out how the equilibrium therefore evolves and hence how large the perturbations
must grow in order for this evolution to turn the unstable equilibrium into a stable
one. This is a classic piece of theory, important conceptually—I will describe it in detail
and do one example in §6. In reality, however, it happens relatively rarely that unstable
perturbations saturate at amplitudes small enough for the nonlinear interactions not to
matter [i.e., for (2.15) to hold true].

2.4.3. Weak-Turbulence (WT) Theory

Sometimes, one is not lucky enough to get away with QLT (i.e., alas, tnl � teq or
tnl ∼ teq), but is lucky enough to have perturbations saturating nonlinearly at a small
amplitude such that10

tnl � ω−1, (2.16)

i.e., perturbations oscillate linearly faster than they interact nonlinearly (this can happen,
e.g., because propagating wave packets do not stay together long enough to break up
completely in one encounter). Because waves are fast compared to nonlinear evolution in
this approximation, it is possible to “quantise” them, i.e., to treat a nonlinear turbulent
state of the plasma as a cocktail consisting of both “true” particles (ions and electrons)
and “quasiparticles” representing electromagnetic excitations (§7).

In this approximation, one can do perturbation theory treating the nonlinear term in
(2.12) as small and expanding in the small parameter (ωtnl)

−1. The resulting weak (or
“wave”) turbulence theory is quite an analytical tour de force—but it is a lot of work
to do it properly! I will provide an introduction to it in §§7.2 and 8.4 (some pointers to
relevant literature are at the end of §7.1, just before the start of §7.2).

Note that because the nonlinear term couples perturbations at different k’s (scales),
this theory will lead to multi-scale (usually, power-law) fluctuation spectra.

10Note that the nonlinear time scale is typically inversely proportional to the amplitude:

from (2.12), t−1
nl ∼ qkϕδf/mvth.
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(a) (b)

Figure 3. Lev Landau (1908-1968), great Soviet physicist, quintessential theoretician, author of
the Book, cult figure. It is a minor feature of his scientific biography that he wrote the two most
important plasma-physics papers of all time (Landau 1936, 1946). He also got a Nobel Prize
(1962), but not for plasma physics. (a) Cartoon by A. A. Yuzefovich (from Landau & Lifshitz
1976); the caption says “Dau spake. . . ” (. . . unto the students, also depicted). (b) Landau’s
mugshot from NKVD prison (1938), where he ended up for seditious talk and from whence he
was released in 1939 after Peter Kapitsa’s personal appeal to Stalin.

2.4.4. Strong-Turbulence Theory

If perturbations manage to grow to a level at which

tnl ∼ ω−1, (2.17)

we are a facing strong turbulence. This is actually what mostly happens (including in
WT systems, where turbulence often transitions into the strong regime at small enough,
or large enough, scales). Theory of such regimes tends to be of phenomenological/scaling
kind, often in the spirit of the classic Kolmogorov (1941) theory of hydrodynamic
turbulence. No one really knows how to move very far beyond this sort of approach—and
not for lack of trying! I will return to this topic in §§8.6 and 12.2 onwards (see also §15.4).

3. Linear Theory: Waves, Landau Damping and Kinetic Instablities

Enough idle chatter, let us calculate! In this section, we are concerned with the
linearised Vlasov–Poisson system, (2.13) and (2.9):

∂δfkα
∂t

+ ik · v δfkα =
qα
mα

ϕkik ·
∂f0α

∂v
, (3.1)

ϕk =
4π

k2

∑
α

qα

∫
dv δfkα. (3.2)

For compactness of notation, I will drop both the species index α and the wave number k
in the subscripts, unless they are necessary for understanding.

We will discover that electrostatic perturbations in a plasma described by (3.1)
and (3.2) oscillate, can pass their energy to particles (damp) or even grow, sucking
energy from the particles. We will also discover that it is useful to know some complex
analysis.

3.1. Initial-Value Problem

I shall follow Landau’s original paper (Landau 1946) in considering an initial-value
problem—because, as we will see, perturbations can be damped or grow, so it is not
appropriate to think of them over the entire timeline t ∈ [−∞,+∞] (and—NB!—the
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Figure 4. Layout of the complex-p plane: δf̂(p) is analytic for Re p > σ. At Re p < σ, δf̂(p)
may have singularities (poles).

damped perturbations are not pure eignenmodes; see §5.3). So we look for δf(v, t)
satisfying (3.1) with the initial condition

δf(v, t = 0) = g(v). (3.3)

It is, therefore, appropriate to use the Laplace transform to solve (3.1):

δf̂(p) =

∫ ∞
0

dt e−ptδf(t) . (3.4)

It is a mathematical certainty that if there exists a real number σ > 0 such that

|δf(t)| < eσt as t→∞, (3.5)

then the integral (3.4) exists (i.e., is finite) for all values of p such that Re p > σ. The
inverse Laplace transform, giving us back our distribution function as a function of time,
is then

δf(t) =
1

2πi

∫ i∞+σ

−i∞+σ

dp eptδf̂(p), (3.6)

where the integral in the complex plane is along a straight line parallel to the imaginary
axis and intersecting the real axis at Re p = σ (Fig. 4).

Since we expect to be able to recover our desired time-dependent function δf(v, t)
from its Laplace transform, it is worth knowing the latter. To find it, we Laplace-
transform (3.1):

l.h.s. =

∫ ∞
0

dt e−pt
∂δf

∂t
=
[
e−ptδf

]∞
0

+ p

∫ ∞
0

dt e−ptδf = −g + p δf̂ ,

r.h.s. = −ik · v δf̂ +
q

m
ϕ̂ ik · ∂f0

∂v
. (3.7)

Equating these two expressions, we find the solution:

δf̂(p) =
1

p+ ik · v

[
i
q

m
ϕ̂(p)k · ∂f0

∂v
+ g

]
. (3.8)
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Figure 5. New contour for the inverse Laplace transform.

The Laplace transform of the potential, ϕ̂(p), itself depends on δf̂ via (3.2):

ϕ̂(p) =

∫ ∞
0

dt e−pt ϕ(t) =
4π

k2

∑
α

qα

∫
dv δf̂α(p)

=
4π

k2

∑
α

qα

∫
dv

1

p+ ik · v

[
i
qα
mα

ϕ̂(p)k · ∂f0α

∂v
+ gα

]
. (3.9)

This is an algebraic equation for ϕ̂(p). Collecting terms, we get(
1−

∑
α

4πq2
α

k2mα
i

∫
dv

1

p+ ik · v
k · ∂f0α

∂v

)
︸ ︷︷ ︸

≡ ε(p,k)

ϕ̂(p) =
4π

k2

∑
α

qα

∫
dv

gα
p+ ik · v

. (3.10)

The prefactor in the left-hand side, which I denote ε(p,k), is called the dielectric function,
because it encodes all the self-consistent charge-density perturbations that plasma sets
up in response to an electric field. This is going to be an important function, so let us
write it out beautifully:

ε(p,k) = 1−
∑
α

ω2
pα

k2

i

nα

∫
dv

1

p+ ik · v
k · ∂f0α

∂v
, (3.11)

where the plasma frequency of species α is defined by [cf. (2.2)]

ω2
pα =

4πq2
αnα
mα

. (3.12)

The solution of (3.10) is

ϕ̂(p) =
4π

k2ε(p,k)

∑
α

qα

∫
dv

gα
p+ ik · v

. (3.13)

To calculate ϕ(t), we need to inverse-Laplace-transform ϕ̂: similarly to (3.6),

ϕ(t) =
1

2πi

∫ i∞+σ

−i∞+σ

dp eptϕ̂(p). (3.14)

How do we do this integral? Recall that δf̂ and, therefore, ϕ̂ only exists (i.e., is finite) for
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Re p > σ, whereas at Re p < σ, it can have singularities, i.e., poles—let us call them pi,
indexed by i. If we analytically continue ϕ̂(p) everywhere to Re p < σ except those poles,
the result must have the form

ϕ̂(p) =
∑
i

ci
p− pi

+A(p), (3.15)

where ci are some coefficients (residues) and A(p) is the analytic part of the solution. The
integration contour in (3.14) can be shifted to Re p → −∞ but with the proviso that it
cannot cross the poles, as shown in Fig. 5 (this is proven by making a closed loop out of
the old and the new contours, joining them at ±i∞, and noting that this loop encloses no
poles). Then the contributions to the integral from the vertical segments of the contour
are exponentially small,11 the contributions from the segments leading towards and away
from the poles cancel, and the contributions from the circles around the poles can, by
Cauchy’s formula, be expressed in terms of the poles and residues:

ϕ(t) =
∑
i

cie
pit . (3.16)

Thus, in the long-time limit, perturbations of the potential will evolve ∝ epit, where pi
are poles of ϕ̂(p). In general, pi = −iωi + γi, where ωi is a real frequency (giving wave-
like behaviour of perturbations), γi < 0 represents damping and γi > 0 growth of the
perturbations (instability).

Note that we need not be particularly interested in what ci’s are because, if we set
up an initial perturbation with a given k and then wait long enough, only the fastest-
growing or, failing growth, the slowest-damped mode will survive, with all others having
exponentially small amplitudes in comparison. Thus, a typical outcome of the linear
theory is ϕ(t) oscillating at some frequency and growing or decaying at some unique
rate. Since this is a solution of a linear equation, the prefactor in front of the exponential
can be scaled arbitrarily and so does not matter.

Going back to (3.13), we realise that the poles of ϕ̂(p) are zeros of the dielectric
function:

ε(pi,k) = 0 ⇒ pi = pi(k) = −iωi(k) + γi(k). (3.17)

To find the wave frequencies ωi and the damping/growth rates γi, we must solve this
equation, which is called the plasma dispersion relation.

3.2. Calculating the Dielectric Function: the “Landau Prescription”

In order to be able to solve ε(p,k) = 0, we must learn how to calculate ε(p,k) for any
given p and k. Before I wrote (3.15), I said that ϕ̂, given by (3.13), had to be analytically
continued to the entire complex plane from the area where its analyticity was guaranteed
(Re p > σ), but I did not explain how this was to be done. In order to do it, we must

11They are exponentially small in time as t → ∞ because the integrand of the inverse Laplace

transform (3.14) contains a factor of eRe pt, which decays faster than any of the “modes” in (3.16).
If ϕ̂(p) does not grow too fast at large p, the integral along the vertical part of the contour may
also vanish at any finite t, but that is not guaranteed in general: indeed, looking ahead to the
explicit expression (3.27) for ϕ̂(p), with the Landau prescription for analytic continuation to
Re p < 0 analogous to (3.20), we see that ϕ̂(p) will contain a term ∝ Gα(ip/k), which can be
large at large Re p, e.g., if Gα(vz) is a Maxwellian. Note also that we need the (wildly oscillating
in time) integral of eptϕ̂(p) over the horizontal segments with Im p→ ±∞ to vanish. This is fine
provided ϕ̂(±i∞) = 0, which is usually OK.
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(a) Re p > 0 (b) Re p = 0 (c) Re p < 0

Figure 6. The Landau prescription for the contour of integration in (3.18).

Figure 7. Proof of Landau’s prescription [see (3.19)].

learn how to calculate the velocity integral in (3.11)—if we want ε(p,k) and, therefore,
its zeros pi—and also how to calculate the similar integral in (3.13) containing gα.

First of all, let us turn these integrals into a 1D form. Given k, we can always choose
the z axis to be along k.12 Then∫

dv
1

p+ ik · v
k · ∂f0

∂v
=

∫
dvz

1

p+ ikvz
k

∂

∂vz

∫
dvx

∫
dvy f0(vx, vy, vz)︸ ︷︷ ︸
≡ F (vz)

= −i
∫ +∞

−∞
dvz

F ′(vz)

vz − ip/k
. (3.18)

Assuming, reasonably, that F ′(vz) is a nice (analytic) function everywhere, we conclude
that the integrand in (3.18) has one pole, vz = ip/k. When Re p > σ > 0, this pole is
harmless because, in the complex plane associated with the vz variable, it lies above the
integration contour, which is the real axis, vz ∈ (−∞,+∞). We can think of analytically
continuing the above integral to Re p < σ as moving the pole vz = ip/k down, towards
and below the real axis. As long as Re p > 0, this can be done with impunity, in the
sense that the pole stays above the integration contour, and so the analytic continuation
is simply the same integral (3.18), still along the real axis. However, if the pole moves so
far down that Re p = 0 or Re p < 0, we must deform the contour of integration in such
a way as to keep the pole always above it, as shown in Fig. 6. This is called the Landau
prescription and the contour thus deformed is called the Landau contour, CL.

Let me prove that this is indeed an analytic continuation, i.e., that the integral (3.18),

12NB: This means that in what follows, k > 0 by definition.
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adjusted to be along CL, is an analytic function for all values of p. Let us cut the
Landau contour at vz = ±R and close it in the upper half-plane with a semicircle CR
of radius R > σ/k (Fig. 7). Then, with integration running along the truncated CL and
counterclockwise along CR, we get, by Cauchy’s formula,∫

CL

dvz
F ′(vz)

vz − ip/k
+

∫
CR

dvz
F ′(vz)

vz − ip/k
= 2πi F ′

(
ip

k

)
. (3.19)

Since analyticity is guaranteed for Re p > σ, the integral along CR is analytic. The right-
hand side is also analytic, by assumption. Therefore, the integral along CL is analytic—
this is the integral along the Landau contour if we take R→∞. Q.e.d.

With the Landau prescription, our integral is calculated as follows:

∫
CL

dvz
F ′(vz)

vz − ip/k
=



∫ +∞

−∞
dvz

F ′(vz)

vz − ip/k
if Re p > 0,

P
∫ +∞

−∞
dvz

F ′(vz)

vz − ip/k
+ iπF ′

(
ip

k

)
if Re p = 0,

∫ +∞

−∞
dvz

F ′(vz)

vz − ip/k
+ i2πF ′

(
ip

k

)
if Re p < 0,

(3.20)

where the integrals are again over the real axis and the imaginary bits come from the
contour making a half (when Re p = 0) or a full (when Re p < 0) circle around the pole.13

In the case of Re p = 0, or ip = ω, the integral along the real axis is formally divergent
and so we take its principal value, defined as

P
∫ +∞

−∞
dvz

F ′(vz)

vz − ω/k
= lim
ε→0

[∫ ω/k−ε

−∞
+

∫ +∞

ω/k+ε

]
dvz

F ′(vz)

vz − ω/k
. (3.21)

The difference between (3.21) and the usual Lebesgue definition of an integral is that the latter
would be ∫ +∞

−∞
dvz

F ′(vz)

vz − ω/k
=

[
lim
ε1→0

∫ ω/k−ε1

−∞
+ lim
ε2→0

∫ +∞

ω/k+ε2

]
dvz

F ′(vz)

vz − ω/k
, (3.22)

and this, with, in general, ε1 6= ε2, diverges logarithmically, whereas in (3.21), the divergences
neatly cancel.

The Re p = 0 case in (3.20),∫
CL

dvz
F ′(vz)

vz − ω/k
= P

∫ +∞

−∞
dvz

F ′(vz)

vz − ω/k
+ iπF ′

(ω
k

)
, (3.23)

which tends to be of most use in analytical theory, is a particular instance of Plemelj’s formula:
for a real ζ and a well-behaved function f (no poles on or near the real axis),

lim
ε→+0

∫ +∞

−∞
dx

f(x)

x− ζ ∓ iε = P
∫ +∞

−∞
dx

f(x)

x− ζ ± iπf(ζ), (3.24)

13Despite what it might look like, the imaginary part of (3.20) is not discontinuous at Re p = 0.
While the second term in the expressions for the Re p = 0 and Re p < 0 cases jumps by a factor
of 2, this is compensated by the imginary part of the first term, which is purely real at Re p = 0
but not at Re p < 0. You must believe me that this is true as long as you agree that Landau’s
analytic-continuation scheme is correct.



Oxford MMathPhys Lectures: Plasma Kinetics and MHD 27

also sometimes written as

lim
ε→+0

1

x− ζ ∓ iε = P 1

x− ζ ± iπδ(x− ζ), (3.25)

Finally, armed with Landau’s prescription, we are ready to calculate. The dielectric
function (3.11) becomes

ε(p,k) = 1−
∑
α

ω2
pα

k2

1

nα

∫
CL

dvz
F ′α(vz)

vz − ip/k
, (3.26)

and, analogously, our Laplace-transformed solution (3.13) becomes

ϕ̂(p) = − 4πi

k3ε(p,k)

∑
α

qα

∫
CL

dvz
Gα(vz)

vz − ip/k
, (3.27)

where Gα(vz) =
∫

dvx
∫

dvy gα(vx, vy, vz).

3.3. Solving the Dispersion Relation: the Limit of Slow Damping/Growth

A particularly analytically solvable and physically interesting case is one in which, for
p = −iω + γ, γ � ω and γ � kvthα, i.e., the case of the damping or growth time of the
waves being longer than either their period or the time particles take to cross them. In
this limit, the dispersion relation (3.17) is

ε(p,k) ≈ ε(−iω,k) + iγ
∂

∂ω
ε(−iω,k) = 0. (3.28)

Setting the real part of (3.28) to zero gives the equation for the real frequency:

Re ε(−iω,k) = 0 . (3.29)

Setting the imaginary part of (3.28) to zero gives us the damping/growth rate in terms
of the real frequency:

γ = −Im ε(−iω,k)

[
∂

∂ω
Re ε(−iω,k)

]−1

. (3.30)

Thus, we now only need ε(p,k) with p = −iω. Using (3.23), we get

Re ε = 1−
∑
α

ω2
pα

k2

1

nα
P
∫

dvz
F ′α(vz)

vz − ω/k
, (3.31)

Im ε = −
∑
α

ω2
pα

k2

π

nα
F ′α

(ω
k

)
. (3.32)

Let us consider a two-species plasma, consisting of electrons and a single species of
ions. There will be two interesting limits:

• “High-frequency” electron waves: ω � kvthe, where vthe =
√

2Te/me is the “thermal
speed” of the electrons;14 this limit will give us Langmuir waves (§3.4), slowly damped
or growing (§3.5).

14This is a standard well-defined quantity for a Maxwellian equilibrium distribution

Fe(vz) = (ne/
√
π vthe) exp(−v2

z/v
2
the), but if we wish to consider a non-Maxwellian Fe, let

vthe be some typical speed characterising the width of the equilibrium distribution, defined
by, e.g., (3.36).
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• “Low-frequency” ion waves: a particularly tractable limit will be that of “hot”
electrons and “cold” ions, viz., kvthe � ω � kvthi, where vthi =

√
2Ti/mi is the “thermal

speed” of the ions; this limit will give us the sound (“ion-acoustic waves”; §3.8), which
also can be damped or growing (§3.9).

3.4. Langmuir Waves

Consider the limit
ω

k
� vthe, (3.33)

i.e., the phase velocity of the waves is much greater than the typical velocity of a particle
from the “thermal bulk” of the distribution. This means that in (3.31), we can expand in
vz ∼ vthe being small compared to ω/k (higher values of vz are cut off by the “thermal”
fall-off of the equilibrium distribution function). Note that ω � kvthe also implies ω �
kvthi because

vthi

vthe
=

√
Ti
Te

me

mi
� 1 (3.34)

as long as Ti/Te is not huge.15 Thus, (3.31) becomes

Re ε = 1 +
∑
α

ω2
pα

k2

1

nα

k

ω
P
∫

dvz F
′
α(vz)

[
1 +

kvz
ω

+

(
kvz
ω

)2

+

(
kvz
ω

)3

+ . . .

]

= 1 +
∑
α

ω2
pα

kω

[
1

nα

∫
dvz F

′
α(vz)︸ ︷︷ ︸

= 0

− k
ω

1

nα

∫
dvz Fα(vz)︸ ︷︷ ︸
= 1

− 2
k2

ω2

1

nα

∫
dvz vzFα(vz)︸ ︷︷ ︸

= 0

−3
k3

ω3

1

nα

∫
dvz v

2
zFα(vz)︸ ︷︷ ︸

= v2
thα/2

+ . . .

]

= 1−
∑
α

ω2
pα

ω2

[
1 +

3

2

k2v2
thα

ω2
+ . . .

]
, (3.35)

where we have integrated by parts everywhere, assumed that there are no mean flows,
〈vz〉 = 0, and, in the last term, used

〈v2
z〉 =

v2
thα

2
, (3.36)

which is indeed the case for a Maxwellian Fα or, if Fα is not a Maxwellian, can be viewed
as the definition of vthα.

The ion contribution to (3.35) is small because

ω2
pi

ω2
pe

=
Zme

mi
� 1, (3.37)

so ions do not participate in this dynamics at all. Therefore, to lowest order, the dispersion
relation (3.29) becomes

Re ε ≈ 1−
ω2

pe

ω2
= 0 ⇒ ω2 = ω2

pe =
4πe2ne
me

. (3.38)

15For hydrogen plasma,
√
mi/me ≈ 42, the answer to the Ultimate Question of Life, Universe

and Everything (Adams 1979).
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This is the Tonks & Langmuir (1929) dispersion relation for what is known as Langmuir,
or plasma, oscillations. This is the formal derivation of the result that we already had
in §2.1, on less mathematically rigorous, physical grounds.

We can do a little better if we retain the (small) k-dependent term in (3.35):

Re ε ≈ 1−
ω2

pe

ω2

(
1 +

3

2

k2v2
the

ω2︸ ︷︷ ︸
use

ω2 ≈ ω2
pe

)
= 0 ⇒ ω2 ≈ ω2

pe(1 + 3k2λ2
De) , (3.39)

where λDe = vthe/
√

2ωpe =
√
Te/4πe2ne is the “electron Debye length” [cf. (1.6)].

Equation (3.39) is the Bohm & Gross (1949a) dispersion relation, describing an upgrade
of the Langmuir oscillations to dispersive Langmuir waves, which have a non-zero group
velocity (this effect is due to the electron pressure perturbation joining the electric field
in providing the restoring force for the waves: see Exercise 3.1).

Note that all this is only valid for ω � kvthe, which we now see is equivalent to

kλDe � 1 (3.40)

(the wave length of the perturbation is long compared to the Debye length).

Exercise 3.1. Langmuir hydrodynamics.16 Starting from the linearised kinetic equation
for electrons and ignoring perturbations of the ion distribution function completely, work out
the fluid equations for electrons (i.e., the evolution equations for the electron density ne and
velocity ue) and show that you can recover the Langmuir waves (3.39) if you assume that
electrons behave as a 1D adiabatic fluid (i.e., have the equation of state pen

−γ
e = const with

γ = 3). You can prove that they indeed do this by calculating their density and pressure directly
from the Landau solution for the perturbed distribution function (see §§5.3 and 5.6), ignoring
resonant particles. The “hydrodynamic” description of Langmuir waves will reappear in §8.

3.5. Landau Damping and Kinetic Instabilities

Now let us calculate the damping rate of Langmuir waves using (3.30):

∂Re ε

∂ω
≈

2ω2
pe

ω3
, Im ε ≈ −

ω2
pe

k2

π

ne
F ′e

(ω
k

)
⇒ γ ≈ π

2

ω3

k2

1

ne
F ′e

(ω
k

)
, (3.41)

where ω is given by (3.39) (if Fe is Maxwellian, the dispersive correction in ω2, when
substituted into the exponential, will change γ by a factor of order unity, hence it is
worth keeping). Provided ωF ′(ω/k) < 0 (as would be the case, e.g., for any distribution
monotonically decreasing with |vz|; see Fig. 8a), γ < 0 and so this is indeed a damping
rate, the celebrated Landau damping (Landau 1946; it was confirmed experimentally two
decades later, by Malmberg & Wharton 1964).

The same theory also describes a class of kinetic instabilities: if ωF ′(ω/k) > 0, then
γ > 0, so perturbations grow exponentially with time. An iconic example is the bump-
on-tail instability (Fig. 8b), which arises when a high-energy (vz � vthe) electron beam

16This is based on the 2017 exam question.
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(a) ωF ′(ω/k) < 0: Landau damping (b) ωF ′(ω/k) > 0: instability

Figure 8. The Landau resonance (particle velocities equalling phase speed of the wave vz = ω/k)
leads to damping of the wave if more particles lag just behind than overtake the wave and to
instability in the opposite case.

is injected into a plasma17 and whose quasilinear saturation we will study in great detail
in §6.

We see that the damping or growth of plasma waves occur via their interaction with
the particles whose velocities coincide with the phase velocity of the wave (“Landau
resonance”). Because such particles are moving in phase with the wave, its electric field
is stationary in their reference frame and so can do work on these particles, giving its
energy to them (damping) or receiving energy from them (instability). In contrast, other,
out-of-phase, particles experience no mean energy change over time because the field
that they “see” is oscillating. It turns out (§3.6) that the process works in the spirit of
socialist redistribution: the particles slightly lagging behind the wave will, on average,
receive energy from it, damping the wave, whereas those overtaking the wave will have
some of their energy taken away, amplifying the wave. The condition ωF ′(ω/k) < 0
corresponds to the stragglers being more numerous than the strivers, leading to net
damping; ωF ′(ω/k) > 0 implies the opposite, leading to an instability (which then leads
to flattening of the distribution: see §6).

Let us note again that these results are quantitatively valid only in the limit (3.33),
or, equivalently, (3.40). It makes sense that damping should be slow (γ � ω) in the
limit where the waves propagate much faster than the majority of the electrons (ω/k �
vthe) and so can interact only with a small number of particularly fast particles (for a

Maxwellian equilibrium distribution, it is an exponentially small number ∼ e−ω2/k2v2the).
If, on the other hand, ω/k ∼ vthe, the waves interact with the majority population and
the damping should be strong: a priori, we might expect γ ∼ kvthe.

18

Exercise 3.2. Stability of isotropic distributions. Prove that if f0e(vx, vy, vz) = f0e(v), i.e.,
if it is a 3D-isotropic distribution, monotonic or otherwise, the Langmuir waves at kλDe � 1 are
always damped (this is solved in Lifshitz & Pitaevskii 1981; the statement of stability of isotropic
distributions is in fact valid much more generally than just for long-wavelength Langmuir waves:
see Exercise 4.2).

17Here we are dealing with the case of a “warm beam” (meaning that it has a finite width
in velocity space). It turns out that there exists also another instability, leading to growth of
perturbations with ω/k to the right of the bump’s peak, due to a different, “fluid” kind of
resonance and possible even for “cold beams” (i.e., beams of particles that all have the same
velocity): see §3.7.
18This is indeed correct. You can confirm it numerically using (3.84) and (3.90).
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Landau’s method of working out waves and damping in collisionless plasmas, and in particular
his prescription for dealing with the singularities in the integrals, has always elicited a degree of
dissatisfaction in the minds of some mathematically inclined physicists and motivated them to
search for alternatives. Perhaps the earliest and best known such alternative is the formalism
due to van Kampen. His objective was more mathematical rigour—but even if this is of limited
appeal to you, the book by van Kampen & Felderhof (1967) is still a good read and a good
chance to question and re-examine your understanding of how it all works.

A key question that preoccupied van Kampen and many of those who re-examined Landau’s
solution later on was whether the initial-value problem for the linear evolution of perturbations
in a plasma could be solved in the usual way in which such things are done elsewhere in physics:
by decomposing the initial perturbation into some convenient set of normal modes, advancing
each of them in time, and then reassembling them back into the desired solution. The answer
is yes—van Kampen did find a complete set of modes, although they were not eigenfunctions
of a Hermitian operator and thus (arguably) were not very user-friendly. In a short paper by
Ramos & White (2018), you will find the most recent and the most transparent (in my view)
scheme for how to construct normal modes that are eigenfunctions of a Hermitian operator.19

One curious corollary is that it is possible to cook up special initial perturbations that will not
decay at the Landau rate and, in fact, can have any time evolution that one cares to specify! If
this intrigues or disturbs you, follow the paper trail from Ramos & White (2018) backward in
time.20

Landau damping became a cause célèbre in the hard-core mathematics community, as well as
in the wider science world, with the award of the Fields Medal in 2010 to Cédric Villani, who
proved (with C. Mouhot) that, basically, Landau’s solution of the linearised Vlasov equation
survived as a solution of the full nonlinear Vlasov equation for small enough and regular enough
initial perturbations: a “popular” account of this is Villani (2014). The regularity restriction is
apparently important and the result can break down in interesting ways (Bedrossian 2016). The
culprit is plasma echo, of which more will be said in §12 (without any claim to mathematical
rigour).

3.6. Physical Picture of Landau Damping

The following simple argument (Lifshitz & Pitaevskii 1981) illustrates the physical mechanism
of Landau damping.

Consider an electron moving along the z axis, subject to a wave-like electric field:

dz

dt
= vz, (3.42)

dvz
dt

= − e

me
E(z, t) = − e

me
E0 cos(ωt− kz)eεt. (3.43)

I have given the electric field a slow time dependence, E ∝ eεt, but will later take ε→ +0—this
describes the field switching on infinitely slowly from t = −∞. Let us assume that the amplitude
E0 of the electric field is so small that it changes the electron’s trajectory only a little over several
wave periods. Then the equations of motion can be solved perturbatively.

The lowest-order (E0 = 0) solution is

vz(t) = v0 = const, z(t) = v0t. (3.44)

In the next order, let

vz(t) = v0 + δvz(t), z(t) = v0t+ δz(t). (3.45)

19This line of thinking subsequently made its way into galactic dynamics: see Lau & Binney
(2021a,b).
20Another amusing latter-day exercise is the paper by Heninger & Morrison (2018), where
(following up on Morrison 1994, 2000), van Kampen’s scheme is recast as a new transform,
called “G-transform”, to be used instead of the Laplace transform to solve Landau’s initial-value
problem.
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Equation (3.43) becomes

dδvz
dt

= − e

me
E(z(t), t) ≈ − e

me
E(v0t, t) = −eE0

me
Re e[i(ω−kv0)+ε]t. (3.46)

Integrating this gives

δvz(t) = −eE0

me

∫ t

0

dt′Re e[i(ω−kv0)+ε]t′

= −eE0

me
Re

e[i(ω−kv0)+ε]t − 1

i(ω − kv0) + ε

= −eE0

me

εeεt cos[(ω − kv0)t]− ε+ (ω − kv0)eεt sin[(ω − kv0)t]

(ω − kv0)2 + ε2
. (3.47)

Integrating again, one gets

δz(t) =

∫ t

0

dt′ δvz(t
′)

= −eE0

me

∫ t

0

dt′ Re
e[i(ω−kv0)+ε]t′ − 1

i(ω − kv0) + ε

= −eE0

me

{
Re

e[i(ω−kv0)+ε]t − 1

[i(ω − kv0) + ε]2
− εt

(ω − kv0)2 + ε2

}
= −eE0

me

{[
ε2 − (ω − kv0)2

] {
eεt cos[(ω − kv0)t]− 1

}
+ 2ε(ω − kv0)eεt sin[(ω − kv0)t]

[(ω − kv0)2 + ε2]2

− εt

(ω − kv0)2 + ε2

}
. (3.48)

The work done by the field on the electron per unit time, averaged over time, is the power gained
by the electron:

δP (v0) = −e 〈E(z(t), t)vz(t)〉

≈ −e
〈[
E(v0t, t) + δz(t)

∂E

∂z
(v0t, t)

]
[v0 + δvz(t)]

〉
= −eE0e

εt

〈
v0 cos[(ω − kv0)t]︸ ︷︷ ︸

vanishes
under

averaging

+ δvz(t) cos[(ω − kv0)t]︸ ︷︷ ︸
only cos term
from (3.47)

survives
averaging

+ v0δz(t)k sin[(ω − kv0)t]︸ ︷︷ ︸
only sin term
from (3.48)

survives
averaging

〉

=
e2E2

0

2me
e2εt

{
ε

(ω − kv0)2 + ε2
+

2kv0ε(ω − kv0)

[(ω − kv0)2 + ε2]2

}
=
e2E2

0

2me
e2εt d

dv0

εv0

(ω − kv0)2 + ε2︸ ︷︷ ︸
≡ χ(v0)

. (3.49)

We see (Fig. 9) that
—if the electron is lagging behind the wave, v0 . ω/k, then χ′(v0) > 0 ⇒ δP (v0) > 0, so
energy goes from the field to the electron (the wave is damped);
—if the electron is overtaking the wave, v0 & ω/k, then χ′(v0) < 0 ⇒ δP (v0) < 0, so energy
goes from the electron to the field (the wave is amplified).

Now remember that we have a whole distribution of these electrons, F (vz). So the total power
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Figure 9. The function χ(v0) defined in (3.49).

Figure 10. Electron distribution with a cold beam; see (3.54).

per unit volume going into (or out of) them is

P =

∫
dvz F (vz)δP (vz) =

e2E2
0e

2εt

2me

∫
dvz F (vz)χ

′(vz)

= −e
2E2

0e
2εt

2me

∫
dvz F

′(vz)χ(vz). (3.50)

Noticing that, by Plemelj’s formula (3.25), in the limit ε→ +0,

χ(vz) =
εvz

(ω − kvz)2 + ε2
= − ivz

2

(
1

kvz − ω − iε
− 1

kvz − ω + iε

)
→ π

ω

k2
δ
(
vz −

ω

k

)
, (3.51)

we conclude

P = − e2E2
0

2mek2
πωF ′

(ω
k

)
. (3.52)

As in §3.5, we find damping if ωF ′(ω/k) < 0 and instability if ωF ′(ω/k) > 0.
Thus, around the wave-particle resonance vz = ω/k, the particles just lagging behind the

wave receive energy from the wave and those just overtaking it give up energy to it. Therefore,
qualitatively, damping occurs if the former particles are more numerous than the latter. We see
that Landau’s mathematics in §§3.1–3.5 led us to a result that makes physical sense.

3.7. Hot and Cold Beams

Let us return to the unstable situation, when a high-energy beam produces a bump on
the tail of the distribution function and thus electrostatic perturbations can suck energy
out of the beam and grow in the region of wave numbers where v0 < ω/k < ub. Here
v0 is the point of the minimum of the distribution in Fig. 8(b) and ub is the point of
the maximum of the bump, which is the velocity of the beam; we are assuming that
ub � vthe. In view of (3.41), the instability will have a greater growth rate if the bump’s
slope is steeper, i.e., if the beam is colder (narrower in vz space).

Imagine modelling the beam by a little Maxwellian distribution with mean velocity
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Figure 11. Sketch of the growth rate of the hydrodynamic and kinetic beam instabilities: see
(3.57) for k < ωpe/ub, (3.59) for k = ωpe/ub, and (3.41) for ωpe/ub < k < ωpe/v0, where v0 is
the point of the minimum of the distribution in Fig. 8(b) and ub is the point of the maximum
of the bump.

ub, tucked onto the bulk distribution:21

Fe(vz) =
ne − nb√
π vthe

exp

(
− v2

z

v2
the

)
+

nb√
π vb

exp

[
− (vz − ub)2

v2
b

]
, (3.53)

where nb is the density of the beam, vb is its width, and so Tb = mev
2
b/2 is its

“temperature”, just like Te = mev
2
the/2 is the temperature of the thermal bulk. A colder

beam will have less of a thermal spread around ub. It turns out that if the width of
the beam is sufficiently small, another instability appears, whose origin is hydrodynamic
rather than kinetic. Let us work it out.

Consider a very simple limiting case of the distribution (3.53): let vb → 0 and nb � ne.
Then (Fig. 10)

Fe(vz) = FM(vz) + nbδ(vz − ub), (3.54)

where FM is the bulk Maxwellian from (3.53) (with density ≈ ne, neglecting nb in
comparison). Let us substitute the distribution (3.54) into the dielectric function (3.26),
seek solutions with p/k � vthe, expand the part containing FM in the same way as we did
in §3.4,22 neglect the ion contribution for the same reason as we did there, and deal with
δ′(vz − ub) in the integrand via integration by parts. The resulting dispersion relation is

ε ≈ 1 +
ω2

pe

p2
− nb

ne

ω2
pe

(kub − ip)2
= 0. (3.55)

Since nb � ne, the last term can only matter for those perturbations that are close to
resonance with the beam (this is called the Cherenkov resonance):

p = −ikub + γ, γ � kub. (3.56)

21The fact that we are working in 1D means that we are restricting our consideration to
perturbations whose wave numbers k are parallel to the beam’s velocity. In general, allowing
transverse wave numbers brings into play the transverse (electromagnetic) part of the dielectric
tensor (see Q-2). However, for non-relativistic beams, the fastest-growing modes will still be the
longitudinal, electrostatic ones (see, e.g., Alexandrov et al. 1984, §32).
22We can treat the Landau contour as simply running along the real axis because we are
expecting to find a solution with Re p > 0 [see (3.20)], for reasons independent of the Landau
resonance.
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(a) Cold streams: see (3.60) (b) Hot streams: see (4.16) and Q-4

Figure 12. Two streams.

This turns (3.55) into

1−
ω2

pe

k2u2
b

+
nb

ne

ω2
pe

γ2
= 0 ⇒ γ = ±

√
nb

ne

(
1

k2u2
b

− 1

ω2
pe

)−1/2

. (3.57)

The expression under the square root is positive and so there is a growing mode only
if k < ωpe/ub. This is in contrast to the case of a hot (or warm) beam in §3.5: there,
having a kinetic instability required ωF ′e(ω/k) > 0, which was only possible at k > ωpe/ub

(the phase speed of the perturbations had to be to the left of the bump’s maximum).
The new instability that we have found—the hydrodynamic beam instability—has the
largest growth rate at kub = ωpe, i.e., when the beam and the plasma oscillations are
in resonance, in which case, to resolve the singularity, we need to retain γ in the second
term in (3.55). Doing so and expanding in γ, we get

ε ≈ 1−
ω2

pe

(ωpe + iγ)2
+
nb

ne

ω2
pe

γ2
≈ 2iγ

ωpe
+
nb

ne

ω2
pe

γ2
= 0. (3.58)

Solution:

γ =

(
±
√

3 + i

2
,−i

)(
nb

2ne

)1/3

ωpe . (3.59)

The unstable root (Re γ > 0) is the interesting one. The growth rate of the combined
beam instability, hydrodynamic and kinetic, is sketched in Fig. 11.

Exercise 3.3. This instability is called “hydrodynamic” because it can be derived from fluid
equations (cf. Exercise 3.1) describing cold electrons (vthe = 0) and a cold beam (vb = 0).
Convince yourself that this is the case.

Exercise 3.4. Using the model distribution (3.53), work out the conditions on vb and nb that
must be satisfied in order for our derivation of the hydrodynamic beam instability to be valid,
i.e., for (3.55) to be a good approximation to the true dispersion relation. What is the effect of
finite vb on the hydrodynamic instability? Sketch the growth rate of unstable perturbations as
a function of k, taking into account both the hydrodynamic instability and the kinetic one, as
well as the Landau damping.

Exercise 3.5. Two-stream instability. This is a popular instability23 that arises, e.g., in
a situation where the plasma consists of two cold counter-streams of electrons propagating

23It was discovered by engineers (Haeff 1949; Pierce & Hebenstreit 1949) and quickly adopted
by physicists (Bohm & Gross 1949b). Buneman (1958) realised that a case with an electron
and an ion stream (i.e., with plasma carrying a current) is unstable in a somewhat analogous
way (see Q-5, and also Q-11). The kinetic counterpart to the latter situation is the ion-acoustic
instability derived in §3.9 (similarly to the way in which the bump-on-tail instability was the
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against a quasineutrality-enforcing background of effectively immobile ions (Fig. 12a). Model
the corresponding electron distribution by

Fe(vz) =
ne
2

[δ(vz − ub) + δ(vz + ub)] (3.60)

and solve the resulting dispersion relation (where the ion terms can be neglected for the
same reason as in §3.4). Find the wave number at which perturbations grow fastest and the
corresponding growth rate. Find also the maximum wave number at which perturbations can
grow. If you want to know what happens when the two streams are warm (have a finite thermal
spread vb; Fig. 12b), a nice fully tractable quantitative model of such a situation is the double-
Lorentzian distribution (4.16). The dispersion relation for it can be solved exactly: this is done
in Q-4. You will again find a hydrodynamic instability, but is there also a kinetic one (due to
Landau resonance)? It is an interesting and non-trivial question why not.

3.8. Ion-Acoustic Waves

Let us now see what happens at lower frequencies,

vthe �
ω

k
� vthi, (3.61)

i.e., when the waves propagate slower than the bulk of the electron distribution but
faster than the bulk of the ion one (Fig. 13). This is another regime in which we might
expect to find weakly damped waves: they are out of phase with the majority of the ions,
so F ′i (ω/k) might be small because Fi(ω/k) is small, while as far as the electrons are
concerned, the phase speed of the waves is deep in the core of the distribution, perhaps
close to its maximum at vz = 0 (if that is where its maximum is) and so F ′e(ω/k) might
turn out to be small because Fe(vz) changes slowly in that region.

To make this more specific, let us consider Maxwellian electrons:

Fe(vz) =
ne√
π vthe

exp

[
− (vz − ue)2

v2
the

]
, (3.62)

where we are, in general, allowing the electrons to have a mean flow (current). We will
assume that ue � vthe but allow ue ∼ ω/k. We can anticipate that this will give us an
interesting new effect. Indeed,

F ′e(vz) = −2(vz − ue)
v2

the

Fe(vz). (3.63)

For resonant particles, vz = ω/k, the prefactor will be small, so we can hope for γ � ω,
as anticipated above, but note that its sign will depend on the relative size of ue and
ω/k and so we might (we will!) get an instability (§3.9).

But let us not get ahead of ourselves: we must first calculate the real frequency ω(k)
of these waves, from (3.29) and (3.31):

Re ε = 1−
ω2

pe

k2

1

ne
P
∫

dvz
F ′e(vz)

vz − ω/k
−
ω2

pi

k2

1

ni
P
∫

dvz
F ′i (vz)

vz − ω/k︸ ︷︷ ︸
≈
ω2

pi

ω2

(
1 + 3k2λ2

Di

)
= 0. (3.64)

The last (ion) term in this equation can be expanded in kvz/ω � 1 in exactly the same

kinetic counterpart to the hydrodynamic beam instability). In §4.4, I will discuss in a more
general way the stability of distributions featuring streams.
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way as it was done in (3.35). The expansion is valid provided

kλDi � 1, (3.65)

and I will retain only the lowest-order term, dropping the k2λ2
Di correction. The second

(electron) term in (3.64) is subject to the opposite limit, vz � ω/k, so, using (3.63),

ω2
pe

k2

1

ne
P
∫

dvz
F ′e(vz)

vz − ω/k
≈ −

ω2
pe

k2

1

ne
P
∫

dvz
2(vz − ue)
v2

thevz
Fe(vz) ≈ −

2ω2
pe

k2v2
the

= − 1

k2λ2
De

,

(3.66)
where we have neglected ue � vz because this integral is over the thermal bulk of the
electron distribution.

With all these approximations, (3.64) becomes

Re ε = 1 +
1

k2λ2
De

−
ω2

pi

ω2
= 0. (3.67)

The dispersion relation is then

ω2 =
ω2

pi

1 + 1/k2λ2
De

=
k2c2s

1 + k2λ2
De

, (3.68)

where

cs = ωpiλDe =

√
ZTe
mi

(3.69)

is the sound speed, called that because, if kλDe � 1, (3.68) describes a wave that is very
obviously a sound, or ion-acoustic, wave:

ω = ±kcs . (3.70)

The phase speed of this wave is the sound speed, ω/k = cs. That the expression (3.69)
for cs combines electron temperature and ion mass is a hint as to the underlying physics
of sound propagation in plasma: ions provide the inertia, electrons the restoring pressure
force (see Exercise 3.6).

We can now check under what circumstances the condition (3.61) is indeed satisfied:

cs
vthe

=

√
Zme

2mi
� 1,

cs
vthi

=

√
ZTe
2Ti
� 1, (3.71)

with the latter condition requiring that the ions should be colder than the electrons.

Exercise 3.6. Hydrodynamics of sound waves.24 Starting from the linearised kinetic
equations for ions and electrons, work out the fluid equations for the plasma, i.e., the evolution
equations for its mass density and mass flow velocity. Assuming me � mi (negligible electron
inertia) and Ti � Te (cold ions), show that these equations are

∂δni
∂t

+ ni∇ · ui = 0, mini
∂ui
∂t

+ ∇δpe = 0, (3.72)

and that the sound waves (3.70) with cs given by (3.69) are recovered if electrons have the
equation of state of an isothermal fluid. Why, and under what assumptions, should they be
isothermal physically? Prove mathematically that they indeed are. Why is the equation of state
for electrons different in a sound wave than in a Langmuir wave (see Exercise 3.1)? We will
revisit ion hydrodynamics in §8.

24The 2020 exam question was based on this.
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Figure 13. Ion-acoustic resonance: damping (cs > ue) or instability (cs < ue). Ion Landau
damping is weak because cs � vthi, so in the tail of Fi(vz); electron damping/instability is also
weak because ue, cs � vthe, so close to the peak Fe(vz).

3.9. Damping of Ion-Acoustic Waves and Ion-Acoustic Instability

Are ion acoustic waves damped? Can they grow? We have a standard protocol for
answering this question: calculate Re ε and Im ε and substitute into (3.30). Using (3.67)
and (3.32), we find

∂Re ε

∂ω
=

2ω2
pi

ω3
, Im ε = −

ω2
pe

k2

π

ne
F ′e

(ω
k

)
−
ω2

pi

k2

π

ni
F ′i

(ω
k

)
. (3.73)

The two terms in Im ε represent the interaction between the waves and, respectively,
electrons and ions. The ion term is small both on account of ωpi � ωpe and, assuming
Maxwellian ions, of the exponential smallness of Fi(ω/k) ∝ exp[−(ω/kvthi)

2]. We are
then left with

γ = − Im ε

∂(Re ε)/∂ω
= −
√
π

ω3

k2v3
the

mi

Zme

(ω
k
− ue

)
, (3.74)

where we have used (3.63). In the long-wavelength limit, kλDe � 1, we have ω = ±kcs,
and so, for the “+” mode,

γ = −
√
πZme

8mi
k (cs − ue) . (3.75)

If the electron flow is subsonic, ue < cs, this describes the Landau damping of ion acoustic
waves on hot electrons. If, on the other hand, the electron flow is supersonic, the sign
of γ reverses25 and we discover the ion-acoustic instability: excitation of ion acoustic
waves by a fast electron current. The instability belongs to the same general class as,
e.g., the bump-on-tail instability (§3.5) in that it involves waves sucking energy from
particles, but the new conceptual feature here is that such energy conversion can result
from a collaboration between different particle species (electrons supplying the energy,
ions carrying the wave).

There is a host of related instabilities involving various combinations of electron and

25Recall that k > 0 by the choice of the z axis.
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ion beams, currents, streams and counter-streams—excellent treatments of them can be
found in the textbooks by Krall & Trivelpiece (1973) and by Alexandrov et al. (1984) or
in the review by Davidson (1983). I shall return to this topic in §4.4.

Exercise 3.7. Damping of sound waves on ions.26 Find the ion contribution to the
damping of ion-acoustic waves. Under what conditions does it become comparable to, or larger
than, the electron contribution?

Exercise 3.8. What happens if ue � vthe?

3.10. Ion Langmuir Waves

Note that since

λDe

λDi
=
vtheωpi

vthiωpe
=

√
ZTe
Ti

, (3.76)

the condition (3.65) need not entail kλDe � 1 in the limit of cold ions [see (3.71)]—in this
case, the size of the Debye sphere (1.6) is set by the ions, rather than by the electrons, and
so we can have perfectly macroscopic (in the language of §1.4) perturbations on scales
both larger and smaller than λDe. At larger scales, we have found sound waves (3.70).
At smaller scales, kλDe � 1, the dispersion relation (3.68) gives us ion Langmuir
oscillations:

ω2 = ω2
pi =

4πZ2e2ni
mi

, (3.77)

which are analogous to the electron Langmuir oscillations (3.38) and, like them, turn into
dispersive ion Langmuir waves if the small k2λ2

Di correction in (3.64) is retained, leading
to the Bohm–Gross dispersion relation (3.39), but with ion quantities this time.

Exercise 3.9. Derive the dispersion relation for ion Langmuir waves. Investigate their damp-
ing/instability.

3.11. Summary of Electrostatic (Longitudinal) Plasma Waves

We have achieved what turns out to be a complete characterisation of electrostatic (also
known as “longitudinal”, in the sense that k ‖ E) waves in an unmagnetised plasma.
These are summarised in Fig. 14. In the limit of short wavelengths, kλDe � 1 and
kλDi � 1, the electron and ion branches, respectively, becomes dispersive, their damping
rates increase and eventually stop being small. This corresponds to waves having phase
speeds that are comparable to the speeds of the particles in the thermal bulk of their
distributions, so a great number of particles are available to have Landau resonance with
the waves and absorb their energy—the damping becomes strong.

Note that if the cold-ion condition Ti � Te is not satisfied, the sound speed is
comparable to the ion thermal speed cs ∼ vthi, and so the ion-acoustic waves are strongly
damped at all wave numbers—it is well-nigh impossible to propagate sound through a
collisionless hot plasma (in such an environment, no one will hear you scream)!

Let me digress a little to bring you in contact with a research frontier. In a magnetised plasma,
the sound wave looks (and works) essentially the same as (3.70), as long as its wave vector
is parallel to the magnetic field—the dispersion relation for such a wave, derived from fluid
equations (as in Exercise 3.6) is (15.27). In a collisionless such plasma with Ti ∼ Te, this wave

26The 2016 exam question was loosely based on this.
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Figure 14. Electrostatic (longitudinal) plasma waves.

is again heavily damped. Interestingly, however, at high plasma beta [defined by (15.24)], if a
sound wave is allowed to have a finite amplitude (i.e., outside linear theory), it becomes “self-
sustaining”, by exciting some parasitic micro-instabilities that in turn render the plasma in
its path effectively collisional—a rather beautiful phenomenon that has only been worked out
recently: read Kunz et al. (2020) if this piques your curiosity.

Exercise 3.10. Longitudinal waves in degenerate plasmas.27 Sometimes it is meaningful
to consider degenerate fermionic plasmas (e.g., electrons in metals or electrons and holes in
superconductors). If they are cold enough, their distribution function is simply

f0α(v) =
1

4

(mα

~π

)3

H(vFα − v), (3.78)

where H is the Heaviside function (= 1 for positive argument, 0 otherwise) and vFα =

(3π2nα)1/3~/mα is the “Fermi velocity” assuming spin-1/2 particles (the Fermi energy is
mαv

2
Fα/2). It is easy to check that (3.78) integrates to nα.

Work out all longitudinal waves for such plasmas. You will find Langmuir waves, ion sound,
etc., but there will also be a new feature, the so-called “zero-point sound” at kλDe � 1, where
the new Debye length is λDe =

√
3vFe/ωpe, a wave whose frequency is

ω = ±kvFe

(
1 + 2e−2−2k2λ2

De/9
)
. (3.79)

Work out also whether any of the waves that you have found are Landau damped, and if they
are, at what rate. Sketch a version of Fig. 14 for degenerate plasmas. If you find this calculation
difficult, you can look up some of it in Lifshitz & Pitaevskii (1981) and all of it in Alexandrov
et al. (1984).

27This is based on the 2023 exam question.
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3.12. Plasma Dispersion Function: Putting Linear Theory on Industrial Basis

Clearly, we have entered the realm of practical calculation—it is now easy to imagine an
industry of solving the plasma dispersion relation

ε(p,k) = 1−
∑
α

ω2
pα

k2

1

nα

∫
CL

dvz
F ′α(vz)

vz − ip/k
= 0 (3.80)

and similar dispersion relations arising from, e.g., considering electromagnetic perturbations (see
Q-2), magnetised plasmas (see Parra 2019b), different equilibria Fα (see Q-3 and Q-4), etc.

A Maxwellian equilibrium is obviously an extremely important special case because that is,
after all, the distribution towards which plasma is pushed by collisions on long time scales:

f0α(v) =
nα

(πv2
thα)3/2

e−v
2/v2thα ⇒ Fα(vz) =

nα√
πvthα

e−v
2
z/v

2
thα . (3.81)

For this case, we would like to introduce a new “special function” that would incorporate the
Landau prescription for calculating the velocity integral in (3.80) and that we could in some
sense “tabulate” once and for all.

Taking Fα to be (3.81) and letting u = vz/vthα and ζα = ip/kvthα, we can rewrite the velocity
integral in (3.80) as follows

1

nα

∫
CL

dvz
F ′α(vz)

vz − ip/k
= − 2√

π v2
thα

∫
CL

du
u e−u

2

u− ζα
= − 2

v2
thα

[1 + ζαZ(ζα)] , (3.82)

where the plasma dispersion function is defined to be

Z(ζ) =
1√
π

∫
du

e−u
2

u− ζ . (3.83)

In these terms, the plasma dispersion relation (3.80) becomes

ε = 1 +
∑
α

1 + ζαZ(ζα)

k2λ2
Dα

= 0 . (3.84)

Note that if the Maxwellian distribution (3.81) has a mean flow, as it did, e.g., in (3.62), this
amounts to a shift by some mean velocity uα and all one needs to do to adjust the above results
is to shift the argument of Z accordingly:

ζα → ζα −
uα
vthα

. (3.85)

3.12.1. Some Properties of Z(ζ)

It is not hard to see that

Z′(ζ) = − 1√
π

∫
du e−u

2 ∂

∂u

1

u− ζ = − 2√
π

∫
du

u e−u
2

u− ζ = −2 [1 + ζZ(ζ)] . (3.86)

Let us treat this identity as a differential equation: the integrating factor is eζ
2

, so

eζ
2

Z(ζ) = −2

∫ ζ

0

dt et
2

+ Z(0). (3.87)

We know the boundary condition at ζ = 0 from (3.23): for real ζ,

1√
π

∫
du

e−u
2

u− ζ =
1√
π
P
∫ +∞

−∞
du

e−u
2

u− ζ︸ ︷︷ ︸
= 0 for ζ = 0

because
integrand is

odd

+ i
√
π e−ζ

2

⇒ Z(0) = i
√
π. (3.88)
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Figure 15. Vera Faddeeva (1906-1983), the mother of the plasma dispersion function.

Using this in (3.87) and changing the integration variable t = −ix, we find

Z(ζ) = e−ζ
2
(
i
√
π + 2i

∫ iζ

0

dx e−x
2
)

= 2i e−ζ
2
∫ iζ

−∞
dx e−x

2

. (3.89)

This turns out to be a uniformly valid expression for Z(ζ): our function is simply a complex
erf!28 Here is a Mathematica script for calculating it:

Z[zeta ] := I Sqrt[Pi] Exp[−zeta2](1 + I Erfi[zeta]). (3.90)

You can use this to code up (3.84) and explore, e.g., the strongly damped solutions (ζ ∼ 1,
γ ∼ ω).

3.12.2. Asymptotics of Z(ζ)

If you are a devotee of the ancient art of asymptotic theory, you will find most useful (as,
effectively, we did in §§3.4–3.9) various limiting forms of Z(ζ). At small argument |ζ| � 1, the
Taylor series is

Z(ζ) = i
√
π e−ζ

2

− 2ζ

(
1− 2ζ2

3
+

4ζ4

15
− 8ζ6

105
+ . . .

)
. (3.91)

At large argument, |ζ| � 1, |Re ζ| � |Im ζ|, the asymptotic series is

Z(ζ) = i
√
π e−ζ

2

− 1

ζ

(
1 +

1

2ζ2
+

3

4ζ4
+

15

8ζ6
+ . . .

)
. (3.92)

All the results (for a Maxwellian equilibrium) that I derived in §§3.4–3.10 can be readily obtained
from (3.84) by using the above limiting cases (see Q-1). It is, indeed, a general practical strategy
for studying this and similar plasma dispersion relations to look for solutions in the limits ζα → 0
or ζα → ∞, then check under what physical conditions the solutions thus obtained are valid
(i.e., that they indeed satisfy |ζα| � 1 or |ζα| � 1, |Re ζ| � |Im ζ|), and then fill in the non-
asymptotic blanks in the same way that an experienced hunter espying antlers sticking out above
the shrubbery can reconstruct, in contour outline, the rest of the hiding deer.

Exercise 3.11. Work out the Taylor series (3.91). A useful step might be to prove this

28When written in this form, and with i
√
π factored out, w(ζ) = Z(ζ)/i

√
π ≡ erfcx(−iζ) is

called the Faddeeva function, after the Soviet mathematician Vera Faddeeva (Fig. 15), who
published the first book of tables of it (Faddeeva & Terent’ev 1954), before those American
upstarts Fried & Conte (1961). People meant business in those days. In the 21st century,
we have an easier life: just teach a computer to compute our function and make an app.
The Wikipedia article https://en.wikipedia.org/wiki/Faddeeva_function offers some useful
links to numerical algorithms for doing it, more sophisticated than (3.90).

https://en.wikipedia.org/wiki/Faddeeva_function
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interesting formula (which also turns out to be handy in other calculations; see, e.g., Q-8):

dmZ

dζm
=

(−1)m√
π

∫
CL

du
Hm(u) e−u

2

u− ζ , (3.93)

where Hm(u) are Hermite polynomials [defined in (6.74)].

Exercise 3.12. Work out the asymptotic series (3.92) using the Landau prescription (3.20) and
expanding the principal-value integral similarly to the way it was done in (3.35). Work out also
(or look up; e.g., Fried & Conte 1961) other asymptotic forms of Z(ζ), relaxing the condition
|Re ζ| � |Im ζ|.

4. Linear Theory: General Stability Theory
In §3, we learned how to perturb some given equilibrium distribution f0α infinitesimally and

work out whether this perturbation will decay, grow, oscillate, and how quickly. Let me now
pose the question in a more general way. In a collisionless plasma, there can be infinitely many
possible equilibria, including quite complicated ones. If we set one up, will it persist, i.e., is it
stable? If it is not stable, what modification do we expect it to undergo in order to become stable?
Other than solving the dispersion relation (3.17) to answer the first question and developing
various types of nonlinear theories to answer the second (along the lines advertised in §2.4 and
developed in §6 and subsequent sections), both of which can be quite complicated and often
intractable technical challenges, do we have at our disposal any general principles that allow us
to pronounce on stability? Is there a general insight that we can cultivate as to what sort of
distributions are likely to be stable or unstable and to what sorts of perturbations?

We have had glimpses of such general principles already. For example, in §3.5, it was
ascertained, by an explicit calculation, that one could encounter a situation with a (small) growth
rate if the equilibrium distribution had a positive derivative somewhere along the direction (z)
of the wave number of the perturbation, viz., vzF

′
e(vz) > 0. I developed this further in §3.7,

finding that not only hot but also cold beams and streams triggered instabities. In Exercise 3.2,
I dropped a hint that general statements could perhaps be made about certain general classes
of distributions: 3D-isotropic equilibria could be proven stable (we shall prove this again, by
a different method, in Exercise 4.2). How general are such statements? Are they sufficient or
also necessary criteria? Is there a universal stability litmus test? Let us attack the problem
of kinetic stability with an aspiration to generality—although still, for now, for electrostatic
perturbations only. We shall also, for now, limit our ambition to determining linear stability of
generic equilibria, i.e., their stability against infinitesimal perturbations. Nonlinear stability will
have to wait till §9.

4.1. Nyquist’s Method

The problem of linear stability comes down to the question of whether the dispersion relation
(3.17) has any unstable solutions: roots with growth rates γi(k) > 0.

It is going to be useful to write the dielectric function (3.26) as follows

ε(p,k) = 1−
ω2

pe

k2

∫
CL

dvz
F̄ ′(vz)

vz − ip/k
, (4.1)

F̄ =
1

ne

∑
α

Z2
α
me

mα
Fα =

Fe
ne

+
Zme

mi

Fi
ni
, (4.2)

where the last expression in (4.2) is for the case of a two-species plasma. Thus, the distribution
functions of different species come into the linear problem additively, weighted by their species’
charges and (inverse) masses.

Let us develop a method (due to Nyquist 1932) for counting zeros of ε(p) (I will henceforth
suppress k in the argument) in the half-plane Re p > 0 (the unstable roots of the dispersion
relation). Observe that ε(p) is analytic (by virtue of our efforts in §3.2 to make it so) and that
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Figure 16. Integration contour for (4.4).

if p = pi is its zero of order Ni, then in its vicinity,

ε(p) = const (p− pi)Ni + . . . ⇒ ∂ ln ε(p)

∂p
=

Ni
p− pi

+ . . . , (4.3)

so zeros of ε(p) are poles of ∂ ln ε(p)/∂p; the latter function has no other poles because ε(p) is
analytic. If we now integrate this function over a closed contour CR running along the imaginary
axis (and just to the right of it: p = −iω + 0) in the complex p plane from iR to −iR and then
along a semicircle of radius R back to iR (Fig. 16), we will, in the limit R → ∞, capture all
these poles:

lim
R→∞

∫
CR

dp
∂ ln ε(p)

∂p
= 2πi

∑
i

Ni = 2πiN, (4.4)

where N is the total number of zeros of ε(p) in the half-plane Re p > 0. It turns out (as I shall
prove in a moment) that the contribution to the integral over CR from the semicircle vanishes
at R→∞ and so we need only integrate along the imaginary axis:

2πiN =

∫ −i∞+0

+i∞+0

dp
∂ ln ε(p)

∂p
= ln

ε(−i∞)

ε(+i∞)
. (4.5)

Proof. All we need to show is that

|p|∂ ln ε(p)

∂p
→ 0 as |p| → ∞, Re p > 0. (4.6)

Indeed, using (4.1) and the Landau integration rule (3.20), we have in this limit:

ε(p) = 1−
ω2

pe

k2

∫ +∞

−∞
dvz F̄

′(vz)
ik

p

(
1− ikvz

p
+ . . .

)
≈ 1 +

1

p2

∑
α

ω2
pα, (4.7)

where I have integrated by parts and used
∫

dvz Fα = nα. Manifestly, the condition (4.6) is
satisfied.

Note that, along the imaginary axis p = −iω, by the same expansion and using also the
Plemelj formula (3.23), we have

ε(−iω) ≈ 1− 1

ω2

∑
α

ω2
pα − iπ

ω2
pe

k2
F̄ ′
(ω
k

)
→ 1∓ i0 as ω → ∓∞. (4.8)

This is going to be useful shortly.

In view of (4.8) and of our newly proven formula (4.5), as the function ε(−iω) runs along the
real line in ω, it changes from

ε(i∞) = 1− i0 at ω = −∞, (4.9)
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(a) Single-maximum, stable equilibrium (b) Strange but stable equilibrium

Figure 17. Two examples of Nyquist diagrams showing stability (because failing to circle zero):
(a) the case of a monotonically decreasing distribution (§4.2, Fig. 18a); (b) another stable case,
even though very complicated (it also illustrates the argument in §4.3).

where I have arbitrarily fixed its phase, to

ε(−i∞) = e2πiN + i0 at ω = +∞, (4.10)

where N is the number of times the function

ε(−iω) = 1−
ω2

pe

k2

[
P
∫ +∞

−∞
dvz

F̄ ′(vz)

vz − ω/k
+ iπF̄ ′

(ω
k

)]
(4.11)

circles around the origin in the complex ε plane. Since N is also the number of unstable roots
of the dispersion relation, this gives us a way to count these roots by sketching ε(−iω)—this
sketch is called the Nyquist diagram. Two examples of Nyquist diagrams implying stability are
given in Fig. 17: the curve ε(−iω) departs from 1− i0 and comes back to 1 + i0 via a path that,
however complicated, never makes a full circle around zero. Two examples of unstable situations
appear in Fig. 19(b,d): in these cases, zero is circumnavigated, implying that the equilibrium
distribution F̄ is unstable (at a given value of k).

In order to work out whether the Nyquist curve circles zero (and how many times), all one
needs to do is find Re ε(−iω) at all points ω where Im ε(−iω) = 0, i.e., where the curve intersects
the real line, and hence sketch the Nyquist diagram. We shall see in a moment, with the aid of
some important examples, how this is done, but let us do a little bit of preparatory work first.

It follows immediately from (4.11) that these crossings happen whenever ω/k = v∗ is a velocity
at which F̄ (vz) has an extremum, F̄ ′(v∗) = 0. At these points, the dielectric function (4.11) is
real and can be expressed so:

ε(−ikv∗) = 1 +
ω2

pe

k2
P (v∗) . (4.12)

Here P (v∗) is (minus) the principal-value integral in (4.11), which can be manipulated as follows:

P (v∗) = −P
∫ +∞

−∞
dvz

F̄ ′(vz)

vz − v∗
= −P

∫ +∞

−∞
dvz

1

vz − v∗
∂

∂vz

[
F̄ (vz)− F̄ (v∗)

]
=

∫ +∞

−∞
dvz

F̄ (v∗)− F̄ (vz)

(vz − v∗)2
, (4.13)

where I have integrated by parts; the additional term F̄ (v∗) was inserted under the derivative
in order to eliminate the boundary terms arising in this integration by parts around the pole
vz = v∗.

29

29Note that in the final expression in (4.13), there is no longer a need for principal-value

integration because, v∗ being a point of extremum of F̄ , the numerator of the integrand is
quadratic in vz − v∗ in the vicinity of v∗.
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(a) Single-maximum distribution (§4.2) (b) Single-minimum distribution (§4.3)

Figure 18. Two examples of equilibrium distributions.

Now we are ready to analyse particular (and, as we shall see, also generic) equilibrium
distributions F̄ (vz).

4.2. Stability of Monotonically Decreasing Distributions

Consider first a distribution function that has a single maximum at vz = v0 and monotonically
decays in both directions away from it (Fig. 18a): F̄ ′(v0) = 0, F̄ ′′(v0) < 0. This means that,
besides at ω = ∓∞, Im ε(−iω) ∝ F̄ ′(ω/k) also vanishes at ω = kv0. It is then clear that

ε(−ikv0) = 1 +
ω2

pe

k2
P (v0) > 1 (4.14)

because F̄ (v0) > F̄ (v) for all vz and so P (v0) > 0. Thus, the Nyquist curve departs from 1− i0
at ω = −∞, intersects the real line once at ω = kv0 and then comes back to 1 + i0 without
circling zero; the corresponding Nyquist digram is sketched in Fig. 17(a). Conclusion:

Monotonically decreasing distributions are stable against electrostatic perturbations.

We do not in fact need all this mathematical machinery just to prove the stability of
monotonically decreasing distributions (in §9.5, we shall see that this is a very robust result)—
but it will come handy when dealing with less simple cases. Parenthetically, let us work out
some direct proofs of stability.

Exercise 4.1. Direct proof of linear stability of monotonically decreasing distribu-
tions. (a) Consider the dielectric function (4.1) with p = −iω + γ and assume γ > 0 (so the
Landau contour is just the real axis). Work out the real and imaginary parts of the dispersion
relation ε(p) = 0 and show that it can never be satisfied if vzF̄

′(vz) 6 0, i.e., that any equilibrium
distribution that has a maximum at zero and decreases monotonically on both sides of it is stable
against electrostatic perturbations.30

(b) What if the maximum is at vz = v0 6= 0?

Exercise 4.2. Direct proof of linear stability of isotropic distributions. (a) Recall
Exercise 3.2 and show that all homogeneous, 3D-isotropic (in velocity) equilibria are stable
against electrostatic perturbations (with no need to assume long wave lengths).

(b) Prove, in the same way, that isotropic equilibria are also stable against electromagnetic
perturbations. You will need to derive the transverse dielectric function in the same way as in
Q-2 or Q-3, but for a general equilibrium distribution f0α(vx, vy, vz); failing that, you can look
it up in a book, e.g., Krall & Trivelpiece (1973) or Davidson (1983).

30This kind of argument can also be useful in stability considerations applying to more
complicated situations, e.g., magnetised plasmas (Bernstein 1958).
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(a) (b)

(c) (d)

Figure 19. Various possible forms of the Nyquist diagram for a single-minimum distribution
sketched in Fig. 18b: (a) ε(−ikv0) > 1, stable; (b) ε(−ikv0) < 0, ε(−ikv2) > 1, unstable;
(c) ε(−ikv0) < ε(−ikv2) < 0, stable; (d) ε(−ikv0) < 0 < ε(−ikv2) < 1, unstable.

4.3. Penrose’s Instability Criterion

It would be good to learn how to test for stability generic distributions that have multiple
minima and maxima: the simplest of them is shown in Fig. 18b, evoking the bump-on-tail
situation discussed in §3.5 and thus posing a risk (but, as we are about to see, not a certainty!)
of being unstable.

The Nyquist curve ε(−iω) departs from 1− i0 at ω = −∞, then crosses the real line for the
first time at ω = kv1, corresponding to the leftmost maximum of F̄ .31 This crossing is upwards,
from the lower to the upper half-plane, and it is not hard to see that a maximum will always
correspond to such an upward crossing and a minimum to a downward one, from the upper to
the lower half-plane: this follows directly from the change of sign of Im ε in Eq. (4.11) because
F̄ ′(ω/k) goes from positive to negative at any point of maximum and vice versa at any minimum.
After a few crossings back and forth, corresponding to local minima and maxima (if any), the
Nyquist curve will come to the the downward crossing corresponding to the global minimum
(other than at vz = ±∞) of the distribution function at, say, ω = kv0. If at this point P (v0) > 0,
then ε(−ikv0) > 1 and the same is true at all other crossing points v∗ because v0 is the global
minimum of F̄ and so P (v∗) > P (v0) > 0 for all other extrema. In this situation, illustrated in
Fig. 19(a), the Nyquist curve never circumnavigates zero and, therefore, P (v0) > 0 is a sufficient
condition of stability. It is also the necessary one, which is proved in the following way.

Suppose P (v0) < 0. Then, in (4.12), we can always find a range of k that are small enough
that ε(−ikv0) < 0, so the downward crossing at v0 happens on the negative side of zero in
the ε plane. After this downward crossing, the Nyquist curve will make more crossings, until it
finally comes to rest at 1 + i0 as ω = +∞. Let us denote by v2 > v0 the point of extremum
for which the corresponding crossing occurs at a point on the Re ε axis that is closest to (but
always will be to the right of) ε(−ikv0) < 0. If ε(−ikv2) > 0, then there is no way back, zero

31For the distribution sketched in Fig. 18(b), this maximum is global, so P (v1) > 0 and,
therefore, ε(−ikv1) > 1. This is the rightmost such crossing when v1 is the global maximum.
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has been fully circumnavigated and so there must be at least one unstable root (see Fig. 19b,d).
If ε(−ikv2) < 0, there is in principle some wiggle room for the Nyquist curve to avoid circling
zero (see Fig. 19c for a single-minimum distribution of Fig. 18b—or Fig. 17b for some serious
wiggles). However, since P (v2) > P (v0) for any v2 (because v0 is the global minimum of F̄ ), we
can always increase k in (4.12) just enough so ε(−ikv2) > 0 even though ε(−ikv0) < 0 still (this
corresponds to turning Fig. 19c into Fig. 19d). Thus, if P (v0) < 0, there will always be some
range of k inside which there is an instability.

We have obtained a sufficient and necessary condition of instability of an equilibrium F̄ (vz)
against electrostatic perturbations: if v0 is the point of global minimum of F̄ ,32

P (v0) =

∫ +∞

−∞
dvz

F̄ (v0)− F̄ (vz)

(vz − v0)2
< 0 ⇔ F̄ is unstable . (4.15)

This is the famous Penrose’s instability criterion (the famous criterion, not the famous Penrose;
it was proved by Oliver Penrose 1960, in a stylistically somewhat different way than I did it here).
Note that considerations of the kind presented above can be used to work out the wave-number
intervals, corresponding to various troughs in F̄ , in which instabilities exist.

Intuitively, the criterion (4.15) says that, in order for a distribution to be unstable, it needs to
have a trough and this trough must be deep enough. Thus, if F (v0) = 0, i.e., if the distribution
has a “hole”, it is always unstable (an extreme example of this is the two-stream instability;
see Exercise 3.5). Another corollary is that you cannot stablise a distribution by just adding
some particles in a narrow interval around v0, as this would create two minima nearby, which,
the filled interval being narrow, are still going to render the system unstable. To change that,
you must fill the trough substantially with particles—hence the tendency to flatten bumps into
plateaux, which we will discover in §6 (this answers, albeit in very broad strokes, the question
posed at the beginning of §4 about the types of stable distributions towards which the unstable
ones will be pushed as the instabilities saturate).

Exercise 4.3. Consider a single-minimum distribution like the one in Fig. 18(b), but with
the global maximum on the right and the lesser maximum on the left of the minimum.
Draw various possible Nyquist diagrams and convince yourself that Penrose’s criterion works.
If you enjoy this, think of a distribution that would give rise to the Nyquist diagram in Fig. 17(b).

Exercise 4.4. What happens if the distribution function F̄ has an inflection point, i.e.,
F̄ (v0) = 0, F̄ ′(v0) = 0, F̄ ′′(v0) = 0?

Exercise 4.5. What happens if the distribution function has a trough with a flat bottom (i.e.,
a flat minimum over some interval of velocities)?

4.4. Bumps, Beams, Streams and Flows

An elementary example of the use of Penrose’s criterion is the two-stream instability, first
introduced in Exercise 3.5. The case of two cold streams, represented by (3.60) and Fig. 12(a),
is obviously unstable because there is a gaping hole in this distribution. What if we now give
these streams some thermal width? This can be modeled by the double-Lorentzian distribution
(Fig. 12b)

Fe(vz) =
nevb

2π

[
1

(vz − ub)2 + v2
b

+
1

(vz + ub)2 + v2
b

]
, (4.16)

which is particularly easy to handle analytically. For the moment, we will consider the ions to
be infinitely heavy, so F̄ = Fe.

Since the distribution (4.16) is symmetric, it can only have its minimum at v0 = 0. Asking
that it should indeed be a minimum, rather than a maximum, i.e., F̄ ′(0) > 0, one finds that the

32Another way of putting this is: a distribution F̄ is unstable iff it has a minimum at some v0

for which P (v0) < 0. Obviously, if P (v0) < 0 at some minimum, it is also negative at the global
minimum.
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Figure 20. Combined distribution (4.2) for cold ions and hot electrons (cf. Fig. 13).

condition for this is

ub >
vb√

3
. (4.17)

Otherwise, the two streams are too wide (in velocity space) and the distribution is monotonically
decreasing, so, according to §4.2, it is stable.

If the condition (4.17) is satisfied, the distribution has two bumps, but is this enough to make
it unstable? Substituting this distribution into Penrose’s criterion (4.15) and doing the integral
exactly,33 we get the necessary and sufficient instability condition:

P (0) = − u2
b − v2

b

(u2
b + v2

b)2
< 0 ⇔ ub > vb . (4.18)

Thus, if the streams are sufficiently fast and/or their thermal spread is sufficiently narrow, an
instability will occur, but it is not quite enough just to have a little trough. Note, by the way,
that Penrose’s criterion does not differentiate between hydrodynamic (cold) and kinetic (hot)
instability mechanisms (§3.7).

Exercise 4.6. Use Nyquist’s method to work out the range of wave numbers at which perturba-
tions will grow for the two-stream instability (you will find the answer in Jackson 1960—yes, that
Jackson). Convince yourself that this is all in accord with the explicit solution of the dispersion
relation obtained in Q-4.

It is obvious how these considerations can be generalised to more complicated situations, e.g.,
to cases where the streams have different velocities, where one of them is, in fact, the thermal
bulk of the distribution and the other is a little bump on its tail (§3.7), where there are more than
two streams, etc. The streams also need not be composed of the particles of the same species:
indeed, as we saw in (4.1), in the linear theory, the distributions of all species are additively
combined into F̄ with weights that are inversely proportional to their masses [see (4.2)]. Thus,
the ion-acoustic instability (§3.9) is also just a kind of of two-stream—or, if you like, bump-on-
tail—instability, with the entire hot and mighty electron distribution making up a magnificent
bump on the tail of the cold, me/mi-weighted ion one (Fig. 20).34 When the streams/beams
have thermal spreads, they are more commonly thought of as mean flows—or currents, if the
electron flows are not compensated by the ion ones.

Exercise 4.7. Construct an equilibrium distribution to model your favorite plasma system
with flows and/or beams and investigate its stability: find the growth rate as a function of wave
number, instability conditions, etc.

33The easiest way to do it is to turn the integration path along the real axis into a loop by
completing it with a semicircle at positive or negative complex infinity, where the integrand
vanishes, and use Cauchy’s formula.
34In fact, when the two species’ temperatures are the same, there is still an instability, whose
criterion can again be obtained by the Nyquist-Penrose method: see Jackson (1960).



50 A. A. Schekochihin

4.5. Anisotropies

So we have found that various holes, bumps, streams, beams, flows, currents and other
such nonmonotonic features in the (combined, multispecies) equilibrium distribution present
an instability risk, unless they are sufficiently small, shallow, wide and/or close enough to
the thermal bulk. All of these are, of course, anisotropic features—indeed, as we saw in Exer-
cise 4.2, 3D-isotropic distributions are harmless, instability-wise. It turns out that anisotropies
of the distribution function in velocity space are dangerous even when the distribution decays
monotonically in all directions.35 However, the instabilities that occur in such situations are
electromagnetic, rather than electrostatic, and so require an investigation into the properties of
the transverse dielectric function of the kind derived in Q-2 or Q-3, but for a general equilibrium.
A nice treatment of anisotropy-driven instabilities can be found in Krall & Trivelpiece (1973)
and an even more thorough one in Davidson (1983). In §§9.2.1 and 9.5.3, I will show in quite
a simple way that, at least in principle, there is always energy available to be extracted from
anisotropic distributions.

Exercise 4.8. Criterion of instability of anisotropic distributions. This is an
independent-study topic. Consider linear stability of general distribution functions to
electromagnetic perturbations and work out the stability criterion in the spirit of §4. You
should discover that anisotropic distributions such as, e.g., the bi-Maxwellian (6.45), tend to
be unstable. Krall & Trivelpiece (1973, §9.10) would be a good place to read about it, but do
range beyond.

5. Energy, Entropy, Heating, Irreversibility, and Phase Mixing

While we are done with the “calculational” part of linear theory (calculating whether
the field perturbations oscillate, decay or grow, and at what rates), we are not yet done
with the “conceptual” part: what exactly is going on, mathematically and physically?
The plan of addressing this question in this section is as follows.

• I will show that Landau damping of perturbations of a plasma in thermal equilibrium
leads to the heating of this equilibrium—basically, that energy is conserved. This is not
a surprise, but it is useful to see explicitly how this works (§5.1).
• I will then ask how it is possible to have heating (an irreversible process) in a plasma

that was assumed collisionless and must conserve entropy. In other words, why, physically,
is Landau damping a damping? This will lead us to consider entropy evolution in our
system and to introduce an important concept of free energy (§5.2).
• In the above context, we will examine (§§5.3 and 5.6) the Laplace-transform solu-

tion (3.8) for the perturbed distribution function and establish the phenomenon of phase
mixing—emergence of fine structure in velocity (phase) space. This will allow collisions
and, therefore, irreversiblity back in (§5.5). We will also see that the Landau-damped
solutions are not eigenmodes (while growing solutions can be), and so conclude that it
made sense to insist on using an initial-value-problem formalism.

35In Q-3, you have an opportunity to derive the most famous of all instabilities triggered by
anisotropy.
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5.1. Energy Conservation and Heating

Let us go back to the full, nonlinear Vlasov–Poisson system, with the collision term
restored:

∂fα
∂t

+ v ·∇fα −
qα
mα

(∇ϕ) · ∂fα
∂v

=

(
∂fα
∂t

)
c

, (5.1)

−∇2ϕ = 4π
∑
α

qα

∫
dv fα. (5.2)

Let us calculate the rate of change of the electric energy:

d

dt

∫
dr

E2

8π
=

∫
dr

∇ϕ

4π
· ∂(∇ϕ)

∂t︸ ︷︷ ︸
by parts

= −
∫

dr
ϕ

4π

∂

∂t
∇2ϕ︸ ︷︷ ︸

use (5.2)

=
∑
α

qα

∫∫
drdv ϕ

∂fα
∂t︸ ︷︷ ︸

use (5.1)

=
∑
α

qα

∫∫
drdv ϕ

[
−v ·∇fα︸ ︷︷ ︸
by parts

+
qα
mα

(∇ϕ) · ∂fα
∂v︸ ︷︷ ︸

vanishes
because

f(±∞) = 0

+

(
∂fα
∂t

)
c︸ ︷︷ ︸

vanishes
because

number of
particles is
conserved

]

=
∑
α

qα

∫∫
drdv fαv ·∇ϕ = −

∫
drE · j, (5.3)

where j is the current density. So the rate of change of the electric field is minus the rate
at which electric field does work on the charges, a.k.a. Joule heating—not a surprising
result. The energy goes into accelerating particles, of course: the rate of change of their
kinetic energy is

dK

dt
=
∑
α

∫∫
drdv

mαv
2

2

∂fα
∂t︸ ︷︷ ︸

use (5.1)

=
∑
α

∫∫
drdv

mαv
2

2

[
−v ·∇fα︸ ︷︷ ︸
vanishes
because

full
divergence

+
qα
mα

(∇ϕ) · ∂fα
∂v︸ ︷︷ ︸

by parts in v

+

(
∂fα
∂t

)
c︸ ︷︷ ︸

vanishes
because
energy is
conserved

]

= −
∑
α

qα

∫∫
drdv fαv ·∇ϕ =

∫
drE · j. (5.4)

Combining (5.3) and (5.4) gives us the law of energy conservation:

d

dt

(
K +

∫
dr

E2

8π

)
= 0 . (5.5)

Exercise 5.1. Demonstrate energy conservation for the more general case in which magnetic-
field perturbations are also allowed.

Thus, if the perturbations are damped, the energy of the particles must increase—
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this is usually called heating. Strictly speaking, however, heating is a slow, irreversible
increase in the mean temperature of the thermal equilibrium. Let us make this statement
quantitative. Consider a Maxwellian plasma, homogeneous in space but possibly with
some slow dependence on time (cf. §2):

f0α =
nα

(πv2
thα)3/2

e−v
2/v2thα = nα

(
mα

2πTα

)3/2

e−mαv
2/2Tα . (5.6)

In a homogeneous system with a fixed volume, the density nα is constant in time because
the number of particles is constant: d(V nα)/dt = 0. The temperature, however, is allowed
to change: Tα = Tα(t). The total kinetic energy of the particles is

K = V
∑
α

∫
dv

mαv
2

2
f0α︸ ︷︷ ︸

=
3

2
nαTα

+
∑
α

∫∫
drdv

mαv
2

2
δfα. (5.7)

Let us average this over time, as per (2.7): the perturbed part vanishes and we have

〈K 〉 = V
∑
α

3

2
nαTα. (5.8)

Averaging also (5.5) and using (5.8), we get∑
α

3

2
nα

dTα
dt

= − d

dt

1

V

∫
dr
〈E2〉
8π

, (5.9)

so the heating rate of the equilibrium equals the rate of decrease of the mean energy of
the perturbations.

We saw that the perturbations evolve according to (3.16). If we wait for a while, only
the slowest-damped mode will matter, with all others exponentially small in comparison.
Let us call its frequency and its damping rate ωk and γk < 0, respectively, so Ek ∝
e−iωkt+γkt. If |γk| � ωk, the time average (2.7) can be defined in such a way that
ω−1
k � ∆t� |γk|−1. Then (5.9) becomes∑

α

3

2
nα

dTα
dt

= −
∑
k

2γk
|Ek|2

8π
> 0. (5.10)

The Landau damping rate of the electric-field perturbations is the heating rate of the
equilibrium.36

This result, while at first glance utterly obvious, might, on reflection, appear to be
paradoxical: surely, the heating of the equilibrium implies increasing entropy—but the
damping that is leading to the heating is collisionless and, in a collisionless system, in
view of the H-theorem, how can the entropy change?

5.2. Entropy and Free Energy

The kinetic entropy for each species of particles is defined to be

Sα = −
∫∫

drdv fα ln fα. (5.11)

36Obviously, the damping of waves on particles of species α increases only the temperature of
that species.
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This quantity [or, indeed, the full-phase-space integral of any quantity that is a function
only of fα; see (9.8)] can only be changed by collisions and, furthermore, the plasma-
physics version of Boltzmann’s H-theorem says that

d

dt

∑
α

Sα = −
∑
α

∫∫
drdv

(
∂fα
∂t

)
c

ln fα > 0, (5.12)

where equality is achieved iff all fα are Maxwellian with the same temperature Tα = T .
Thus, if collisions are ignored, the total entropy stays constant and everything that

happens is, in principle, reversible. So how can there be net damping of waves and,
worse still, net heating of the equilibrium particle distribution?! Presumably, any damping
solution can be turned into a growing solution by reversing all particle trajectories—so
should the overall perturbation level not stay constant?

As I already noted in §5.1, strictly speaking, heating is the increase of the equilibrium
temperature—and, therefore, of the equilibrium entropy. Indeed, for each species, the
equilibrium entropy is

S0 = −
∫∫

drdv f0 ln f0 = −
∫∫

drdv f0

{
ln

[
n
(m

2π

)3/2
]
− 3

2
lnT − mv2

2T

}
= V

{
−n ln

[
n
(m

2π

)3/2
]

+
3

2
n lnT +

3

2
n

}
, (5.13)

where I have used
∫

dv (mv2/2)f0 = (3/2)nT . Since n = const,

T
dS0

dt
= V

3

2
n

dT

dt
, (5.14)

so heating is indeed associated with an increase of S0.
Since, according to (5.10), this can be successfully accomplished by collisionless damp-

ing and since entropy overall can only increase due to collisions, we must search for the
“missing entropy” (or, rather, for the missing decrease of entropy) in the perturbed part
of the distribution. The mean entropy associated with the perturbed distribution is37

〈δS〉 = 〈S − S0〉 = −
∫∫

drdv 〈(f0 + δf) ln(f0 + δf)− f0 ln f0〉

= −
∫∫

drdv

〈
(f0 + δf)

[
ln f0 +

δf

f0
− δf2

2f2
0

+ . . .

]
− f0 ln f0

〉
≈ −

∫∫
drdv

〈δf2〉
2f0

, (5.15)

after expanding to second order in small δf/f0 and using 〈δf〉 = 0. The total mean entropy
of each species, 〈S〉 = S0 + 〈δS〉, can only by changed by collisions, so, if collisions are
ignored, any heating of a given species, i.e., any increase in its S0 [see (5.14)] must be
compensated by a decrease in its 〈δS〉. The latter can only be achieved by increasing 〈δf2〉:

37As an aside, note that this piece of the calculation is entirely idependent of what f0 is. It
simply demonstrates that the entropy of an averaged distribution f0 is always larger than that
of the exact distribution f , as long as δf � f0. If the average is reinterpreted as a coarse graining
over phase space, this argument is sometimes viewed as a kind of “proof” (or illustration) of
the second law of thermodynamics. Indeed, take f0 and f to be the same at some initial time t.
Then S0(t) = 〈S(t)〉. Now advance to time t + δt. Some small δf arises, but coarse graining
“deletes” the information contained in it and (5.15) shows that S0(t+ δt) > 〈S(t+ δt)〉 (cf. the
general statistical-mechanical argument to the same effect: Schekochihin 2019, §§12.4 and 13.4).
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indeed, using (5.14) and (5.15), we find38

T

(
dS0

dt
+

d〈δS〉
dt

)
= V

3

2
n

dT

dt
− d

dt

∫∫
drdv

T 〈δf2〉
2f0

= −
∫∫

drdv T

〈(
∂f

∂t

)
c

ln f

〉
. (5.16)

If the right-hand side is ignored, T can only increase if 〈δf2〉 increases too.

It is useful to work out the collision term in (5.16) in terms of f0 and δf : using the fact that
〈δf〉 = 0 by definition and that the number of particles is conserved by the collision operator,
we get∫∫

drdv T

〈(
∂f

∂t

)
c

ln f

〉
≈
∫∫

drdv

[
T

(
∂f0

∂t

)
c

ln f0 +

〈
Tδf

f0

(
∂δf

∂t

)
c

〉]
= V

∫
dv

mv2

2

(
∂f0

∂t

)
c

+

∫∫
drdv

〈
Tδf

f0

(
∂δf

∂t

)
c

〉
. (5.17)

The second term is the collisional damping of δf , of which more will be said soon. The first term is
the collisional energy exchange between the equilibrium distributions of different species (intra-
species collisions conserve energy, but inter-species ones do not, because there is friction between
species). If the species under consideration is α, this energy exchange can be represented as∑
α′ ναα′(Tα−Tα′) (see, e.g., Helander & Sigmar 2005) and will act to equilibrate temperatures

between species as the system strives toward thermal equilibrium. If the collision frequencies
ναα′ are small, this is a slow effect. Due to overall energy conservation, the energy-exchange
terms vanish exactly if (5.17) is summed over species.

Finally, let us sum (5.16) over species and use (5.9) to relate the total heating to the rate
of change of the electric-perturbation energy:

d

dt

[∑
α

∫∫
drdv

Tα〈δf2
α〉

2f0α
+

∫
dr
〈E2〉
8π

]
︸ ︷︷ ︸

≡ F

=
∑
α

∫∫
drdv

〈
Tαδfα
f0α

(
∂δfα
∂t

)
c

〉
6 0 ,

(5.18)
where we used (5.17) in the right-hand side (with the total equilibrium collisional energy-
exchange terms vanishing upon summation over species). The right-hand side must be
non-positive-definite because collisions cannot decrease entropy [see (5.12)].

Equation (5.18) is a way to express the idea that, except for the effect of collisions, the
change in the electric-perturbation energy (= −heating) must be compensated by the
change in 〈δf2〉, in terms of a conservation law of a quadratic positive-definite quantity,
F , that measures the total amount of perturbation in the system (a quadratic norm of
the perturbed solution).39 It is not hard to realise that this quantity is the free energy of
the perturbed state, comprising the entropy of the perturbed distribution and the energy

38In the second term, T can be brought inside the time derivative because 〈δf2〉/f0 � f0.
39Note that the existence of such a quantity implies that the Maxwellian equilibrium is stable: if a
quadratic norm of the perturbed solution cannot grow, clearly there cannot be any exponentially
growing solutions. This is known as Newcomb’s theorem, first communicated to the world in the
paper by Bernstein (1958, Appendix I). A generalisation of this principle to general isotropic
distributions is the subject of Q-6(c) and of §9.4, where the conserved quantity F will reemerge
in a different way, confirming its status as a Platonic entity that cannot be avoided.
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of the electric field:

F = U −
∑
α

Tα〈δSα〉 , U =

∫
dr
〈E2〉
8π

(5.19)

(to be precise, it is the difference—always positive!—between the free energy of the
perturbed state, U −

∑
α Tα〈Sα〉, and the free energy of the equilibrium, −

∑
α TαS0α).

It is quite a typical situation in non-equilibrium systems that there is an energy-like (quadratic in
the relevant fields and positive definite) quantity, which is conserved except for dissipation. For
example, in hydrodynamics, the motions of a fluid are governed by the Navier–Stokes equation:

ρ

(
∂u

∂t
+ u ·∇u

)
= −∇p+ µ∆u, (5.20)

where u is velocity, ρ mass density (ρ = const for an incompressible fluid), p pressure and µ the
dynamical viscosity of the fluid. The conservation law is

d

dt

∫
dr

ρu2

2
= −µ

∫
dr |∇u|2 6 0. (5.21)

The conserved quadratic quantity is kinetic energy and the negative-definite dissipation (leading
to net entropy production) is viscous heating.

You will find a similar conservation law for incompressible MHD if, in §13.10, you work out
the time evolution of

∫
dr (ρu2/2 +B2/8π) assuming ρ = const and ∇ · u = 0; cf. (15.70).

Exercise 5.2. Free energy and kinetic energy of mean plasma flow. Suppose the
perturbation δf contains a mean flow of particles, with velocity u. Show that it is then always
formally possible to decompose

δf =
2u · v
v2

th

f0 + h, (5.22)

where
∫

dv vh = 0. Hence show that∫∫
drdv

T 〈δf2〉
2f0

=

∫
dr

mn〈u2〉
2

+

∫∫
drdv

T 〈h2〉
2f0

, (5.23)

i.e., the entropic part of the free energy is equal to the kinetic energy of the mean plasma flow
plus the free entropy associated with the part of the perturbed distribution that has no mean
velocity. This means that “fluid” energy budgets such as (5.21) and (15.70) are not just analogs,
but particular cases, of the free-energy budget (5.18). In §5.7, I will show how these ideas play
out for Langmuir waves.

Thus, as the electric perturbations decay via Landau damping, the perturbed distri-
bution function must grow. This calls for going back to our solution for it (§3.1) and
analysing carefully the behaviour of δf .

5.3. Structure of Perturbed Distribution Function

Start with our solution (3.8) for δf(p) and substitute into it the solution (3.15) for ϕ(p):

δf̂(p) =
1

p+ ik · v︸ ︷︷ ︸
“kinetic”
(ballistic)

pole

{
i
q

m

[∑
i

ci
p− pi︸ ︷︷ ︸

poles
representing

linear
modes, see

(3.17)

+ A(p)

]
k · ∂f0

∂v
+ g

}
. (5.24)
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Figure 21. Shifting the integration contour in (5.25). This is analogous to Fig. 5 but note the
additional “kinetic” pole.

To compute the inverse Laplace transform (3.6), we adopt the same method as in §3.1
(Fig. 5), viz., shift the integration contour to large negative Re p as shown in Fig. 21 and
use Cauchy’s formula:

δf(t) =
1

2πi

∫ i∞+σ

−i∞+σ

dp eptδf̂(p) = i
q

m

∑
i

cie
pit

pi + ik · v
k · ∂f0

∂v︸ ︷︷ ︸
eigenmode-like

solution, comes from
the poles of ϕ(p)

+ e−ik·vt

{
g − i q

m

[∑
i

ci
pi + ik · v

+A(−ik · v)

]
k · ∂f0

∂v

}
︸ ︷︷ ︸

ballistic response,
comes from
p = −ik · v

. (5.25)

A perceptive reader has spotted that this formula does not seem to satisfy δf(t = 0) = g
unless A(−ik · v) = 0. This is because, as explained in footnote 11, the method for calculating
the inverse Laplace transform that involves discarding the integral along the vertical part of
the shifted contour in Fig. 21 only works in the limit of long times. It is an amusing exercise
in complex analysis to show that, in the (overly restrictive) case of ϕ̂(p) decaying quickly at
Re p → −∞, the solution (5.25) is also valid at finite t and, accordingly, A(−ik · v) = 0, i.e.,
A(p) vanishes for any purely imaginary p.

The solution (5.25) teaches us two important things.

1) First, the Landau-damped solution is not an eigenmode. Even though the evolution
of the potential, given by (3.16), does look like a sum of damped eigenmodes of the form
ϕ ∝ epit, Re pi < 0, the full solution of the Vlasov–Poisson system does not decay: there
is a part of δf(t), the “ballistic response” ∝ e−ik·vt, that oscillates without decaying—in
fact, we shall see in §5.6 that δf even has a growing part! It is this part that is responsible
for keeping free energy conserved, as per (5.18) without collisions (§5.7). Thus, you may
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Figure 22. Shearing of δf in phase space.

think of Landau damping as a process of transferring (free) energy from the electric-field
perturbations to the perturbations of the distribution function.

In contrast to the case of damping, a growing solution (Re pi > 0) can be viewed as an eigenmode
because, after a few growth times, the first term in (5.25) will be exponentially larger than the
ballistic term. This will allow us to ignore the latter in our treatment of QLT (§6.1)—a handy,
although not necessary (see Q-9), simplification. Note that reversibility is not an issue for the
growing solutions: so, there may be (and often are) damped solutions as well, so what? We only
care about the growing modes because they will be all that is left if we wait long enough.

2) Secondly, the δf perturbations have fine structure in velocity (phase) space. This
structure gets finer with time: roughly speaking, if δf ∝ e−ikvt, then

1

δf

∂δf

∂v
∼ ikt→∞ as t→∞. (5.26)

This phenomenon is called phase mixing. You can think of the basic mechanism respon-
sible for it as a shearing in phase space: the homogeneous part of the linearised kinetic
equation,

∂δf

∂t
+ v

∂δf

∂z
= . . . , (5.27)

describes advection of δf by a linear shear flow in the the (z, v) plane. This turns any δf
structure in this plane into long thin filaments, with large gradients in v (Fig. 22).

5.4. Landau Damping Is Phase Mixing

Phase mixing helps us make sense of the notion that, even though ϕ is the velocity
integral of δf , the former can be decaying while the latter is not:

ϕ =
4π

k2

∑
α

qα

∫
dv δfα︸ ︷︷ ︸
fine

structure
cancels

∝ e−γt → 0. (5.28)

The velocity integral over the fine structure increasingly cancels as time goes on—a
perturbation initially “visible” as ϕ phase-mixes away, disappearing into the negative
entropy associated with the fine velocity dependence of δf [see (5.15)].

More generally speaking, one can similarly argue that the refinement of velocity
dependence of δf causes lower velocity moments of δf (density, flow velocity, pressure,
heat flux, and so on) to decrease with time, transferring free energy to higher moments
(ever higher as time goes on). One way to formalise this statement neatly is in terms
of Hermite moments: since Hermite polynomials are orthogonal, the free energy of the
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perturbed distribution can be written as a sum of “energies” of the Hermite moments
[see (6.77)]. It is then possible to represent the Landau-damped perturbations as having
a broad spectrum in Hermite space, with the majority of the free energy residing in
high-order moments—infinitely high in the formal limit of zero collisionality and infinite
time (see Q-8 and Kanekar et al. 2015).

Since the mth-order Hermite moment can, for m� 1, be asymptotically represented as a cosine
function in v space oscillating with the “frequency”

√
2m/vth [see (6.78)], (5.26) implies that the

typical order of the moment in which the free energy resides grows with time as m ∼ (kvtht)
2. An

approach involving a Fourier, rather than Hermite, transform in velocity space will be presented
in §12.2.2.

Taking Hermite (or other kind of) moments of the kinetic equation is essentially the
procedure for deriving “fluid” equations for the plasma—or, rather, plasma becomes a
fluid if this procedure can be stopped after a few moments (e.g., in the limit of strong
collisionality, this happens at the third moment; see Dellar 2015, Parra 2019a, and Kunz
2021). Since Landau damping is a long-time effect of this phase-mixing process, it cannot
be captured by any fluid approximation to the kinetic system involving a truncation of
the hierarchy of moment equations at some finite-order moment—it is an essentially
kinetic effect “beyond all orders”.

One useful way to see this is by examining the structure of Langmuir hydrodynamics, which was
the subject of Exercise 3.1. The moment hierarchy can be truncated by assuming kvthe/ω � 1,
but one can never capture Landau damping however many moments one keeps: indeed, the
Landau damping rate (3.41) for, say, a Maxwellian plasma, will be γ ∝ exp(−ω2/k2v2

the), all
coefficients in the Taylor expansion of which in powers of kvthe/ω are zero.

Note that, in a pure phase-mixing process, i.e., one involving particle streaming only, and no
field-particle interaction, moments of the distribution function decay faster than exponentially
in time, so, in a certain sense, Landau damping is actually a slowing down of this process (§§5.6
and 5.7 might shed some light on why that is). As further reading on this topic, I recommend
the paper by Hammett et al. (1992), which was in certain respects foundational to the modern
understanding of phase mixing and its connexion with Landau damping and with various forms
of “fluid” description of plasmas.

Exercise 5.3. Consider a particle system described by the kinetic equation with no electric
field (1.48) and with an initial Maxwellian distribution whose density is n = n0 + a cos(kz),
where n0 = const. Show that the density perturbation decays in time as

δn(t) = δn(0)e−(kvtht)
2/4. (5.29)

5.5. Role of Collisions

As ever larger velocity-space gradients emerge, it becomes inevitable that at some
point they will become so large that collisions can no longer be ignored. This is because
the Landau collision operator is a Fokker–Planck (diffusion) operator in velocity space
[see (1.47)] and so it will eventually wipe out the fine structure in v, however small is
the collision frequency ν. Let us estimate how long this takes.

The size of the velocity-space gradients of δf due to ballistic response is given by (5.26).
Then the collision term is(

∂δf

∂t

)
c

∼ νv2
th

∂2δf

∂v2
∼ −νv2

thk
2t2δf. (5.30)

Solving for the time evolution of the perturbed distribution function due to collisions,



Oxford MMathPhys Lectures: Plasma Kinetics and MHD 59

Figure 23. Coarse graining of the distribution function.

we get

∂δf

∂t
∼ −ν(kvtht)

2δf ⇒ δf ∼ exp

(
−1

3
νk2v2

tht
3

)
≡ e−(t/tc)3 . (5.31)

Therefore, the characteristic collisional decay time is

tc ∼
1

ν1/3(kvth)2/3
. (5.32)

Note that tc � ν−1 provided ν � kvth, i.e., tc is within the range of times over which our
“collisionless” theory is valid. After time tc, “collisionless” damping becomes irreversible
because the part of δf that is fast-varying in velocity space is lost (entropy has grown)
and so it is no longer possible, even in principle, to invert all particle trajectories,
have the system retrace back its steps, “phase-unmix” and thus “undamp” the damped
perturbation.

In a sufficiently collisionless system, phase unmixing is, in fact, possible if nonlinearity is
allowed—giving rise to the beautiful phenomenon of plasma echo, in which perturbations can
first appear to be damped away but then come back from phase space (§12.1). This effect
is a source of much preoccupation to pure mathematicians (Villani 2014; Bedrossian 2016):
indeed the validity of the linearised Vlasov equation (3.1) as a sensible approximation to the full
nonlinear one (2.12) is in question if the velocity derivative ∂δf/∂v in the last term of the latter
starts growing uncontrollably. Phase unmixing has also recently turned out to have interesting
consequences for the role of Landau damping in plasma turbulence (see §12.2 onwards).

Some rather purist theoreticians sometimes choose to replace collisional estimates of the type
discussed above by a stipulation that δf(v) must be “coarse-grained” beyond some suitably
chosen scale in v (Fig. 23)—this is equivalent to saying that the formation of the fine-structured
phase-space part of δf constitutes a loss of information and so leads to growth of entropy (i.e.,
loss of negative entropy associated with 〈δf2〉). Somewhat non-rigorously, this means that we
can just consider the ballistic term in (5.25) to have been wiped out and use the coarse-grained
(i.e., velocity-space-averaged) version of δf :40

δf = i
q

m

∑
i

cie
pit

pi + ik · v k ·
∂f0

∂v
. (5.33)

40With an understanding that any integral involving the resonant denominator must be taken
along the Landau contour (see Q-9). If you adopt this shorthand, you can, nonrigorously but
often expeditiously, use Fourier transforms into frequency space, rather than Laplace transforms.
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Figure 24. Emergence of the Case–van Kampen mode.

We can check that the correct solution (3.16) for the potential can be recovered from this:

ϕ =
4π

k2

∑
α

qα

∫
dv δfα

=
∑
i

cie
pit

[∑
α

i
4πq2

α

mαk2

∫
dv

1

pi + ik · v k ·
∂f0α

∂v
− 1︸ ︷︷ ︸

= −ε(pi,k) = 0 by definition of pi

+1

]
=
∑
i

cie
pit. (5.34)

If you are wondering how this works without the coarse-graining kludge, read on.

5.6. Further Analysis of δf

Having given a rather qualitative analysis of the structure and consequences of the
solution (5.25), I anticipate a degree of dissatisfaction from a perceptive reader. Yes,
there is a non-decaying piece of δf . But conservation of free energy in a collisionless
system in the face of Landau damping in fact requires 〈δf2〉 to grow, not just to fail to
decay [see (5.18)]. How do we see that this does indeed happen? The analysis that follows
addresses this question. These considerations are not really necessary for most practical
plasma-physics calculations (see, however, Q-9), but it may be necessary for your peace
of mind and greater comfort with this whole conceptual framework.

Let us rearrange the solution (5.25) as follows:

δf(t) = i
q

m

∑
i

ci
epit − e−ik·vt

pi + ik · v
k · ∂f0

∂v
+ (g + . . . )e−ik·vt . (5.35)

The second term is the ballistic evolution of perturbations (particles flying apart in
straight lines at different velocities)—a homogeneous solution of the kinetic equation
(3.1). This develops a lot of fine-scale velocity-space structure, but obviously does
not grow. The first term, a particular solution arising from the (linear) wave-particle
interaction, is more interesting, especially around the resonances Re pi + k · v = 0.

Consider one of the modes, pi = −iω + γ, and assume γ � k · v ∼ ω. This allows us
to introduce “intermediate” times:

1

k · v
� t� 1

γ
. (5.36)

This means that the wave has had time to oscillate, phase mixing has got underway,
but the perturbation has not yet been damped away significantly. We have then, for the
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relevant piece of the perturbed distribution (5.35),

δf ∝ epit − e−ik·vt

pi + ik · v
= −ie−iωt e

γt − e−i(k·v−ω)t

k · v − ω − iγ
≈ −ie−iωt 1− e

−i(k·v−ω)t

k · v − ω
, (5.37)

with the last, approximate, expression valid at the intermediate times (5.36), assuming
also that, even though we might be close to the resonance, we shall not come closer
than γ, viz., |k · v − ω| � γ. Respecting this ordering, but taking |k · v − ω| � 1/t, we
find

δf ∝ t e−iωt. (5.38)

Thus, δf has a peak that grows with time, emerging from the sea of fine-scale but constant-
amplitude structures (Fig. 24). The width of this peak is obviously |k · v − ω| ∼ 1/t and
so δf around the resonance develops a sharp structure, which, in the formal limit t→∞
(but respecting γt� 1, i.e., with infinitesimal damping), tends to a delta function:

δf ∝ −ie−iωt 1− e
−i(k·v−ω)t

k · v − ω
→ e−iωtπδ(k · v − ω) as t→∞. (5.39)

Here is a “formal” proof:

1− e−ixt

x
=

1− cosxt

x︸ ︷︷ ︸
finite as
t→∞,
even at
x = 0

+ i
sinxt

x︸ ︷︷ ︸
= it at
x = 0,

so dom-
inant

≈ eixt − e−ixt

2x
=
i

2

∫ t

−t
dt′eixt

′
→ iπδ(x) as t→∞.

(5.40)
Note that writing the solution in the vicinity of the resonance in the form of a δ-function,
as in (5.39), is tantamount to stipulating that any integral taken with respect to v (or
k) and involving δf must always be done along the Landau contour, circumventing the
pole from below [cf. (3.23)]. We will find the representation (5.39) of δf useful in working
out the quasilinear theory of Landau damping in Q-9.

If we restore finite damping, all this goes on until t ∼ 1/γ, with the delta function
reaching the height ∝ 1/γ and width ∝ γ. In the limit t� 1/γ, the damped part of the
solution decays, eγt → 0, and we are left with just the ballistic part, the second term
in (5.25).

5.7. Free-Energy Conservation for Landau-Damped Langmuir Waves

Finally, let us convince ourselves that, if we ignore collisions, we can recover (5.18) with a zero
right-hand side from the full collisionless Landau-damped solution given by (3.16) and (5.35).
For simplicity, let us consider the case of electron Langmuir waves and prove that

d

dt

∫
dv

T |δfk|2

2f0
= −2γk

|Ek|2

8π
= − d

dt

|Ek|2

8π
. (5.41)

In (5.35), let the relevant root of the dispersion relation be pi = −iωpe+γk, where γk is given
by (3.41), and assume a Maxwellian f0. Based on the discussion §5.6, we should expect δfk to
develop a growing δ-like peak around the resonance k · v ≈ ωpe. In this region of velocity space,
the distribution function (5.35) for electrons (q = −e) is

δf
(res)
k ≈ e

me
cie

pit︸ ︷︷ ︸
= ϕk

1− e−i(k·v−ipi)t

k · v − ipi
2k · v
v2

the

f0 ≈
eϕk
T
k · v 1− e−i(k·v−ωpe)t

k · v − ωpe︸ ︷︷ ︸
≈ iπδ(k ·v−ωpe)

f0. (5.42)
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We are going to have to compute |δfk|2 and squaring delta functions is a dangerous game
belonging to the class of games that one must play veeery carefully.41 Here is how:

∂

∂t

∣∣∣∣1− e−ixtx

∣∣∣∣2 =
∂

∂t

4

x2
sin2 xt

2
=

2 sinxt

x
−−−→
t→∞

2πδ(x) ⇒
∣∣∣∣1− e−ixtx

∣∣∣∣2 −−−→t→∞
2πtδ(x).

(5.43)
Using this prescription,∫

dv
T |δf (res)

k |2

2f0
=

∫
dv

e2|ϕk|2

2T
(k · v)22πtδ(k · v − ωpe)f0

= t|ϕk|2
2πe2ω2

pe

mev2
thek

F
(ωpe

k

)
= 4t

k2|ϕk|2

8π

ω4
pe

k3

π

nev2
the

F
(ωpe

k

)
︸ ︷︷ ︸

= −γk > 0; see (3.41)

= −4γkt
|Ek|2

8π
. (5.44)

Thus, the entropic part of the free energy grows secularly with time (assuming still γkt � 1).
Its time derivative is

d

dt

∫
dv

T |δf (res)
k |2

2f0
≈ −4γk

|Ek|2

8π
= −2

d

dt

|Ek|2

8π
. (5.45)

Despite what it looks like, the extra factor of 2 in (5.45) compared to (5.41) is a feature,
not a bug. If you have done Exercise 3.1 (or even just paid attention in §2.1), you know that
a Langmuir oscillations involve some mean (oscillating) flows of the plasma, and so a sloshing
of energy between potential, |Ek|2/8π, and kinetic, neme|uk|2/2, where uk = (1/ne)

∫
dv v δfk.

These flows are contained in the non-resonant (“thermal”) part of δfk, i.e., in δfk at velocities
such that k · v � ωpe. In this region of velocity space, let us write the distribution function
(5.35) as follows:

δf
(th)
k =

e

me
cie

pit︸ ︷︷ ︸
= ϕk

1

k · v − ipi
2k · v
v2

the

f0 + e−ik·vthk ≈ −
eϕk
T

k · v
ωpe

f0 + e−ik·vthk, (5.46)

where hk denotes everything in (5.35) that multiplies e−ik·vt. This should remind you of
Exercise 5.2. The first term in (5.46) is precisely the plasma flow:

uk =
1

ne

∫
dv v δf

(th)
k = − eϕk

Tωpene
k ·

∫
dv vvf0︸ ︷︷ ︸

= Inev
2
the/2

=
eEk
iωpeme

(5.47)

The contribution from the second term in (5.46) to the velocity integral has vanished in the limit
k · vt� 1. Note that (5.47) just says that meu̇k = −eEk, as indeed is the case in a Langmuir
oscillation. It is not hard to check that neme|uk|2/2 = |Ek|2/8π.

Let us now work out the contribution of (5.46) to the free energy [cf. (5.23)]:∫
dv

T |δf (th)
k |2

2f0
=

∫
dv

[
e2|ϕk|2

2Tω2
pe

(k · v)2f0 +
T |hk|2

2f0
+ e−ik·vt(. . . ) + eik·vt(. . . )∗

]
=
|Ek|2

8π
+

∫
dv

T |hk|2

2f0
, (5.48)

where the velocity integral has been done in the same way as in (5.47) and the contribution
from the terms that oscillate in v has been integrated away. The salient property of hk is that

41I am grateful to Glenn Wagner for making me practice what I preach and work out this
derivation correctly, with all the meaningful factors of 2.
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it does not depend on time. Therefore, its contribution to the time derivative of the free energy
vanishes and we get

d

dt

∫
dv

T |δf (th)
k |2

2f0
=

d

dt

|Ek|2

8π
, (5.49)

i.e., the kinetic energy of the Langmuir oscillations decays at the same rate as their potential
(electric) energy.

Finally, adding (5.45) and (5.49), we get (5.41), q.e.d.

Exercise 5.4. Free-energy conservation for sound waves. Consider an ion-acoustic wave
(§3.8) damped on electrons according to (3.75) (with ue = 0). Work out the contributions to
free energy from ions and from electrons. Check that free energy is conserved.

6. Quasilinear Theory

6.1. General Scheme of QLT

In §§3 and 5, I discussed at length the structure of the linear solution corresponding to
a Landau-damped initial perturbation. This could be adequately done for a Maxwellian
plasma and the result was that, after some interesting transient time-dependent phase-
space dynamics, perturbations damped away and their energy turned into heat, increasing
somewhat the temperature of the equilibrium (see, however, Q-9).

Let us now turn to a different problem: an unstable (and so decidedly non-Maxwellian)
equilibrium distribution giving rise to exponentially growing perturbations. The specific
example on which we shall focus is the bump-on-tail instability, which involves generation
of unstable Langmuir waves with phase velocities corresponding to instances of positive
derivative of the equilibrium distribution function (Fig. 25). The energy of the waves
grows exponentially:

∂|Ek|2

∂t
= 2γk|Ek|2, γk =

π

2

ω3
pe

k2

1

ne
F ′
(ωpe

k

)
, (6.1)

where F (vz) =
∫∫

dvxdvy f0(v) [see (3.41)]. In the absence of collisions, the only way
for the system to achieve a nontrivial steady state (i.e., such that |Ek|2 is not just zero
everywhere) is by adjusting the equilibrium distribution so that

γk = 0 ⇔ F ′
(ωpe

k

)
= 0 (6.2)

at all k where |Ek|2 6= 0, say, k ∈ [k2, k1]. If we translate this range into velocities,
v = ωpe/k, we see that the equilibrium must develop a flat spot:

F ′(v) = 0 for v ∈ [v1, v2] =

[
ωpe

k1
,
ωpe

k2

]
. (6.3)

This is called a quasilinear plateau (§6.4). Obviously, the rest of the equilibrium distri-
bution may (and will) also be modified in some, to be determined, way (§§6.6, 6.7).

These modifications of the original (initial) equilibrium distribution can be accom-
plished by the growing fluctuations via the feedback mechanism already discussed in
§2.3, namely, the equilibrium distribution will evolve slowly according to (2.11):

∂f0

∂t
= − ∂

∂v
·

(
q

m

∑
k

ik 〈ϕ∗kδfk〉

)
. (6.4)

The time averaging here [see (2.7)] is over ω−1
pe � ∆t� γ−1

k .
The general scheme of QLT is:
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Figure 25. An unstable distribution with a bump on its tail.

• start with an unstable equilibrium f0,
• use the linearised equations (3.1) and (3.2) to work out the linear solution for the

growing perturbations ϕk and δfk in terms of f0,
• use this solution in (6.4) to evolve f0, leading, if everything works as it is supposed

to, to an ever less unstable equilibrium.

We shall keep only the fastest growing mode (all others are exponentially small after
a while), and so the solution (3.16) for the electric perturbations is

ϕk = cke
(−iωk+γk)t. (6.5)

In the solution (5.25) for the perturbed distribution function, we may ignore the ballistic
term because the exponentially growing piece (the first term) will eventually leave all
this velocity-space structure behind,42 so

δfk =
q

m

ϕk
k · v − ωk − iγk

k · ∂f0

∂v
. (6.6)

Substituting (6.6) into (6.4), we get

∂f0

∂t
= − ∂

∂v
·

(
q2

m2

∑
k

ik|ϕk|2
1

k · v − ωk − iγk
k · ∂f0

∂v

)
=

∂

∂v
· D(v) · ∂f0

∂v
. (6.7)

42See, however, Q-9 on how to avoid having to wait for this to happen: in fact, the results below
are valid for γkt . 1 as well.
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This is a diffusion equation in velocity space, with a velocity-dependent diffusion matrix

D(v) = − q2

m2

∑
k

ikk|ϕk|2
1

k · v − ωk − iγk

= − q2

m2

∑
k

ikk|ϕk|2
1

2

(
1

k · v − ωk − iγk
+

1

−k · v − ω−k − iγ−k︸ ︷︷ ︸
here I changed

variables k→ −k

)

= − q2

m2

∑
k

kk

k2
|Ek|2

i

2

(
1

k · v − ωk − iγk
− 1

k · v − ωk + iγk

)
=

q2

m2

∑
k

kk

k2
|Ek|2 Im

1

k · v − ωk − iγk

=
q2

m2

∑
k

kk

k2
|Ek|2

γk
(k · v − ωk)2 + γ2

k

. (6.8)

To obtain these expressions, I used the fact that the wave-number sum could just as well
be over −k instead of k and that ω−k = −ωk, γ−k = γk [because ϕ−k = ϕ∗k, where ϕk
is given by (6.5)]. The matrix D is manifestly positive definite—this adds credence to
our a priori expectation that a plateau will form: diffusion will smooth the bump in the
equilibrium distribution function.

The question of validity of the QL approximation is quite nontrivial and rife with subtle issues,
all of which I have swept under the carpet. They mostly have to do with whether coupling
between waves [the last term in (2.12)] truly remains unimportant throughout the quasilinear
evolution, especially as the plateau regime is approached and the growth rate of the waves
becomes infinitesimally small. If you wish to investigate further—and in the process gain a finer
appreciation of nonlinear plasma theory,—the article by Besse et al. (2011) (as far as I know,
the most recent substantial contribution to the topic) is a good starting point, from which you
can follow the paper trail backwards in time and decide for yourself whether you trust the QLT.

6.2. Conservation Laws

When we get to the stage of solving a specific problem (§6.3), we shall see that paying attention
to energy and momentum budgets leads one to important discoveries about the QL evolution of
the particle distribution. With this prospect in mind, as well as by way of a consistency check,
let us check that the quasilinear kinetic equation (6.7) conserves energy and momentum.
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6.2.1. Energy Conservation

The rate of change of the particle energy associated with the equilibrium distribution is

dK

dt
≡ d

dt

∑
α

∫∫
drdv

mαv
2

2
f0α = V

∑
α

∫
dv

mαv
2

2

∂

∂v
· Dα(v) · ∂f0α

∂v

= −V
∑
α

∫
dvmαv · Dα(v) · ∂f0α

∂v

= −V
∑
α

q2
α

mα

∑
k

|Ek|2

k2

∫
dv Im

k · v
k · v − ωk − iγk︸ ︷︷ ︸

add and substract
ωk + iγk in the

numerator

k · ∂f0α

∂v

= −V
∑
k

|Ek|2

4π
Im

[
(ωk + iγk)

∑
α

ω2
pα

k2

1

nα

∫
dv

1

k · v − ωk − iγk
k · ∂f0α

∂v︸ ︷︷ ︸
= 1− ε(−iωk + γk,k) = 1

because −iωk + iγk is a solution of
dispersion relation ε = 0

]

= −V
∑
k

2γk
|Ek|2

8π
= − d

dt

∫
dr

E2

8π
, q.e.d., (6.9)

viz., the total energy K +
∫

drE2/8π = const. This will motivate §6.6.

6.2.2. Momentum Conservation

Since unstable distributions like the one with a bump on its tail can carry net momentum, it
is useful to calculate its rate of change:

dP

dt
≡ d

dt

∑
α

∫∫
drdvmαvf0α = V

∑
α

∫
dvmαv

∂

∂v
· Dα(v) · ∂f0α

∂v

= −V
∑
α

∫
dvmαDα(v) · ∂f0α

∂v

= −V
∑
α

q2
α

mα

∑
k

k|Ek|2

k2

∫
dv Im

1

k · v − ωk − iγk
k · ∂f0α

∂v

= −V
∑
k

k|Ek|2

4π
Im
∑
α

ω2
pα

k2

1

nα

∫
dv

1

k · v − ωk − iγk
k · ∂f0α

∂v︸ ︷︷ ︸
= 1− ε(−iωk + γk,k) = 1

= 0, q.e.d., (6.10)

so momentum can only be redistributed between particles. This will motivate §6.7.

6.3. Quasilinear Equations for the Bump-on-Tail Instability in 1D

What follows is the iconic QL calculation due to Vedenov et al. (1962) and Drummond
& Pines (1962).

These two papers, published in the same year, are a spectacular example of the “great minds
think alike” principle. They both appeared in the Proceedings of the 1961 IAEA confer-
ence in Salzburg, one of those early international gatherings in which the Soviets (grudgingly
allowed out) and the Westerners (eager to meet the aliens) were telling each other about
their achievements in the recently declassified controlled-nuclear-fusion research. The entire
Proceedings are now online (http://www-naweb.iaea.org/napc/physics/FEC/1961.pdf)—a
remarkable historical document and a great read, containing, besides the papers (in three
languages), a record of the discussions that were held. The Vedenov et al. (1962) paper is

http://www-naweb.iaea.org/napc/physics/FEC/1961.pdf
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Figure 26. Quasilinear plateau.

in Russian, but you will find a very similar exposition in English in the review by Vedenov
(1963) published shortly thereafter. Two other lucid accounts of quasilinear theory belonging to
the same historical (and historic!) period are in the books by Kadomtsev (1965) and by Sagdeev
& Galeev (1969).

As promised in §6.1, I shall consider electron Langmuir oscillations in 1D, triggered
by the bump-on-tail instability, so k = kẑ, ωk = ωpe, γk is given by (6.1), and the QL
diffusion equation (6.7) becomes

∂F

∂t
=

∂

∂v
D(v)

∂F

∂v
, (6.11)

where F (v) is the 1D version of the distribution function, v = vz and the diffusion
coefficient, now a scalar, is given by

D(v) =
e2

m2
e

∑
k

|Ek|2 Im
1

kv − ωpe − iγk
. (6.12)

As I explained when discussing (6.1), if the fluctuation field has reached a steady state,
it must be the case that

∂|Ek|2

∂t
= 2γk|Ek|2 = 0 ⇔ |Ek|2 = 0 or γk = 0, (6.13)

i.e., either there are no fluctuations or there is no growth (or damping) rate. The result
is a non-zero spectrum of fluctuations in the interval k ∈ [k2, k1] and a plateau in the
distribution function in the corresponding velocity interval v ∈ [v1, v2] = [ωpe/k1, ωpe/k2]
[see (6.3) and Fig. 26]. The particles in this interval are resonant with Langmuir waves;
those in the (“thermal”) bulk of the distribution outside this interval are non-resonant.
We will have solved the problem completely if we find

• F plateau, the value of the distribution function in the interval [v1, v2],
• the extent of the plateau [v1, v2],
• the functional form of the spectrum |Ek|2 in the interval [k2, k1],
• any modifications of the distribution function F (v) of the nonresonant particles.
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6.4. Resonant Region: QL Plateau and Spectrum

Consider first the velocities v ∈ [v1, v2] for which |Ek=ωpe/v|2 6= 0. If L is the linear size
of the system, the wave-number sum in (6.12) can be replaced by an integral according to∑

k

=
∑
k

∆k

2π/L
=

L

2π

∫
dk. (6.14)

Defining the continuous energy spectrum of the Langmuir waves43

W (k) =
L

2π

|Ek|2

4π
, (6.15)

we rewrite the QL diffusion coefficient (6.12) in the following form:

D(v) =
e2

m2
e

1

v
Im

∫
dk

4πW (k)

k − ωpe/v − iγk/v
=

e2

m2
e

4π2

v
W
(ωpe

v

)
. (6.16)

The last expression is obtained by applying Plemelj’s formula (3.25) to the wave-number
integral taken in the limit γk/v → +0.44 Substituting now this expression into (6.11) and
using also (6.1) to express

γk =
π

2

ω3
pe

k2

1

ne
F ′
(ωpe

k

)
⇒ ∂F

∂v
=

[
2

π

k2

ω3
pe

neγk

]
k=ωpe/v

, (6.17)

we get

∂F

∂t
=

∂

∂v

e2

m2
e

4π2

v
W
(ωpe

v

)[ 2

π

k2

ω3
pe

neγk

]
k=ωpe/v

=
∂

∂v

ωpe

mev3
2γωpe/vW

(ωpe

v

)
︸ ︷︷ ︸

= ∂W/∂t

. (6.18)

Rearranging, we arrive at

∂

∂t

[
F − ∂

∂v

ωpe

mev3
W
(ωpe

v

)]
= 0. (6.19)

Thus, during QL evolution, the expression in the square brackets stays constant in time.
Since at t = 0, there are no waves, W = 0, we find

F (0, v) +
∂

∂v

ωpe

mev3
W
(
t,
ωpe

v

)
= F (t, v)→ F plateau as t→∞. (6.20)

In the saturated state (t → ∞), W (ωpe/v) = 0 outside the interval v ∈ [v1, v2].
Therefore, (6.20) gives us two implicit equations for v1 and v2:

F (0, v1) = F (0, v2) = F plateau (6.21)

and, after integration over velocities, also an equation for F plateau:45∫ v2

v1

dv
[
F plateau − F (0, v)

]
= 0 ⇒ F plateau =

1

v2 − v1

∫ v2

v1

dv F (0, v) . (6.22)

43Why the prefactor is 1/4π, rather than 1/8π, will become clear at the end of §6.5.
44In fact, the wave-number integral must be taken along the Landau contour (i.e., keeping the
contour below the pole) regardless of the sign of γk: see Q-9, where you get to work out the
QLT for Landau-damped, rather than growing, perturbations.
45This is somewhat reminiscent of the “Maxwell construction” in thermodynamics of real gases:
the plateau sits at such a level that the integral under it, i.e., the number of particles involved,
stays the same as it was for the same velocities in the initial state; see Fig. 25.
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Figure 27. Quasilinear spectrum.

Finally, integrating (6.20) with respect to v and using the boundary condition
W (ωpe/v1) = 0, we get, at t→∞,

W
(ωpe

v

)
=
mev

3

ωpe

∫ v

v1

dv′
[
F plateau − F (0, v′)

]
. (6.23)

Hence the spectrum is

W (k) =
meω

2
pe

k3

∫ ωpe/k

v1

dv
[
F plateau − F (0, v)

]
for k ∈

[
ωpe

v2
,
ωpe

v1

]
(6.24)

and W (k) = 0 everywhere else (Fig. 27).
Thus, we have completed the first three items of the programme formulated at the

end of §6.3. What about the particle distribution outside the resonant region? How is
it modified by the quasilinear evolution? Is it modified at all? The following calculation
shows that it must be.

6.5. Energy of Resonant Particles

Since feeding the instability requires extracting energy from the resonant particles,
their energy must change. We calculate this change by taking the mev

2/2 moment
of (6.20):

Kres(∞)−Kres(0) =

∫ v2

v1

dv
mev

2

2

[
F plateau − F (0, v)

]
=

∫ v2

v1

dv
mev

2

2

∂

∂v

ωpe

mev3
W
(ωpe

v

)
= −ωpe

∫ v2

v1

dv
1

v2
W
(ωpe

v

)
= −

∫ ωpe/v1

ωpe/v2

dkW (k) = −2
∑
k

|Ek|2

8π
≡ −2 U (∞). (6.25)

Thus, only half of the energy lost by the resonant particles goes into the electric-field
energy of the waves,

U (∞) =
Kres(0)−Kres(∞)

2
. (6.26)

Since the energy must be conserved overall [see (6.9)], we must account for the missing
half: this is easy to do physically, as, obviously, the electric energy of the waves is their
potential energy, which is half of their total energy—the other half being the kinetic
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energy of the oscillatory plasma motions associated with the wave (in §5.7, this was
worked out explicitly). These oscillations are enabled by the non-resonant, “thermal-
bulk” particles, and so we must be able to show that, as a result of QL evolution, these
particles pick up the total of U (∞) of energy—one might say that the plasma is heated.

This may appear to be slightly loose language. Technically speaking, since there are no collisions,
this is not “true” heating in the sense described in §5, i.e., the exact total entropy does not
increase. The “thermal” energy that increases is the energy of plasma oscillations, which are
mean “fluid” motions of the plasma, whereas “true” heating would involve an increase in the
energy of particle motions around the mean. However, if you view the separation of f0 from δf
and the subsequent averaging over the latter as another “coarse-graining” operation akin to the
separation of collisions from collisionless dynamics in §§1.4–1.7, then it should start making sense
that the increase of the kinetic energy of the fluctuating “fluid” motions is indeed tantamount
to heating the mean distribution f0. It is not hard to prove that this process is irreversible, i.e.,
that the QL “collision operator” (6.7) has an entropy and an “H-theorem”.

Exercise 6.1. Do this.

6.6. Heating of Non-Resonant Particles

Consider the thermal bulk of the distribution, v � v1 (assuming that the bump is
indeed far out in the tail of the distribution). The QL diffusion coefficient (6.12) becomes,
assuming now γk, kv � ωpe and using the last expression in Eq. (6.8),

D(v) =
e2

m2
e

∑
k

|Ek|2
γk

(kv − ωpe)2 + γ2
k

≈ e2

m2
e

∑
k

|Ek|2
γk
ω2

pe

=
e2

m2
eω

2
pe

∑
k

1

2

∂|Ek|2

∂t
=

4πe2

m2
eω

2
pe

d

dt

∑
k

|Ek|2

8π
=

1

mene

dU

dt
, (6.27)

independent of v. The QL evolution equation (6.11) for the bulk distribution is then46

∂F

∂t
=

1

mene

dU

dt

∂2F

∂v2
. (6.28)

Equation (6.28) describes slow diffusion of the bulk distribution, i.e., as the wave field
grows, the bulk distribution gets a little broader (which is what heating is). Namely, the
“thermal” energy satisfies

dKth

dt
=

d

dt

∫
dv

mev
2

2
F =

1

mene

dU

dt

∫
dv

mev
2

2

∂2F

∂v2︸ ︷︷ ︸
= mene

(by parts twice)

=
dU

dt
. (6.29)

Integrating this with respect to time, we find that the missing half of the energy lost by
the resonant particles indeed goes into the thermal bulk:

Kth(∞)−Kth(0) = U (∞) =
Kres(0)−Kres(∞)

2
. (6.30)

Overall, the energy is, of course, conserved:

Kth(∞) + Kres(∞) + U (∞) = Kth(0) + Kres(0), (6.31)

46Note that this implies d
∫

dvF (v)/dt = 0, so the number of these particles is conserved, there
is no exchange between the non-resonant and resonant populations.
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as it shoud be, in accordance with (6.9).

Equation (6.28) can be explicitly solved: changing the time variable to τ = U (t)/mene turns it
into a simple diffusion equation

∂F

∂τ
=
∂2F

∂v2
. (6.32)

If we let the initial distribution be a Maxwellian and ignore the bump on its tail, the solution is

F (τ, v) =

∫
dv′F (0, v′)

e−(v−v′)2/4τ
√

4πτ
=

∫
dv′

ne√
πv2

the4πτ
exp

[
− v′2

v2
the

− (v − v′)2

4τ

]
=

ne√
π(v2

the + 4τ)
exp

(
− v2

v2
the + 4τ

)
. (6.33)

Since

v2
the + 4τ =

2Te
me

+
4U (t)

mene
=

2

me

[
Te +

2U (t)

ne

]
, (6.34)

one concludes that an initially Maxwellian bulk stays Maxwellian but its temperature grows as
the wave energy grows, reaching in saturation

Te(∞) = Te(0) +
2U (∞)

ne
. (6.35)

6.7. Momentum Conservation

The bump-on-tail configuration is in general asymmetric in v and so the particles in
the bump carry a net mean momentum. Let us find out whether this momentum changes.
Taking the mev moment of (6.20), we calculate the total momentum lost by the resonant
particles:

Pres(∞)−Pres(0) =

∫ v2

v1

dvmev
[
F plateau − F (0, v)

]
=

∫ v2

v1

dvmev
∂

∂v

ωpe

mev3
W
(ωpe

v

)
= −ωpe

∫ v2

v1

dv
1

v3
W
(ωpe

v

)
= −

∫ ωpe/v1

ωpe/v2

dk
kW (k)

ωpe
< 0. (6.36)

This is negative, so momentum is indeed lost. Since it cannot go into electric field [see
(6.10)], it must all get transferred to the thermal particles. Let us confirm this.

Going back to the QL diffusion equation (6.28) for the non-resonant particles, at first
glance, we have a problem: the diffusion coefficient is independent of v and so momentum
is conserved. However, one should never take zero for an answer when dealing with
asymptotic expansions—indeed, it turns out here that we ought to work to higher order
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Figure 28. The initial distribution and the final outcome of the QL evolution: its bulk hotter
and shifted towards the plateau in the tail.

in our calculation of D(v). Keeping next-order terms in (6.27), we get

D(v) =
e2

m2
e

∑
k

|Ek|2
γk

(kv − ωpe)2 + γ2
k

=
e2

m2
e

∑
k

|Ek|2
γk
ω2

pe

(
1 +

2kv

ωpe
+ . . .

)

≈ 4πe2

m2
eω

2
pe

d

dt

[∑
k

|Ek|2

8π
+ v

∑
k

k|Ek|2

4πωpe

]
=

1

mene

d

dt

[
U + v

∫
dk

kW (k)

ωpe

]
.

(6.37)

Thus, there is a wave-induced drag term in the QL diffusion equation (6.11), which
indeed turns out to impart to the thermal particles the small additional momentum
that, according to (6.36), the resonant particles lose when rearranging themselves to
produce the QL plateau:

dPth

dt
=

d

dt

∫
dvmevF =

∫
dvmev

∂

∂v
D(v)

∂F

∂v
= −me

∫
dv D(v)

∂F

∂v

= −
[

d

dt

∫
dk

kW (k)

ωpe

]
1

ne

∫
dv v

∂F

∂v
=

d

dt

∫
dk

kW (k)

ωpe
, (6.38)

whence, integrating and comparing with (6.36),

Pth(∞)−Pth(0) =

∫
dk

kW (k)

ωpe
= Pres(0)−Pres(∞) . (6.39)

This means that the thermal bulk of the final distribution is not only slightly broader
(hotter) than that of the initial one (§6.6), but it is also slightly shifted towards the
plateau (Fig. 28).

In a collisionless plasma, this is the steady state. However, as this steady state
is approached, γk → 0, so the QL evolution becomes ever slower and even a very
small collision frequency can become important.47 Eventually, collisions will erode the
plateau (even if with great difficulty) and return the plasma to a global Maxwellian
equilibrium—which is the fate of all things.

47Note that collision operators themselves represent QL dynamics, and their derivation is a
version of QLT: see §11.
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Plasma Kinetics Problem Set

1. Industrialised linear theory with the Z function. Consider a two-species plasma
close to Maxwellian equilibrium. Rederive all the results obtained in §§3.4, 3.5, 3.8, 3.9,
3.10 starting from (3.84) and using the asymptotic expansions (3.91) and (3.92) of the
plasma dispersion function.

Namely, consider the limits ζe � 1 or ζe � 1 and ζi � 1, find solutions in these
limits and establish the conditions on the wave number of the perturbations and on the
equilibrium parameters under which these solutions are valid.

In particular, for the case of ζe � 1 and ζi � 1, obtain general expressions for the
wave frequency and damping without assuming kλDe to be either small or large. Recover
from your solution the cases considered in §§3.8, 3.9 and 3.10.

Find also the ion contribution to the damping of the ion acoustic and Langmuir waves
and comment on the circumstances in which it might be important to know what it is.

Convince yourself that you believe the sketch of longitudinal plasma waves in Fig. 14. If
you feel computationally inclined, solve the plasma dispersion relation (3.84) numerically
[using, e.g., (3.90)] and see if you can reproduce Fig. 14.

You may wish to check your results against some textbook: e.g., Krall & Trivelpiece
(1973) and Alexandrov et al. (1984) give very thorough treatments of the linear theory
(although in rather different styles than I did).

2. Transverse plasma waves. Go back to the Vlasov–Maxwell, rather then Vlasov–
Poisson, system and consider electromagnetic perturbations in a Maxwellian unmagne-
tised plasma (unmagnetised in the sense that in equilibrium, B0 = 0):

∂δfα
∂t

+ ik · v δfα +
qα
mα

(
E +

v ×B
c

)
· ∂f0α

∂v
= 0, (6.40)

where E and B satisfy Maxwell’s equations (1.23–1.26) with charge and current densities
determined by the perturbed distribution function δfα.

(a) Consider an initial-value problem for such perturbations and show that the equation
for the Laplace transform of E can be written in the form48

ε̂(p,k) · Ê(p) =

(
terms associated with initial

perturbations of δfα, E and B

)
, (6.41)

where the dielectric tensor ε̂(p,k) is, in tensor notation,

εij(p,k) =

(
δij −

kikj
k2

)
εTT(p, k) +

kikj
k2

εLL(p, k) (6.42)

and the longitudinal dielectric function εLL(p, k) is the familiar electrostatic one, given
by (3.84), while the transverse dielectric function is

εTT(p, k) = 1 +
1

p2

[
k2c2 −

∑
α

ω2
pαζαZ(ζα)

]
. (6.43)

48In Q-3, dealing with the Weibel instability, you will have to do essentially the same calculation,
but with a non-Maxwellian equilibrium. To avoid doing the work twice, you could do that
question first and then specialise to a Maxwellian f0α. However, the algebra is a bit hairier for
the non-Maxwellian case, so it may be useful to do the simpler case first, to train your hand—and
also to have a way to cross-check the later calculation.
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(b) Hence solve the transverse dispersion relation, εTT(p, k) = 0, and show that, in the
high-frequency limit (|ζe| � 1), the resulting waves are simply the light waves, which, at
long wave lengths, turn into plasma oscillations, viz.,

ω2 = k2c2 + ω2
pe . (6.44)

What is the wave length above which light can “feel” that it is propagating through
plasma?—this is called the plasma (electron) skin depth, de. Are these waves damped?

(c) In the low-frequency limit (|ζe| � 1), show that perturbations are aperiodic (have
zero frequency) and damped. Find their damping rate and show that this result is valid for
perturbations with wave lengths longer than the plasma skin depth (kde � 1). Explain
physically why these perturbations fail to propagate.

Do one of Q-3, Q-4, or Q-5 (but do not pick Q-5 if you are planning to do Q-11).

3. Weibel instability. Weibel (1958) realised that transverse plasma perturbations can
go unstable if the equilibrium distribution is anisotropic with respect to some special
direction n̂, namely if f0α = f0α(v⊥, v‖), where v‖ = v · n̂, v⊥ = |v⊥| and v⊥ =
v−v‖n̂. The anisotropy can be due to some beam or stream of particles injected into the
plasma, it also arises in collisionless shocks or, generically, when plasma is sheared or non-
isotropically compressed by some external force. The simplest model for an anisotropic
distribution of the required type is a bi-Maxwellian49:

f0α =
nα

π3/2v2
th⊥αvth‖α

exp

(
− v2

⊥
v2

th⊥α
−

v2
‖

v2
th‖α

)
, (6.45)

where, formally, vth⊥α =
√

2T⊥α/mα and vth‖α =
√

2T‖α/mα are the two “thermal
speeds” in a plasma characterised by two effective temperatures T⊥α and T‖α (for each
species).

(a) Using exactly the same method as in Q-2, consider electromagnetic perturbations
in a bi-Maxwellian plasma, assuming their wave vectors to be parallel to the direction
of anisotropy, k ‖ n̂. Show that the dielectric tensor again has the form (6.42) and the
longitudial dielectric function is again given by (3.84), while the transverse dielectric
function is

εTT(p, k) = 1 +
1

p2

[
k2c2 +

∑
α

ω2
pα

(
1− T⊥α

T‖α
[1 + ζαZ(ζα)]

)]
. (6.46)

(b) Show that in one of the tractable asymptotic limits, this dispersion relation has a
zero-frequency, purely growing solution with the growth rate

γ =
kvth‖e√

π

T‖e

T⊥e

(
∆e − k2d2

e

)
, (6.47)

where ∆e = T⊥e/T‖e−1 is the fractional temperature anisotropy, which must be positive

49In Exercise 4.8, you need the dielectric tensor in terms of a general equilibrium distribution
f0α(vx, vy, vz). If you are planning to do that exercise, it may save time (at the price of a
very slight increase in algebra) to do the derivation with a general f0α and then specialise to the
bi-Maxwellian (6.45). You can check your algebra by looking up the result in Krall & Trivelpiece
(1973) or in Davidson (1983).
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in order for the instability to occur. Find the maximum growth rate and the corresponding
wave number. Under what condition(s) is the asymptotic limit in which you worked
indeed a valid approximation for this solution?

(c) Are there any other unstable solutions? (cf. Weibel 1958)

(d) What happens if the electrons are isotropic but ions are not?

(e∗∗) If you want a challenge and a test of stamina, work out the case of perturbations
whose wave number is not necessarily in the direction of the anisotropy (k× n̂ 6= 0). Are
the k ‖ n̂ or some oblique perturbations the fastest growing? This is a lot of algebra,
so only do it if you enjoy this sort of thing. The dispersion relation for this general case
appears to be in the Appendix of Ruyer et al. (2015), but they only solve it numerically;
no one seems to have looked at asymptotic limits. This could be the start of a dissertation.

4. Two-stream instability.50 Consider one-dimensional, electrostatic perturbations in
a two-species (electron-ion) plasma. Let the electron distribution function with respect
to velocities in the direction (z) of the spatial variation of perturbations be a “double
Lorentzian” consisting of two counterpropagating beams with velocity ub and width vb,
viz.,

Fe(vz) =
nevb

2π

[
1

(vz − ub)2 + v2
b

+
1

(vz + ub)2 + v2
b

]
(6.48)

(see Fig. 12b), while the ions are Maxwellian with thermal speed vthi � ub. Assume also
that the phase velocity (p/k) will be of the same order as ub and hence that the ion
contribution to the dielectric function (3.26) is negligible.

(a) By integrating by parts and then choosing the integration contour judiciously, or
otherwise, calculate the dielectric function ε(p, k) for this plasma and hence show that
the dispersion relation is

σ4 + (2u2
b + v2

p)σ2 + u2
b(u2

b − v2
p) = 0, (6.49)

where σ = vb + p/k and vp = ωpe/k.

(b) In the long-wavelength limit, viz., k � ωpe/ub, find the condition for an instability
to exist and calculate the growth rate of this instability. Is the nature of this instability
kinetic (due to Landau resonance) or hydrodynamic?

(c) Consider the case of cold beams, vb = 0. Without making any a priori assumptions
about k, calculate the maximum growth rate of the instability. Sketch the growth rate
as a function of k.

(d) Allowing warm beams, vb > 0, show that the system is unstable provided

ub > vb and k < ωpe

√
u2

b − v2
b

u2
b + v2

b

. (6.50)

What is the effect that a finite beam width has on the stability of the system and on the
kind of perturbations that can grow?

In §4.4, you might find it instructive to compare the results that you have just obtained by
solving the dispersion relation (6.49) directly with what can be inferred via Penrose’s criterion
and Nyquist’s method.

50This is based on the 2019 exam question.
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5. Buneman (1958) instability.51 Consider a plasma consisting of Maxwellian ions
and a cold electron beam (velocity ue � vthe—much greater than the width of the
distribution).

(a) Starting from the standard expression for the plasma dielectric function describing
infinitesimal electrostatic perturbations with wave vector k in the direction of the beam
and ∝ ept (where p is, in general, complex), assume |p/k| � vthi and show that the
dispersion relation is

1 +
ω2

pi

p2
−

ω2
pe

(kue − ip)2
= 0. (6.51)

(b) Looking for solutions with ωpe � |p| � ωpi, show that there is an instability
that attains its maximum growth rate at k = ωpe/ue. Hint. You can do this either by
identifying the dominant balance in the dispersion relation or by looking for a solution
in the form p = |p|eiθ and maximising the growth rate with respect to θ.

(c) Show that the maximum growth rate is

γ =

√
3

24/3
ω1/3

pe ω
2/3
pi . (6.52)

Is this instability kinetic or hydrodynamic? (I.e., do Landau resonances with either ions
or electrons play a role?)

6. Free energy and stability. (a) Starting from the linearised Vlasov–Poisson system
and assuming a Maxwellian equilibrium, show by direct calculation from the equations,
rather then via expansion of the entropy function and the use of energy conservation (as
was done in §5.2), that free energy is conserved:

d

dt

∫
dr

[∑
α

∫
dv

Tαδf
2
α

2f0α
+
|∇ϕ|2

8π

]
= 0. (6.53)

This is an exercise in integrating by parts.

(b) Now consider the full Vlasov–Maxwell equations and prove, again for a Maxwellian
plasma plus small perturbations,

d

dt

∫
dr

[∑
α

∫
dv

Tαδf
2
α

2f0α
+
|E|2 + |B|2

8π

]
= 0 . (6.54)

(c) Consider the same problem, this time with an equilibrium that is not Maxwellian,
but merely isotropic, i.e., f0α = f0α(v), or, in what will prove to be a more convenient
form,

f0α = f0α(εα), (6.55)

where εα = mαv
2/2 is the particle energy. Find an integral quantity quadratic in

perturbed fields and distributions that is conserved by the Vlasov–Maxwell system under
these circumstances and that turns into the free energy (6.54) in the case of a Maxwellian
equilibrium (if in difficulty, you will find the answer in, e.g., Davidson 1983 or in Kruskal

51This is based on the 2021 exam question. The first half of Q-11 is very similar to this (if a
little easier algebraically), so doing both of them might be tedious for you.
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& Oberman 1958, which appears to be the original source). Argue that

∂f0α

∂εα
< 0 (6.56)

is a sufficient condition for stability of small (δfα � f0α, but not necessarily infinitesimal)
perturbations in such a plasma.

7. Fluctuation-dissipation relation for a collisionless plasma. Let us consider a
linear kinetic system in which perturbations are stirred up by an external force, which we
can think of as an imposed (time-dependent) electric field Eext = −∇χ. The perturbed
distribution function then satisfies

∂δfα
∂t

+ v ·∇δfα −
qα
mα

(∇ϕtot) ·
∂f0α

∂v
= 0, (6.57)

where ϕtot = ϕ+ χ is the total potential, whose self-consistent part, ϕ, obeys the usual
Poisson equation

−∇2ϕ = 4π
∑
α

qα

∫
dv δfα (6.58)

and the equilibrium f0α is assumed to be Maxwellian.

(a) By considering an initial-value problem for (6.57) and (6.58) with zero initial
perturbation, show that the Laplace transforms of ϕtot and χ are related by

ϕ̂tot(p) =
χ̂(p)

ε(p)
, (6.59)

where ε(p) is the dielectric function given by (3.84).

(b) Consider a time-periodic external force,

χ(t) = χ0e
−iω0t. (6.60)

Working out the relevant Laplace transforms and their inverses [see (3.14)], show that,
after transients have decayed, the total electric field in the system will oscillate at the
same frequency as the external force and be given by

ϕtot(t) =
χ0 e

−iω0t

ε(−iω0)
. (6.61)

(c) Now consider the plasma-kinetic Langevin problem: assume the external force to
be a white noise, i.e., a random process with the time-correlation function

〈χ(t)χ∗(t′)〉 = 2Aδ(t− t′). (6.62)

Show that the resulting steady-state mean-square fluctuation level in the plasma will be

〈|ϕtot(t)|2〉 =
A

π

∫ +∞

−∞

dω

|ε(−iω)|2
. (6.63)

This is a kinetic fluctuation-dissipation relation: given a certain level of external stirring,
parametrised by A, this formula predicts the fluctuation energy in terms of A and of the
internal dissipative properties of the plasma, encoded by its dielectric function.

(d) For a system in which the Landau damping is weak, |γ| � kvthα, calculate the
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Figure 29. Shifting the integration contour in (6.68).

integral (6.63) using Plemelj’s formula (3.25) to show that

〈|ϕtot(t)|2〉 = A
∑
i

1

|γi|

[
∂ Re ε(−iω)

∂ω

]−2

ω=ωi

, (6.64)

where pi = −iωi + γi are the weak-damping roots of the dispersion relation.

Here is a reminder of how the standard Langevin problem can be solved using Laplace transforms.
The Langevin equation is

∂ϕ

∂t
+ γϕ = χ(t) , (6.65)

where ϕ describes some quantity, e.g., the velocity of a Brownian particle, subject to a damping
rate γ and an external force χ. In the case of a Brownian particle, χ is assumed to be a white
noise, as per (6.62). Assuming ϕ(t = 0) = 0, the Laplace-trasform solution of (6.65) is

ϕ̂(p) =
χ̂(p)

p+ γ
. (6.66)

Considering first a non-random oscillatory force (6.60), we have

χ̂(p) =

∫ ∞
0

dt e−ptχ(t) =
χ0

p+ iω0
⇒ ϕ̂(p) =

χ0

(p+ γ)(p+ iω0)
. (6.67)

The inverse Laplace transform of ϕ̂ is calculated by shifting the integration contour to large
negative Re p while not allowing it to cross the two poles, p = −γ and p = −iω0, in a manner
analogous to that explained in §3.1 (Fig. 5) and shown in Fig. 29. The integral is then dominated
by the contributions from the poles:

ϕ(t) =
1

2πi

∫ i∞+σ

−i∞+σ

dp eptϕ̂(p) = χ0

(
e−iω0t

−iω0 + γ
+

e−γt

−γ + iω0

)
→ χ0 e

−iω0t

−iω0 + γ
as t→∞,

(6.68)
which is quite obviously the right solution of (6.65) with a periodic force (the second term in
the brackets is the decaying transient needed to enforce the zero initial condition).

In the more complicated case of a white-noise force [see (6.62)],

〈|ϕ(t)|2〉 =
1

(2π)2

〈∣∣∣∣∫ i∞+σ

−i∞+σ

dp ept
χ̂(p)

p+ γ

∣∣∣∣2
〉

=
1

(2π)2

∫ +∞

−∞
dω

∫ +∞

−∞
dω′e[−i(ω−ω′)+2σ]t 〈χ̂(−iω + σ)χ̂∗(−iω′ + σ)〉

(−iω + σ + γ)(iω′ + σ + γ)
, (6.69)

where we have changed variables p = −iω + σ and similarly for the second integral. The
correlation function of the Laplace-transformed force is, using (6.62),〈
χ̂(p)χ̂∗(p′)

〉
=

∫ ∞
0

dt

∫ ∞
0

dt′e−pt−p
′∗t′ 〈χ(t)χ∗(t′)

〉
= 2A

∫ ∞
0

dt e−(p+p′∗)t =
2A

p+ p′∗
, (6.70)
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provided Re p > 0 and Re p′ > 0. Then (6.69) becomes

〈|ϕ(t)|2〉 =
A

2π2

∫ +∞

−∞
dω

∫ +∞

−∞
dω′

e[−i(ω−ω′)+2σ]t

[−i(ω − ω′) + 2σ] (−iω + σ + γ)(iω′ + σ + γ)

=
A

π

∫ +∞

−∞
dω′

e(iω′+σ)t

(iω′ + σ + γ)

1

2πi

∫ i∞+σ

−i∞+σ

dp
ept

(p+ iω′ + σ)(p+ γ)

=
A

π

∫ +∞

−∞
dω′

e(iω′+σ)t

(iω′ + σ + γ)

[
e−(iω′+σ)t

−iω′ − σ + γ
+

e−γt

γ + iω′ + σ

]
, (6.71)

where we have reverted to the p variable in one of the integrals and then performed the
integration by the same manipulation of the contour as in (6.68). We now note that, since
there are no exponentially growing solutions in this system, σ > 0 can be chosen arbitrarily
small. Taking σ → +0 and neglecting the decaying transient in (6.71), we get, in the limit
t→∞,

〈|ϕ(t)|2〉 =
A

π

∫ +∞

−∞

dω′

| − iω′ + γ|2 =
A

π

∫ +∞

−∞

dω′

ω′2 + γ2
=
A

γ
. (6.72)

Note that, while the integral in (6.72) is doable exactly, it can, for the case of weak damping,
also be computed via Plemelj’s formula.

Equation (6.72) is the standard Langevin fluctuation-dissipation relation. It can also be
obtained without Laplace transforms, either by directly integrating (6.65) and correlating ϕ(t)
with itself or by noticing that

∂

∂t

〈ϕ2〉
2

+ γ〈ϕ2〉 = 〈χ(t)ϕ(t)〉 =

〈
χ(t)

∫ t

0

dt′
[
−γϕ(t′) + χ(t′)

]〉
= A, (6.73)

where we have used (6.62) and the fact that 〈χ(t)ϕ(t′)〉 = 0 for t′ 6 t, by causality. Equa-
tion (6.72) is the steady-state solution to the above, but (6.73) also teaches us that, if we
interpret 〈ϕ2〉/2 as energy, A is the power that is injected into the system by the external force.
Thus, fluctuation-dissipation relations such as (6.72) tells us what fluctuation energy will persist
in a dissipative system if a certain amount of power is pumped in.

Q-8 is optional.

8. Phase-mixing spectrum. Here we study the velocity-space structure of the per-
turbed distribution function δf derived in Q-7.

In order to do this, we need to review the Hermite transform:

δfm =
1

n

∫
dvz

Hm(u)δf(vz)√
2mm!

, u =
vz
vth

, Hm(u) = (−1)meu
2 dm

dum
e−u

2

, (6.74)

where Hm is the Hermite polynomial of (integer) order m. We are only concerned with the vz
dependence of δf (where z, as always, is along the wave number of the perturbations—in this
case set by the wave number of the force); all vx and vy dependence is Maxwellian and can be
integrated out. The inverse transform is given by

δf(vz) =

∞∑
m=0

Hm(u)F (vz)√
2mm!

δfm, F (vz) =
n√
π vth

e−u
2

. (6.75)

Because Hm(u) are orthogonal polynomials, viz.,

1

n

∫
dvzHm(u)Hm′(u)F (vz) = 2mm! δmm′ , (6.76)

they have a Parseval theorem and so the contribution of the perturbed distribution function to
the free energy [see (5.18)] can be written as∫

dv
T |δf |2

2f0
=
nT

2

∑
m

|δfm|2. (6.77)
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In a plasma where perturbations are constantly stirred up by a force, Landau damping must
be operating all the time, removing energy from ϕ to provide “dissipation” of the injected
power. The process of phase mixing that accompanies Landau damping must then lead to
a certain fluctuation level 〈|δfm|2〉 in the Hermite moments of δf . Lower m’s correspond to
“fluid” quantities: density (m = 0), flow velocity (m = 1), temperature (m = 2). Higher m’s
correspond to finer structure in velocity space: indeed, for m� 1, the Hermite polynomials can
be approximated by trigonometric functions,

Hm(u) ≈
√

2

(
2m

e

)m/2
cos
(√

2mu− πm

2

)
eu

2/2, (6.78)

and so the Hermite transform is somewhat analogous to a Fourier transform in velocity space
with “frequency”

√
2m/vth.

(a) Show that in the kinetic Langevin problem described in Q-7(c), the mean square
fluctuation level of the m-th Hermite moment of the perturbed distribution function is
given by 〈

|δfm(t)|2
〉

=
q2D

T 2π2mm!

∫ +∞

−∞
dω

∣∣∣∣ζZ(m)(ζ)

ε(−iω)

∣∣∣∣2 , ζ =
ω

kvth
, (6.79)

where Z(m)(ζ) is the m-th derivative of the plasma dispersion function [note (3.93)].

(b∗∗) Show that, assuming m� 1 and ζ �
√

2m,

Z(m)(ζ) ≈
√

2π im+1

(
2m

e

)m/2
eiζ
√

2m−ζ2/2 (6.80)

and, therefore, that 〈
|δfm(t)|2

〉
≈ const√

m
. (6.81)

Thus, the Hermite spectrum of the free energy is shallow and, in particular, the total
free energy diverges—it has to be regularised by collisions. This is a manifestation of a
copious amount of fine-scale structure in velocity space (note also how this shows that
Landau-damped perturbations involve all Hermite moments, not just the “fluid” ones).

Deriving (6.80) is a (reasonably hard) mathematical exercise: it involves using (3.93) and (6.78)
and manipulating contours in the complex plane. This is a treat for those who like this sort of
thing. Getting to (6.81) will also require the use of Stirling’s formula.

The Hermite order at which the spectrum (6.81) must be cut off due to collisions can be quickly
deduced as follows. We saw in §5.5 that the typical velocity derivative of δf can be estimated
according to (5.26) and the time it takes for this perturbation to be wiped out by collisions is
given by (5.32). But, in view of (6.78), the velocity gradients probed by the Hermite moment m

are of order
√

2m/vth. The collisional cutoff mc in Hermite space can then be estimated so:

mc ∼ v2
th
∂2

∂v2
∼ (kvthtc)2 ∼

(
kvth

ν

)2/3

. (6.82)

Therefore, the total free energy stored in phase space diverges: using (6.77) and (6.81),

1

n

∫
dv

δf2

2f0
=

1

2

∑
m

〈
|δfm|2

〉
∼
∫ mc

dm
const√
m
∝ ν−1/3 →∞ as ν → +0. (6.83)

In contrast, the total free-energy dissipation rate is finite, however small is the collision frequency:
estimating the right-hand side of (5.18), we get

1

n

∫
dv

δf

f0

(
∂δf

∂t

)
c

∼ −ν
∑
m

m
〈
|δfm|2

〉
∝ ν

∫ mc

dm
√
m ∼ kvth. (6.84)
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Thus, the kinetic system can collisionally produce entropy at a rate that is entirely independent
of the collision frequency.

If you find phase-space turbulence and generally life in Hermite space as fascinating as I do,
you can learn more from Kanekar et al. (2015) (on fluctuation-dissipation relations and Hermite
spectra) and from §§12.2–12.4 (on what happens when nonlinearity strikes).

Do two of Q-9, Q-10, Q-11, Q-12, or Q-13 (but do not pick Q-11 if you have already
done Q-5).

9. QLT of Landau damping. In §6, we discussed the QLT of an unstable system, in
which, whatever the size of the initial electric perturbations, they eventually grow large
enough to affect the equilibrium distribution and modify it so as to suppress further
growth. In a stable equilibrium, any initial perturbations will be Landau-damped, but,
if they are sufficiently large to start with, they can also affect f0 quasilinearly in a way
that will slow down this damping (this calculation, due to Vedenov et al. 1961, appears
to pre-date slightly the classic 1962 bump-on-tail papers cited in §6.3).

Consider, in 1D, an initial spectrum W (0, k) of plasma oscillations (waves) excited
in the wave-number range [k2, k1] = [ωpe/v2, ωpe/v1] � λ−1

De , with total electric energy
U (0). Modify the QLT of §6 to show the following.

(a) A steady state can be achieved in which the distribution develops a plateau in
the velocity interval [v1, v2] (Fig. 30). Find F plateau in terms of v1, v2 and the initial
distribution F (0, v). What is the energy of the waves in this steady state? What is the
lower bound on initial electric energy U (0) below which the perturbations would just
decay without forming a fully-fledged plateau?

(b) Derive the evolution equation for the thermal (nonresonant) bulk of the distribution
and show that it cools during the QL evolution, with the total thermal energy declining
by the same amount as the electric energy of the waves:

Kth(t)−Kth(0) = − [U (0)−U (t)] . (6.85)

Identify where all the energy lost by the thermal particles and the waves goes and thus
confirm that the total energy in the system is conserved. Why, physically, do thermal
particles lose energy?

(c) Show that we must have

U (0)

neTe
� γk

ωpe

δv

v
(6.86)

in order for the wave energy to change only by a small fraction before saturating and

U (0)

neTe
� γk

ωpe

(
δv

v

)3
1

(kλDe)2
(6.87)

in order for the QL evolution to be faster than the damping. Here δv = v2 − v1 and
v ∼ v1 ∼ v2.

This question requires some nuance in handling the calculation of the QL diffusion coefficient.
In §6.1, we used the expression (6.6) for δfk in which only the eigenmode-like part was retained,
while the phase-mixing terms were dropped on the grounds that we could always just wait
long enough for them to be eclipsed by the term containing an exponentially growing factor
eγkt. When we are dealing with damped perturbations, there is no point in waiting because
the exponential term is getting smaller, while the phase-mixing terms do not decay (except by
collisions, see §§5.3 and 5.5, but we are not prepared to wait for that).

Let us, therefore, bite the bullet and use the full expression (5.25) for the perturbed distribu-
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Figure 30. Initial stable equilibrium distribution and the final outcome of the QL evolution of
a system with Landau-damped electric perturbations.

tion function, where we single out the slowest-damped mode and assume that all others, if any,
will be damped fast enough never to produce significant QL effects:

δfk =
q

m
ϕk

1− e−i(k·v−ωk)t−γkt

k · v − ωk − iγk
k · ∂f0

∂v
+ e−ik·vt (gk + . . .) , (6.88)

where “. . . ” stand for any possible undamped, phase-mixing remnants of other modes. When the
solution (6.88) is substituted into (6.4), where it is multiplied by ϕ∗k and time averaged [according
to (2.7)], the second term vanishes because, for resonant particles (k · v ≈ ωk), it contains
no resonant denominators and so is smaller than the first term, whereas for the nonresonant
particles, it is removed by time averaging (check that this works at least for |γk|t . 1 and indeed
beyond that). Keeping only the first term in the expression (6.88), substituting it into (6.4) and
going through a calculation analogous to that given in (6.8), we find that the diffusion matrix
is (check this)

D(v) =
q2

m2

∑
k

kk

k2
|Ek|2Im

〈
1− e−i(k·v−ωk)t−γkt

k · v − ωk − iγk

〉
, (6.89)

which is a generalisation of the penultimate line of (6.8). For nonresonant particles, the phase-
mixing term is eliminated by time averaging and we end up with the old result: the last line
of (6.8). For resonant particles, assuming |γk| � |k · v − ωk| � ωk ∼ k · v and |γk|t � 1, we
may adopt the approximation (5.40), which we have previously used to analyse the structure
of δf . This gives us

D(v) =
q2

m2

∑
k

kk

k2
|Ek|2πδ(k · v − ωk) , (6.90)

which is the same result as (6.16)—including, importantly, the sign, which we would have
gotten wrong had we just mechanically applied Plemelj’s formula to (6.12) with γk < 0. This
is equivalent to saying that the k integral in (6.16) should be taken along the Landau contour,
rather than simply along the real line.

Note that the above construction was done assuming |γk|t� 1, i.e., all the QL action has to
occur before the initial perturbations decay away (which is reasonable). Note also that there is
nothing above that would not apply to the case of unstable perturbations (γk > 0) and so we
conclude that results of §6, derived formally for γkt� 1, in fact also hold on shorter time scales
(γkt� 1, but, obviously, still ωkt� 1).

10. QLT of Weibel instability. (a) Starting from the Vlasov equations including
magnetic perturbations, show that the slow evolution of the equilibrium distribution
function is described by the diffusion equation

∂f0

∂t
=

∂

∂v
· D(v) · ∂f0

∂v
(6.91)
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with the QL diffusion matrix

D(v) =
q2

m2

∑
k

1

i(k · v − ωk) + γk

(
E∗k +

v ×B∗k
c

)(
Ek +

v ×Bk
c

)
, (6.92)

where ωk and γk are the frequency and the growth rate, respectively, of the fastest-
growing mode.

(b) Consider the example of the low-frequency electron Weibel instability with wave
numbers k parallel to the anisotropy direction [see (6.47)]. Take k = kẑ and Bk = Bkŷ
and, denoting Ωk = eBk/mec (the Larmor frequency associated with the perturbed
magnetic field), show that (6.91) becomes

∂f0

∂t
=

∂

∂vx

(
Dxx

∂f0

∂vx
+Dxz

∂f0

∂vz

)
+

∂

∂vz
Dzz

∂f0

∂vz
, (6.93)

where the coefficients of the QL diffusion tensor are

Dxx =
∑
k

γk
k2
|Ωk|2, Dxz = −

∑
k

2γkvxvz
k2v2

z + γ2
k

|Ωk|2, Dzz =
∑
k

γkv
2
x

k2v2
z + γ2

k

|Ωk|2.

(6.94)

(c) Suppose the electron distribution function f0 is initially the bi-Maxwellian (6.45)
with 0 < T⊥/T‖ − 1 � 1 (as should be the case for this instability to work). As QL
evolution starts, we may define the temperatures of the evolving distribution according to

T⊥ =
1

n

∫
dv

m(v2
x + v2

y)

2
f0, T‖ =

1

n

∫
dvmv2

zf0. (6.95)

Show that initially, viz., before f0 has time to change shape significantly so as no longer
to be representable as a bi-Maxwellian, the two temperatures will evolve approximately
(using γk � kvth) according to

∂T⊥
∂t

= −λT⊥,
∂T‖

∂t
= 2λT⊥ , where λ(T⊥, T‖) =

∑
k

2γk|Ωk|2

k2v2
th‖

. (6.96)

Thus, QL evolution will lead, at least initially, to the reduction of the temperature
anisotropy, thus weaking the instability (these equations should not be used to trace
T⊥/T‖ − 1 all the way to zero because there is no reason why the QL evolution should
preserve the bi-Maxwellian shape of f0).

Note that, even modulo the caveat about the bi-Maxwellian not being a long-term solution,
this does not give us a way to estimate (or even guess) what the saturated fluctuation level
will be. The standard Weibel lore is that saturation occurs when the approximations that were
used to derive the linear theory (Q-3) break down, namely, when magnetic field becomes strong
enough to magnetise the plasma, rendering the Larmor scale ρe = vthe/Ωk associated with the
fluctuations small enough to be comparable to the latter’s wavelengths ∼ k−1. Using the typical
values of k from (6.47), we can write this condition as follows

Ωk ∼ kvthe ∼
√
∆e

vthe

de
⇔ 1

βe
≡ B2/8π

neTe
∼ ∆e . (6.97)

Thus, Weibel instability will produce fluctuations the ratio of whose magnetic-energy density
to the electron-thermal-energy density (customarily referred to as the inverse of “plasma beta,”
1/βe) is comparable to the electron pressure anisotropy ∆e. Because at that point the fluctu-
ations will be relaxing this pressure anisotropy at the same rate as they can grow in the first
place [in (6.96), λ ∼ γk], the QL approach is not valid anymore.
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These considerations are, however, usually assumed to be qualitatively sound and lead people
to believe that, even in collisionless plasmas, the anisotropy of the electron distribution must be
largely self-regulating, with unstable Weibel fluctuations engendered by the anisotropy quickly
acting to isotropise the plasma (or at least the electrons).

This is all currently very topical in the part of the plasma-astrophysics world preoccupied
with collisionless shocks, origin of the cosmic magnetism, hot weakly collisional environments
such as the intergalactic medium (in galaxy clusters) or accretion flows around black holes and
many other interesting subjects.

(d) Equations (6.96) say that the total mean kinetic energy,∫
dv

mv2

2
f0 = n

(
T⊥ +

T‖

2

)
, (6.98)

does not change. But fluctuations are generated and grow at the rate γk! Without much
further algebra, can you tell whether you should therefore doubt the result (6.96)?

11. Linear and QL theory of ion-electron streaming instability.52 Consider a
plasma consisting of Maxwellian electrons and a cold ion beam (velocity ui � vthe—
much greater than the width of the electron distribution; cf. Q-5, where the two species’
roles were reversed). The corresponding distribution functions, which can be considered
one-dimensional (in the direction of the beam), are

Fe(v) =
ne√
π vthe

e−v
2/v2the , Fi(v) = niδ(v − ui). (6.99)

(a) Starting, as usual, with the dispersion relation that determines the complex
increment p of linear perturbations in an electrostatic plasma and anticipating that
an instability will be possible for p/k � vthe, show that, in this limit, the dispersion
relation is

1 +
ω2

pe

p2
−

ω2
pi

(kui − ip)2
= 0. (6.100)

(b) Show that there is an instability that attains its fastest growth at k = ωpe/ui and
produces, at that wave number, waves with the real frequency and growth rate

ωk =

[
1− 1

2

(
Zme

2mi

)1/3
]
ωpe and γk =

√
3

2

(
Zme

2mi

)1/3

ωpe . (6.101)

(c) The equations of QLT for the distribution functions and the wave spectrum are
(see §6.1)

∂Fα
∂t

=
∂

∂v

[
q2
α

m2
α

∑
k

γk|Ek|2

(kv − ωk)2 + γ2
k

]
∂Fα
∂v

,
∂|Ek|2

∂t
= 2γk|Ek|2, (6.102)

where, as usual, Ek is the electric-field amplitude at wave number k, ωk is the real
frequency of the waves, and γk is their growth rate at that wave number. Assuming that,
at least in the initial stage of the quasilinear evolution, the distribution functions will
preserve their functional form (6.99), but Te and ui will change slowly with time, show

52This is based on the 2022 exam question.
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that the kinetic-energy densities of the electrons and ions will satisfy

d

dt

∫
dv

mev
2

2
Fe =

dU

dt
,

d

dt

miniu
2
i

2
= −2

dU

dt
, (6.103)

where U =
∑
k |Ek|2/8π is the energy density of the electric field. Despite their rather

innocuous appearance, deriving these equations (especially the second) does require some
mildly nontrivial calculations. In carrying them out, you may assume that the wave-
number sums in (6.102) are dominated by the fastest-growing mode described by (6.101).

(d) Based on (6.103), describe the energy flows in the system and, qualitatively, the
evolution of the distribution functions. How do the mean momenta of these distributions
evolve? (Only twiddle algebra—rough estimates—are called for here.)

(e) Make an educated qualitative guess about the typical size of U at which the
instability saturates, i.e., the distribution becomes stable. The answer is

U ∼ meneu
2
i

2
. (6.104)

If you are struggling with any of this, especially the qualitative arguments at the end of the
question, you may find inspiration in Krall & Trivelpiece (1973).

12. QLT of stochastic acceleration.53 Consider a population of particles of charge
q and mass m. Assume that collisions are entirely negligible. Assume further that an
electrostatic fluctuation field E = −∇ϕ (with zero spatial mean) is present and that
this field is given and externally determined, i.e., it is unaffected by the particles that
are under consideration. This might happen physically if, for example, the particles are
a low-density admixture in a plasma consisting of some more numerous species of ions
and electrons, which dominate the plasma’s dielectric response.

As usual, we assume that the distribution function can be represented as f = f0(t,v)+
δf(t, r,v), where f0 is spatially homogeneous and changes slowly in time compared to the
perturbed distribution δf � f0. Its evolution is described by (2.11), where angle brackets
again denote the time average over the fast variation of the fluctuation field.

(a) Assume that ϕ is sufficiently small for it to be possible to determine δf from the
linearised kinetic equation. Let δf = 0 at t = 0. Show that f0 satisfies a QL diffusion
equation with the diffusion matrix

D(v) =
q2

m2

∑
k

kk
1

2πi

∫
dp

1

p+ ik · v

∫ t

−∞
dτ epτCk(τ), (6.105)

where the p integration is along a contour appropriate for an inverse Laplace transform
and Ck(t− t′) = 〈ϕ∗k(t)ϕk(t′)〉 is the correlation function of the fluctuation field (which
is taken to be statistically stationary, so Ck depends only on the time difference t− t′).

(b) Let the correlation function have the form

q2

m2
Ck(τ) =

Ak
τk

e−|τ |/τk , (6.106)

i.e., τk is the correlation time of the fluctuation field and Akτ
−1
k its spectrum (normalised

in this way so that Ak is the time integral of the correlation function, for consistency of

53Except for part (d), this is based on the 2018 exam question.
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notation with Q-13 and elsewhere in these Lectures, e.g., §12); assume τ−k = τk. Do the
integrals in (6.105) and show that, at times t� τk,

D(v) =
∑
k

kk
Ak

1 + (τkk · v)2
. (6.107)

(c) Restrict consideration to 1D in space and to the limit in which τk � (kv)−1

for typical wave numbers of the fluctuations and typical particle velocities (i.e., the
fluctuation field is short-time correlated). Assuming that f0 at t = 0 is a Maxwellian
with temperature T0, predict the evolution of f0 with time. Discuss what physically is
happening to the particles. Discuss the validity of the short-correlation-time approxima-
tion and of the assumption of slow evolution of f0. What is, roughly, the condition on the
amplitude and the correlation time of the fluctuation field that makes these assumptions
compatible?

(d) When the distribution “heats up” sufficiently, the short-correlation-time approx-
imation will be broken. Staying in 1D, consider the opposite limit, τk � (kv)−1. Show
that the resulting QL equation admits a subdiffusive solution, with

f0(t, v) ∝ e−v
4/αt

t1/4
, α = 16

∑
k

Ak
τ2
k

. (6.108)

In view of this result and of (c), discuss qualitatively how an initially “cold” particle
distribution would evolve with time.

The original, classic paper on stochastic acceleration is Sturrock (1966). Note that the velocity
dependence of the diffusion matrix (6.107) is determined by the functional form of Ck(τ), so
interesting τ dependences of the latter can lead to interesting distributions f0 of the accel-
erated particles. The result (6.108) might actually have been new at the time when it was
derived (2017)—at least I am not aware of any prior reference for it. Since then, it has been
confirmed (and further studied) numerically by Nastac et al. (2024a).

13. QLT of randomly forced Vlasov–Poisson plasma.54 This question brings
together some of the strands previously explored in Q-7, Q-9 and Q-12 (but can be
done independently of them).

Consider a 1D plasma in which, as usual, the electron distribution is f(t, z, v) =
f0(t, v)+δf(t, z, v). Any perturbations of the ion distribution are to be neglected. Let the
(Fourier-transformed) electrostatic potential associated with the perturbations satisfy

ϕk = χk(t)− 4πe

k2

∫
dv δfk(t, v), (6.109)

where χk(t) is an externally imposed random noise, white in time, viz.,

e2

m2
e

〈
χk(t)χ∗k′(t

′)
〉

= 2Akδk,k′δ(t− t′), (6.110)

and the noise spectrum Ak is independent of time [cf. (6.62) and (6.106)].

(a) Assuming δfk(t = 0, v) = 0 and using the QL approximation, show that

∂f0

∂t
=

∂

∂v
D(v)

∂f0

∂v
(6.111)

54Except for part (f), this is based on the 2024 exam question.
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with the QL diffusion coefficient

D(v) =
∑
k

k2Ak
2π2

∫
dp

∫
(dp′)∗

e(p+p′∗)t

(p+ ikv)(p+ p′∗)ε(p, k)ε(p′, k)∗
, (6.112)

where the integration contours in p and p′ are ones associated with the inverse Laplace
transform, viz., p, p′ ∈ (−i∞ + σ,+i∞ + σ) with a real constant σ > 0 to the right of
any poles in the complex p plane; ε(p, k) is the dielectric function (3.26).

(b) Assume that f0 is a stable distribution and hence argue that you are allowed to
take σ → +0. Show that, if we wait long enough for any damped perturbations to decay,
the quasilinear diffusion coefficient is [cf. (6.107)]

D(v) =
∑
k

k2Ak
|ε(−ikv, k)|2

. (6.113)

(c) Consider a noise spectrum k2Ak concentrated at wavenumbers k � λ−1
De . Show

that the rate of growth of the total electron kinetic energy per unit volume (the heating
rate) is

dK

dt
= mene

∑
k

k2Ak. (6.114)

(d) Now consider k2Ak concentrated at k � λ−1
De . Prove that the heating rate is the

same, even though the approximation for the dielectric function given by (3.38) and (3.41)
now has to be used.55 You may also wish to use the formula [cf. (6.72)]

1

(kv − ω)2 + γ2
≈ πδ(kv − ω)

|γ|
if γ � kv ∼ ω. (6.115)

(e) The heating in one of the limits considered above is called “resonant heating” and
in the other, “stochastic heating” (cf. Q-12). Which one is which and why? Explain the
physical mechanism in each case.

(f) How does f0 evolve in time in the case (c)? For the case (d), show that

∂f0

∂t
≈ L

2π
neω

3
pesgn[f ′0(v)]

∂

∂v

Ak=ωpe/v

v5
, (6.116)

where L is the size of the (1D) box. Assuming that k5Ak → 0 at both k � kmax and
k � kmax, where kmax is fixed and kmaxλDe � 1 initially (will it stay this way forever?),
sketch ∂f0/∂t vs. v. Describe qualitatively the evolution of f0 with time.

You will find some numerical experiments illustrating (6.113) (as well as its derivation) in Nastac
et al. (2024a)—this paper will also take you beyond QLT, to the material of §12. If you fancy
doing some more QL calculations, work through all of the above but now in 3D and for an
external noise χk(t) that is finite-time correlated with the correlation function (6.106).

IUCUNDI ACTI LABORES.

55In Exercise 12.4, you will have an opportunity to prove that the heating rate is the same no
matter what, as long as the external forcing is white.
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PART II

Advanced Kinetic Theory

In this “advanced” part of these kinetic-theory lectures, I will try to make some inroads
into nonlinear theory beyond QLT—this means not (entirely) neglecting the last term
in (2.12), which is responsible for the nonlinear interactions between the perturbed
electric field (ϕk′) and the perturbed distribution function (δfk−k′). Nonlinear theory of
anything is, of course, hard—indeed, in most cases, intractable. These days, an impatient
researcher’s answer to being faced with a hard question is to outsource it to a computer.
This sometimes leads to spectacular successes, but also, somewhat more frequently, to
spectacular confusion about how to assess the output. In dealing with a steady stream
of data produced by ever more powerful machines, one is often helped by the residual
memory of analytical results obtained in the prehistoric era when computation was harder
than theory and plasma physicists had to find ingenious ways to solve nonlinear problems
“by hand”—which usually required finding ingenious ways of posing problems that were
solvable. These can be separated into three broad categories: interesting particular cases
of nonlinear behaviour involving just a few waves (a pretty, and classic, example of this
is §12.1; another, not currently treated in these Lectures, is contained in the papers by
O’Neil 1965 and Mazitov 1965), looking at systems of very many waves amenable to some
approximate statistical treatment (§§7, 8, 11, and 12.2), and applying general principles,
such as stability (§9) or maximum entropy (§10).

7. Quasiparticle Kinetics

7.1. QLT in the Language of Quasiparticles

First I would like to outline a neat way of reformulating the QLT, which both sheds
some light on the meaning of what was done in §6 and opens up promising avenues for
theorising further about nonlinear plasma states.

Let us re-imagine our system of particles and waves as a mixture of two interacting
gases: “true” particles (electrons) and quasiparticles, or plasmons, which will be the
“quantised” version of Langmuir waves. If each of these plasmons has momentum ~k
and energy ~ωk, we can declare

Nk =
V |Ek|2/4π

~ωk
(7.1)

to be the mean occupation number of plasmons with wave number k in a box of volume V .
The total energy of these plasmons is then∑

k

~ωkNk = V
∑
k

|Ek|2

4π
, (7.2)

twice the total electric energy in the system (twice because it includes the energy of the
mean oscillatory motion of electrons within a wave; see discussion at the end of §6.5
and/or in §5.7). Similarly, the total momentum of the plasmons is∑

k

~kNk = V
∑
k

k|Ek|2

4πωk
. (7.3)

This is indeed in line with our previous calculations [see (6.39)]. Note that the role of ~
here is simply to define a splitting of wave energy into individual plasmons—this can be
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(a) absorption of a plasmon by an electron (b) emission of a plasmon by an electron

Figure 31. Diagrams for (7.6).

done in an arbitrary way, provided ~ is small enough to ensure Nk � 1. Since there is
nothing quantum-mechanical about our system, all our results will in the end have to
be independent of ~, so we will use ~ as an arbitrarily small parmeter, in which it will
be convenient to expand, while expecting it eventually to cancel out in all physically
meaningful relationships.

We may now think of the QL evolution (or indeed generally of the nonlinear evolution)
of our plasma in terms of interactions between plasmons and electrons. These are
resonant electrons; the thermal bulk only participates via its supporting role of enabling
oscillatory plasma motions associated with plasmons. The electrons are described by
their distribution function f0(v), which we can, to make our formalism nicely uniform,
recast in terms of occupation numbers: if the wave number corresponding to velocity v
is p = mev/~, then its occupation number is

np =

(
2π~
me

)3

f0(v) ⇒
∑
p

np =
V

(2π)3

∫
dpnp = V

∫
dv f0(v) = V ne. (7.4)

It is understood that np � 1 (our electron gas is non-degenerate).
The QL evolution of the plasmon and electron distributions is controlled by two

processes: absorption or emission of a plasmon by an electron (known as Cherenkov
absorption/emission). Diagrammatically, these can be depicted as shown in Fig. 31. As
we know from §6.2, they are subject to momentum conservation, p = k + (p − k), and
energy conservation:

0 = εep − εlk − εep−k =
~2p2

2me
− ~ωk −

~2|p− k|2

2me
= ~

(
−ωk +

~p · k
me

− ~k2

2me

)
= ~(k · v − ωk) +O(~2). (7.5)

This is the familiar resonance condition k · v − ωk = 0. The superscripts e and l stand
for electrons and (Langmuir) plasmons.

7.1.1. Plasmon Distribution

We may now write an equation for the evolution of the plasmon occupation number:56

∂Nk
∂t

=
∑
p

[
−w(p−k,k)→pnp−kNk︸ ︷︷ ︸

Fig. 31(a)

+wp→(k,p−k)np(Nk + 1)︸ ︷︷ ︸
Fig. 31(b)

]
, (7.6)

56Technically speaking, the first term in this equation should be multiplied by (1− np) and the
second by (1 − np−k) because electrons are fermions and if our electron, having absorbed or
emitted a plasmon, tries to emerge with a momentum that another electron already has, the
probability of such an event must be zero. However, since our plasma is classical, np � 1 and
so these extra factors can be approximated by unity. The same comment applies to calculations
in §§7.1.2, 7.2.4, and 7.2.5.
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where w are the probabilities of absorption and emission and must be equal:57

w(p−k,k)→p = wp→(k,p−k) ≡ w(p,k) = w(p,k)δ(εep − εlk − εep−k). (7.7)

The first term in the right-hand side of (7.6) describes the absorption of one of (in-
distinguishable) Nk plasmons by one of np−k electrons, the second term desribes the
emission by one of np electrons of one of Nk + 1 plasmons. The +1 is, of course, a small
correction to Nk � 1 and can be neglected, although sometimes, in analogous but more
complicated calculations, it has to be kept because lowest-order terms cancel (see, e.g.,
§§7.2.1 and 7.2.2). Using (7.7), (7.5) and (7.4), we find

∂Nk
∂t
≈
∑
p

δ(εep − εlk − εep−k)w(p,k)(np − np−k)Nk

= V

∫
dv δ

(
~(k · v − ωk)

)
w
(mev

~
,k
)[
f0(v)− f0

(
v − ~k

me

)]
Nk

≈ V
∫

dv
1

�~
δ(k · v − ωk)w

(mev

~
,k
)
�~
me
k · ∂f0

∂v
Nk

=
V

me
w
(meωpe

~k
, k
)
F ′
(ωpe

k

)
Nk ≡ 2γkNk (7.8)

Note that, as expected, ~ has disappeared from our equations, after having being used
as an expansion parameter.

Since Nk ∝ |Ek|2 [see (7.1)], the prefactor in (7.8) is clearly just the (twice) growth
or damping rate of the waves. Comparing with (6.1), we read off the expression for the
absorption/emission probability:

w
(meωpe

~k
, k
)

=
πmeω

3
pe

V nek2
. (7.9)

Thus, our calculation of Landau damping in §3.5 could be thought of as a calculation
of this probability. Whether there is damping or an instability is decided by whether it
is absorption or emission of plasmons that occurs more frequently—and that depends
on whether, for any given k, there are more electrons that are slightly slower or slightly
faster than the plasmons with wave number k. Note that getting the correct sign of the
damping rate is automatic in this approach, since the probability w must obviously be
positive.

7.1.2. Electron Distribution

The evolution equation for the occupation number of electrons can be derived in a
similar fashion, if we itemise the processes that lead to an electron ending up in a state
with a given wave number p = mev/~ or moving from this state to one with a different
wave number. The four relevant diagrams are the two in Fig. 31 and the additional two
shown in Fig. 32. The absorption and emission probabilities are the same as before and

57You might wonder why I call them probabilities, as they clearly are not normalised as ones.
How they are normalised is not too important because, to work out specific expressions for them,
we will have to redo the calculation (partially) via a different route—as in (7.9)—at which point
the right units and prefactors will emerge organically. The important thing is the relationships
between these probabilities, as well as the energy-conservation constraint, which determine the
structure of the “kinetic equations” for occupation numbers, derived in what follows.



Oxford MMathPhys Lectures: Plasma Kinetics and MHD 91

(a) emission of a plasmon by an electron (b) absorption of a plasmon by an electron

Figure 32. Additional diagrams for (7.10).

so are the energy-conservation conditions. Therefore,

∂np
∂t

=
∑
k

[
w(p−k,k)→pnp−kNk︸ ︷︷ ︸

Fig. 31(a)

+wp+k→(k,p)np+k(Nk + 1)︸ ︷︷ ︸
Fig. 32(a)

−wp→(k,p−k)np(Nk + 1)︸ ︷︷ ︸
Fig. 31(b)

−w(p,k)→p+knpNk︸ ︷︷ ︸
Fig. 32(b)

]

≈
∑
k

[
w(p+ k,k)(np+k − np)−w(p,k)(np − np−k)

]
Nk

≈ ∂

∂p
·
∑
k

w(p,k)Nkkk ·
∂np
∂p

, (7.10)

where I have expanded twice in small k (i.e., in ~). This is a diffusion equation in p (or,
equivalently, in v = ~p/me) space. In view of (7.4), (7.10) has the same form as (6.7), viz.,

∂f0

∂t
=

∂

∂v
· D(v) · ∂f0

∂v
, (7.11)

where the diffusion matrix is

D(v) =
∑
k

kk
~Nk
m2
e

w
(mev

~
,k
)
δ(k · v − ωk) =

e2

m2
e

∑
k

kk

k2
|Ek|2πδ(k · v − ωk). (7.12)

The last expression is identical to the resonant form of the QL diffusion matrix (6.8)
[cf. (6.16) and (6.90)]. To derive it, we used the definition (7.1) of Nk and the absorp-
tion/emission probability (7.7), already known from linear theory.

Thus, we are able to recover the (resonant part of the) QLT from our new electron-
plasmon interaction approach. There is more to this approach than a pretty “field-
theoretic” reformulation of already-derived earlier results. The diagram technique and the
interpretation of the nonlinear state of the plasma as arising from interactions between
particles and quasiparticles can be readily generalised to situations in which the nonlinear
interactions in (2.12) cannot be neglected and/or more than one type of waves is present.
In this new language, the nonlinear interactions would be manifested as interactions
between plasmons (rather than only between plasmons and electrons) contributing to the
rate of change of Nk. There are many possibilities: four-plasmon interactions, interactions
between plasmons and phonons (sound waves), as well as between the latter and electrons
and/or ions, etc. A comprehensive monograph on this subject is Tsytovich (1995).58

The lectures by Kingsep (1996) are a more human-scale, and humane-style, pedagogical

58It is a terrifying remake of his two earlier, equally deadly, books Tsytovich (1970, 1977). He
also has a short book of lectures, Tsytovich (1972), which are useful as a kind of extended
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(a) decay of plasmon a into b and c (b) merger of plasmons b and c into a

Figure 33. Diagrams for (7.15) (three-wave interaction).

exposition, but are, alas, only available in the original Russian. In §7.2, I will attempt a
basic introduction and give a few examples.

I have introduced the language of kinetics of quasiparticles and their interactions with “true”
particles as a reformulation of QLT for plasmas. The method is much more general and originates,
as far as I know, from condensed-matter physics, the classic problem being the kinetics of
electrons and phonons in metals—the founding texts on this subject are Peierls (1955) and
Ziman (1960).

7.2. Weak Turbulence

If we can think about plasmon-electron interactions in terms of occupation numbers
and probabilities of absorption/emission, we can also think this way of interactions
between plasmons, not necessarily involving electrons or ions directly.

7.2.1. Three–Wave Interactions

A plasmon with energy εak = ~ωak and momentum ~k might “decay” into two other
plasmons, with energies and momenta εbp = ~ωbp, ~p and εcq = ~ωcq, ~q (Fig. 33a), or,
conversely, the latter two plasmons might merge into one (Fig. 33b). The superscripts a,
b, and c are there to indicate that these plasmons can be of different kinds: e.g., longi-
tudinal Langmuir waves considered in §7.1, sound waves (phonons; see §3.8), transverse
electromagnetic waves (see Q-2). Both the decay and merger processes must conserve
momentum and energy, viz.,

k = p+ q, ωak = ωbp + ωcq, (7.13)

and occur with equal probabilities

wa→b+ck→(p,q) = wb+c→a(p,q)→k ≡ wa↔b+c(k,p) = wa↔b+c(k,p)δ(ωak − ωbp − ωcq). (7.14)

These constraints are enough for us to infer the general architecture of the evolution
equations for the plasmon occupation numbers. Assuming a, b, and c are all different,
the rate of decrease of Na

k comes from the first of these processes and the rate of its
increase from the second, so, analogously to (7.6),

∂Na
k

∂t
=
∑
p,q

δk,p+q

[
−wa→b+ck→(p,q)N

a
k(N b

p + 1)(N c
q + 1)︸ ︷︷ ︸

Fig. 33(a)

+wb+c→a(p,q)→kN
b
pN

c
q(Na

k + 1)︸ ︷︷ ︸
Fig. 33(b)

]
. (7.15)

abstract of his canon, but are not fully self-contained. Two excellent texts on WT that speak a
slightly different mathematical language are Zakharov et al. (1992) and Nazarenko (2011) (my
§§7.3, 7.4, 8.3 and 8.4 were largely inspired by the first of these and the papers that it was based
on). Two early-day classics written by Founding Fathers are Kadomtsev (1965) and Sagdeev
& Galeev (1969), documenting how it all started. Specifically on weak turbulence of Langmuir
waves, there is a long, mushy review by Musher et al. (1995).
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The rates are proportional to the products of the occupation numbers of all the par-
ticipants in the three-plasmon interaction, so they are cubic. The plasmon numbers are
not conserved, and, just like in (7.6), the +1’s in (7.15) appear where the occupation
numbers are incremented as a result of the interaction. However, unlike in (7.6), these
small corrections are not negligible because if they were neglected, the right-hand of (7.15)
would vanish. In view of (7.14), we have (assuming all occupation numbers to be � 1)59

∂Na
k

∂t
≈
∑
p

δ(ωak − ωbp − ωck−p)wa↔b+c(k,p)
(
N b
pN

c
k−p −Na

kN
b
p −Na

kN
c
k−p

)
. (7.16)

This is a kinetic equation for plasmons of species a in a system where three-wave
interactions are permitted between this species and two others.

Exercise 7.1. (a) Derive the kinetic equations for Nb
p and Nc

q , still asuming that a, b, c are all
different. Why does this assumption matter? What are the kinetic equations if a = b 6= c?

(b) Confirm that the total energy and momentum of this gas of plasmons, defined analogously
to (7.2) and (7.3), respectively, are conserved by the kinetic equations that you have derived.

When would a contribution to the rate of change of Na
k such as the right-hand side

of (7.16) be important, in comparison with, e.g., the quasilinear rate (7.8)? Obviously,
when the quasilinear rate is small in comparison, e.g., when the waves interact with very
few resonant particles in the tail of the distribution, γk in (7.8) is exponentially small,
and/or Na

k fails to saturate quasilinearly before the right-hand side of (7.16) gets larger
than γkN

a
k . This should be checked in each particular case—I shall talk later on about

what kind of particular cases are possible.

It is clear that the right-hand side of (7.16) must originate from the nonlinear term
in the kinetic equation (2.12) because it involves coupling between field perturbations
at different wave numbers—indeed, the momentum conservation law (7.13) is just the
restriction on wave numbers arising in the Fourier representation of a quadratic nonlin-
earity.

How does one complete the derivation of (7.16), i.e., calculate wa↔b+c(k,p)? I am
afraid the only way to do it is perturbatively, starting from the Vlasov–Poisson sys-
tem (2.12) and (2.9) (or some approximation thereto), expanding ϕk into the linear
part plus at least one iteration involving the nonlinear term, then working out the rate of
change of Na

k ∝ k2|ϕk|2, comparing the result with (7.16) and reading off wa↔b+c(k,p)—
just as we did in (7.9). What then, might you ask, is the point of the quasiparticle
formalism if in the end we must revert back to laborious perturbation theory? Well,
apart from giving one copious amounts of physical insight and a pleasing impression
of doing field-theoretic calculations, this approach actually reduces the amount of hard
labour involved in that perturbation theory: having applied the constraints imposed by
the conservation laws and by the principle of equal probabilities (7.14), we were able to
establish the general structure of the answer, viz., that the coefficients in front of the
three terms in (7.16) must be the same—the same coefficients also turn up in the kinetic
equations for N b

p and N c
q derived in Exercise 7.1. This means that, in ploughing through

the perturbation theory, you only need to keep track of contributions that give rise to

59Note that if Na
k is much larger than all other occupation numbers, the first term in (7.16) can

be neglected and the equation takes the form ∂Na
k/∂t = −γkNa

k . This is known as a “decay
instability”.
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(a) (b)

Figure 34. Diagrams for (7.20) (four-wave interaction): plasmons scattering off each other.

just one of these terms, thus cutting down the amount of algebra by a factor of 9. Once
you try these calculations, you will be very grateful for such a concession!60

Since the nonlinearity in (2.12) is quadratic, does this mean that the rate of change
of Na

k must always be quadratic in plasmon occupation numbers? Not at all, because
the probability wa↔b+c(k,p) of any particular three-wave process can easily turn out
to be zero. Indeed, the conservation laws (7.13) are not necessarily that easy to satisfy.
For example, consider the case of three long-wavelength Langmuir plasmons, all with
kλDe � 1. Their frequency is given by (3.39), viz.,

ωk ≈ ωpe

(
1 +

3

4
k2λ2

De

)
. (7.17)

Clearly, the frequency condition in (7.13) is unfulfillable—you cannot couple two long-
wavelength Langmuir plasmons and get a third such plasmon. What happens then, in
a gas of Langmuir plasmons? There are two ways of getting a non-zero rate of change
of Nk in such a situation.

Exercise 7.2. It turns out that a three-plasmon process involving three ion acoustic waves (§3.8)
is also impossible. Why is this?

7.2.2. Four–Wave Interactions

The first possibility is to go to next order: while three plasmons cannot couple, four can:

k + k′ = p+ p′, ωk + ωk′ = ωp + ωp′ . (7.18)

The probability of this “plasmon-scattering” process, or its inverse, is

w(k,k′)→(p,p′) = w(p,p′)→(k,k′) = w(k,p,p′)δ(ωk + ωk′ − ωp − ωp′). (7.19)

The kinetic equation is a sum of the two diagrams in Fig. 34:

∂Nk
∂t

=
∑
k′,p,p′

δk+k′,p+p′δ(ωk + ωk′ − ωp − ωp′)w(k,p,p′)

× [−NkNk′(Np + 1)(Np′ + 1) +NpNp′(Nk + 1)(Nk′ + 1)]︸ ︷︷ ︸
= NpNp′ (Nk +Nk′)−NkNk′ (Np +Np′)

. (7.20)

60I will provide one such calculation in §8.4 and ask you to do another one in Exercises 8.7
and 8.9 (if you are brave, do also the open-ended Exercise 8.10). My vehicle for those will be a
simplified set of equations describing the coupled dynamics of plasmons, phonons, and ions. An
ultimate repository (one might say graveyard) of many such calculations, done in a fully general
setting, is Tsytovich (1995).
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The lowest-order terms have again cancelled out. The algebra discount for doing the
perturbation theory is buy one—get three free (see Exercise 8.7).

7.2.3. Langmuir–Sound Turbulence

The second possibility is that a Langmuir plasmon decays into something else. One
obviously attractive, and realisable, option is that it should decay into a phonon (s) and
another, slightly lower-frequency Langmuir plasmon (l) (Fig. 35a):

ωlp = ωsk + ωlp−k. (7.21)

Indeed this turns out to be the only three-wave process allowed for longitudinal plasma
waves. Even this is only allowed—obviously—provided sound waves can actually exist,
i.e., if Ti � Te (see §3.8).61

Note that this process is formally very similar to the one that was considered in §7.1:
there, an electron emitted or absorbed a plasmon; here, a plasmon emits or absorbs a
phonon. The difference is that in §7.1, we could assume that the electron occupation
numbers were small but electron momenta large in comparison with the plasmons,
whereas here the occupation numbers and momenta of the plasmons and the phonons
can be in any relationship to each other (although the plasmons’ energies are, of course,
much greater than the phonons’).

Exercise 7.3. (a) Work out under what assumption the energy conservation condition (7.21)
can be turned into the wave-resonance condition ωsk = k · vlk, where vlk is the group velocity of
the Langmuir wave.

(b) Show, in fact, that the “optimal” phonon for a plasmon with momentum ~p to emit has
k ≈ 2p. Thus, phonons are pushed to larger k’s (smaller scales).

Let the probability of the plasmon-decay/phonon-emission process, or its inverse
(Fig. 35b), be

w(p,k) = w(p,k)δ(ωlp − ωlp−k − ωsk). (7.22)

Tallying up the relevant diagrams gets us the results that were, in fact, already anticipated
in Exercise 7.1.

The two diagrams in Fig. 35 give us the rate of change of the number of phonons:

∂Ns
k

∂t
=
∑
p

w(p,k)
(
N l
pN

l
p−k +N l

pN
s
k −N l

p−kN
s
k

)
≡ Sk + γskN

s
k. (7.23)

Thus, in the initial absence of phonons, there is a source of them (Sk > 0), due to plasmon
decay. In their presence, there is a certain rate at which they might be reabsorbed. The
sign γsk is not obviously fixed, but it is clear that it should be negative if there is to be a
steady state. If we assumed N l

p � Ns
k and k � p, we would end up with a very similar

situation to (7.8): a “Landau damping” of phonons on plasmons (see Exercise 8.13)—or
an instability, depending on the sign of γsk, which is determined by the functional form
of the plasmon spectrum N l

p.

To work out the rate of change of N l
p, we need to take into account the diagrams that

went into (7.23) plus two more, shown in Fig. 36,—entirely analogously to the derivation
of the QL equation for electrons in §7.1.2 (cf. Fig. 32). The difference now is that, in
general, the occupation numbers of plasmons are not much smaller than those of the

61If sound waves are strongly damped (e.g., at Ti = Te), four-wave interactions (§7.2.2) and/or
induced-scattering processes of the kind considered in §7.2.4 have to be invoked to describe
Langmuir turbulence: see §8.2.7 and Exercises 8.7 and 8.10.
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(a) decay (emission) of a plasmon (phonon) (b) absorption of a phonon

Figure 35. Diagrams for (7.23).

(a) decay (emission) of a plasmon (phonon) (b) absorption of a phonon

Figure 36. Additional diagrams for (7.24).

phonons, and also their momenta p and k are of the same order, rather than k � p. The
result is

∂N l
p

∂t
=
∑
k

[
w(p,k)

(
N l
p−kN

s
k −N l

p−kN
l
p −Ns

kN
l
p

)︸ ︷︷ ︸
Fig. 35

+ w(p+ k,k)
(
N l
p+kN

s
k +N l

p+kN
l
p −Ns

kN
l
p

)︸ ︷︷ ︸
Fig. 36

]
≡Mp + γlpN

l
p. (7.24)

In the initial absence of phonons, we find an exponential change, at the rate γlp, in the
number of plasmons at a given p, due to emission of phonons—the counterpart to the
source term in (7.23). In the presence of phonons, this rate is modified (downwards—the
sign of this contribution is definite), to account for the reabsorption of the phonons,
and there is also a mode-coupling term Mp (containing the N l

p−kN
s
k and N l

p+kN
s
k

contributions). Again, assuming N l
p � Ns

k and k � p would turn (7.24) into something
very similar to the QL diffusion equation (7.10) (see Exercise 8.14), but this is not,
generally speaking, the right regime this time (I will return to it in §8.5).

The Langmuir–sound system will be my workhorse example, so, to reduce clutter, let
me simplify notation a bit:

N l
p = Np, Ns

k = nk, ωlp = ωp, ωsk = Ωk. (7.25)

The kinetic equations (7.23) and (7.24) can be written rather compactly as follows

∂nk
∂t

=
∑
p

Tp,k,
∂Np
∂t

=
∑
k

(Tp+k,k − Tp,k) , (7.26)

where Tp,k is the expression under the wave-number sum in (7.23), viz.,

Tp,k = δ(ωp − ωp−k −Ωk)w(p,k) [NpNp−k + (Np −Np−k)nk] . (7.27)
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(a) (b)

(c) (d)

Figure 37. Diagrams for (7.31) and (7.33): induced scattering.

I will call Tp,k the transfer function as it quantifies the shuffling of energy (and of plasmon
number) between wave numbers.

Exercise 7.4. Confirm by direct calculation the fact (obvious from the diagrams) that the
kinetic equations for the Langmuir–sound turbulence (§7.2.3) and for the Langmuir turbulence
with four-wave interactions (§7.2.2) conserve the total number of plasmons N =

∑
pNp, as well

as the total energy and the total momentum of the quasiparticle gas.

The quasiparticle formalism expounded above gives “kinetic theory” an extended meaning—
kinetics both of “real” particles and the waves. Interestingly, for the interactions that involve
exclusively waves, the underlying dynamics are in fact fluid, at least approximately: one does not
need to worry about weak kinetic damping effects on Langmuir or sound waves in order to derive
the “kinetic equations” (7.23) and (7.24) (I will show this formally in §8). But not all nonlinear
effects, and not all WT, are fluid-dynamical in this sense. There are nonlinear interactions that
can be described by WT and that involve “true” kinetic effects—i.e., wave-particle resonances.
The best known example of these is presented in the next section.

7.2.4. Wave–Particle Interactions: Induced Scattering

In §7.1, we saw how to handle the interactions involving one plasmon and one “real” particle
(an electron). There is a nonlinear version of these interactions, involving two plasmons: a
plasmon with momentum ~k meets a particle with momentum ~p = mv, gets absorbed, particle
gets excited, cannot contain itself, immediately emits another plasmon with momentum ~k′,
and speeds away with momentum ~p′ (Fig. 37a). This is called induced scattering (or stimulated
emission). The conservation laws are [cf. (7.5)]62

k + p = k′ + p′ ⇒ p′ = p+ k − k′, (7.28)

0 = εlk + εep − εlk′ − εep′ = ~ωk +
~2p2

2m
− ~ωk′ −

~2|p+ k − k′|2

2m
≈ ~

[
ωk − ωk′ − (k − k′) · v

]
.

(7.29)

The probability of this process, and of its inverse (Fig. 37b), is

w(p,k,k′) = w(p,k,k′) δ
(
εlk + εep − εlk′ − εep+k−k′

)
. (7.30)

62There is nothing in this consideration that requires the particle to be an electron, it can
perfectly well be an ion. Indeed, for Langmuir waves, the latter possibility is a more relevant
one, and will be considered in Exercise 8.10.
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We are ready to calculate. The diagrams in Fig. 37(a,b) give us

∂Nk
∂t

=
∑
p,k′

w(p,k,k′) [−Nknp(Nk′ + 1) +Nk′np+k−k′(Nk + 1)]

≈
∑
p,k′

w(p,k,k′)(k − k′) · ∂np
∂p

Nk′Nk ≡ 2γnl
k Nk. (7.31)

This is rather similar to the Landau-damping equation (7.8), except with a new rate, which,
expressed in terms of f0(v) using (7.4), works out to be

2γnl
k =

∑
k′

Nk′

∫
dv δ

(
ωk − ωk′ − (k − k′) · v

)V
m
w
(mv

~
,k,k′

)
(k − k′) · ∂f0

∂v
. (7.32)

This is sometimes called “nonlinear Landau damping”—confusingly, because it has nothing to
do with the suppression of Landau damping by particle trapping (O’Neil 1965; Mazitov 1965),
usually called that.

Finally, adding up the diagrams in Fig. 37(a,b) and two similar ones in Fig. 37(c,d), we get
the equation for the electron distribution function: denoting k′′ = k − k′,

∂np
∂t
≈
∑
k,k′

NkNk′
[
w(p,k,k′)(np+k′′ − np)−w(p− k′′,k,k′)(np − np−k′′)

]
≈ ∂

∂p
·
∑
k,k′

w(p,k,k′)NkNk′k
′′k′′ · ∂np

∂p
⇔ ∂f0

∂t
=

∂

∂v
· Dnl(v) · ∂f0

∂v
. (7.33)

This is a diffusion equation, like (7.11), but now with a “nonlinear” diffusion coefficient that
depends quadratically on the electric-field spectrum. Note that since this effect is second order
in Nk, it should, formally, be subdominant to the QL diffusion (7.11), which is first order.
However, the resonance (7.29) is much easier to achieve because, rather than matching ωk to
k ·v, which might push you far into the tail of the distribution, here all you need to do is match
the frequency difference ωk−ωk′ for some pair of wave numbers to (k−k′) ·v (so, roughly, you
are matching the particle’s velocity not to the wave’s phase velocity but to its group velocity).
This accommodating nature of induced scattering is its claim to ubiquitous relevance.

There is an important observation that one can make without knowing w(p,k,k′). Since
(7.33) is a diffusion equation, it should cause f0(v) to broaden with time, i.e., the particle
distribution will heat up (cf. Q-12 and Q-13)—this is called turbulent heating. Since energy is
conserved, the plasmon population should on average lose energy, shifting to lower frequencies
and lower wave numbers—this is corroborated by quantitative calculations (see Tsytovich’s
books or the original papers by Pikelner & Tsytovich 1969 and Liperovskii & Tsytovich 1970,
as well as Musher et al. 1995, who review further interesting complications). Therefore, WT will
push waves into a region of k space where the WT approximation ceases to be valid and the
turbulence becomes strong—I will come back to this point in §7.5.

Working out w(p,k,k′) for this problem is a bit of a nightmare—or, depending on your
attitude, a character-building endeavour (Exercise 8.10). You will find the answer in Kadomtsev
(1965), Kingsep (1996), or, alongside 1001 similar calculations of probabilities of WT processes,
in Tsytovich (1995),

7.2.5. A Digression: “Real” Collisions

Finally, let me give you another example of the use of the diagram technique, which, while
not properly a WT calculation, illustrates the unifying nature of the formalism. If we can talk
about interactions between waves and particles, why not use the same language for interactions
between particles and thus work out the general form of the collision integral previewed in (1.47).

A binary Coulomb collision can be thought of as two particles meeting, exchanging a plasmon
with a certain energy and momentum, and parting ways (Fig. 38a). For simplicity, consider two
particles of the same species. The energy-conservation requirement is

0 = εp + εp′ − εp−k − εp′+k =
~2

2m

(
p2 + p′2 − |p− k|2 − |p′ + k|2

)
≈ ~2

m
k · (p− p′), (7.34)
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(a) (b)

Figure 38. Diagrams for (7.36): binary collisions.

assuming at the last step that k � p, p′ (glancing collisions). Let the probability of this process be

w(p,p′,k) = w(p,p′,k) δ
(
εp + εp′ − εp−k − εp+k

)
. (7.35)

Adding up the diagrams in Fig. 38, and their inverses, we get

∂np
∂t

=
∑
k,p′

[
w(p,p′,k) (−npnp′ + np−knp′+k) + w(p+ k,p′,k) (np+knp′ − npnp′+k)

]
≈
∑
k,p′

[
w(p,p′,k)

(
npk ·

∂np′

∂p′
− np′k ·

∂np
∂p

)

+w(p+ k,p′,k)

(
np′k ·

∂np+k

∂p
− npk ·

∂np′

∂p′

)]
≈ ∂

∂p
·
∑
k,p′

w(p,p′,k)kk ·
(
np′

∂np
∂p
− np

∂np′

∂p′

)
. (7.36)

Rewriting this in terms of f0(v), we get

∂f0(v)

∂t
=

∂

∂v
·
∫

dv′
∑
k

δ
(
k · (v − v′)

)V ~
m2

w

(
mv

~
,
mv′

~
,k

)
kk ·

[
f0(v′)

∂f0(v)

∂v
− f0(v)

∂f0(v′)

∂v′

]
. (7.37)

This is indeed the general Fokker–Planck form (1.47) of the collision integral. The probability
w will be worked out in §§11.5 and 11.6.

Exercise 7.5. Multispecies collisions. Generalise this construction to binary collisions
between particles of different species.

You will find a diagrammatic derivation of the collision integral for gravitating systems, analo-
gous to (7.37), in a recent paper by Hamilton (2021), who claims to have been inspired by these
Lectures—from classroom to research frontier in one quick leap, a good example to follow!

7.3. Statistical Mechanics of Quasiparticles

7.3.1. Entropy

The expressions for the rates of change of quasiparticle occupation numbers are a
kind of collision integrals for the quasiparticles (the analogy reinforced by §7.2.5). It is
not hard to see that they have an entropy and an H-theorem. The quasiparticles are
indistinguishable bosons (no exclusion principle), so their entropy ought to be

S = −
∑
k

[Nk lnNk − (1 +Nk) ln(1 +Nk)] ≈
∑
k

lnNk . (7.38)
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The simple approximate expression arises because all occupation numbers are Nk � 1. In
other words, the entropy of the quasiparticle gas is just the sum of Boltzmann entropies
associated with each k.

Let us prove that this entropy cannot decrease: e.g., for the Langmuir–sound sys-
tem (7.26),

dS

dt
=
∑
k

1

nk

∂nk
∂t

+
∑
p

1

Np

∂Np
∂t

=
∑
k,p

(
Tp,k
nk

+
Tp+k,k

Np
− Tp,k

Np

)

=
∑
k,p

Tp,k

(
1

nk
+

1

Np−k
− 1

Np

)

=
∑
k,p

w(p,k)

[
NpNp−k +

(
Np −Np−k

)
nk
]2

nkNpNp−k
> 0, q.e.d. (7.39)

Exercise 7.6. Prove that the H-theorem holds for the four-wave kinetic equation (7.20).

You might be wondering—legitimately—how it happened that, treating a collisionless
and, therefore, reversible, system, we have ended up with an H-theorem and, therefore,
irreversibility. Obviously, an implicit assumption has been made that must be the
quasiparticle equivalent of the hypothesis of molecular chaos—in WT, this is the so
called “random-phase approximation”, which I will introduce in §8.4.2, once I have a
specific example of underlying dynamical equations to work with.

7.3.2. Thermodynamical Equilibrium Distributions

Where there is entropy increase, there is thermodynamical equilibrium. The stan-
dard operating procedure is to maximise entropy subject to holding constant whatever
invariants the system has. The Langmuir–sound system has two: the total energy E
and the total number of plasmons N (see Exercise 7.4).63 Therefore, we must solve the
maximisation problem

S − β

(∑
k

~Ωknk +
∑
p

~ωpNp − E

)
+ βµ

(∑
p

Np −N

)
→ max, (7.40)

where β = 1/T and µ are Lagrange multipliers (temperature and chemical potential).
Varying the above expression with respect to nk and Np, we get the equilibrium distri-
butions of the plasmon and phonon fields:

nk =
T

~Ωk
, Np =

T

~ωp − µ
. (7.41)

The distributions (7.41) are Rayleigh–Jeans distributions, familiar from the statistical
mechanics of radiation.

Exercise 7.7. Verify by direct calculation that the Rayleigh–Jeans distributions (7.41) are
indeed stationary solutions of the kinetic equations (7.26).

Exercise 7.8. An attempt to integrate these distributions to find T and µ in terms of E and
N produces divergent results. Is this a problem? How can it be fixed?

63As usual in statistical mechanics, we do not need to worry about the total momentum because
we can always trasfer ourselves into the reference frame moving with the total momentum of
our system.
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7.4. Stationary Nonequilibrium Distributions

I have kept using the word “turbulence”, but I actually I have not done any turbulence
so far—just derived generic kinetic equations for weakly interacting quasiparticles (§7.2)
and shown that they support some fairly bland thermal equilibria (§7.3). The interesting
applications are indeed to turbulence—and that means to systems that are not in thermal
equilibrium.

Since our kinetic equations conserve energy, that means that their right-hand sides
cannot either generate or dissipate any net energy—they can only move energy around
between different wave numbers or exchange it between different species of waves. Not
worrying about the latter for a moment, assuming wave-number isotropy, and defining
the k-shell-integrated total-energy spectrum for the Langmuir–sound system as64

Ēk =
V k2

2π2
(~Ωknk + ~ωkNk) ,

∫
dk Ēk = E , (7.42)

it must be possible to write the evolution equation for it in terms of an energy flux εk:

∂Ēk
∂t

=
V k2

2π2

∑
p

[~ΩkTp,k + ~ωk (Tk+p,p − Tk,p)] ≡ −∂εk
∂k

. (7.43)

Since the plasmon number N =
∑
pNp ≡

∫
dp N̄p is also conserved, N̄p = (V p2/2π2)Np

satisfies
∂N̄p
∂t

=
V p2

2π2

∑
k

(Tp+k,k − Tp,k) ≡ −∂Γp
∂p

, (7.44)

where Γp is the plasmon-number flux (also known as the “wave-action flux”). Stationary
solutions can be of two flavours: those with zero flux and those with a constant flux. The
Rayleigh–Jeans solutions (7.41) are of the former kind: nothing flows anywhere because
there are no sources or sinks of either energy or particles. If there were, there would
not be an equilibrium, and a (statistically) stationary state would have to feature the
invariants constantly flowing from sources to sinks. This is exactly what a turbulent
system is: a chaotic system in which energy and other invariants, if they are there, are
constantly injected at some scales (i.e., some k’s) and flow to other scales where they
can be dissipated. The sources and sinks are not in the kinetic equations that we have
derived—they must be added as they represent some additional physics, not covered
by nonlinear interactions, which are conservative. Injection can be (and usually is in
plasma physics) done by some instability; dissipation is ultimately always by collisions,
but, in “collisionless” (i.e., weakly collisional) systems, those are usually accessed via
phase mixing (Landau damping)—this was discussed quite thoroughly in §5, although to
what extent that discussion applies to turbulent systems is a tricky question (see §12).
If the injection and dissipation are concentrated at sufficiently disparate wave numbers,
there will be scale-invariant k-space intervals in between that energy and other invariants
must flow through in order to get dissipated—it is in these intervals that constant-flux
solutions will materialise. Working out these solutions, by setting

εk = ε = const, Γp = Γ = const, (7.45)

and the directions of the corresponding fluxes (the signs of ε and Γ ) is what we shall
need the kinetic equations for (see §§8.4.3–8.4.6).

64The prefactor comes from
∑
k = V

∫
dk/(2π)3 = V

∫
dk 4πk2/(2π)3 = (V/2π2)

∫
dk k2.
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There are three further nuances. First, valid constant-flux solutions will only be
obtainable from kinetic equations without the need to include sources and sinks if the
interactions are local in k, i.e., if the sources and the sinks cannot couple to each other
directly (otherwise energy might just “leap” directly from sources to sinks). There will
be a scheme for checking whether that is true (see the end of §8.4.6). Secondly, stationary
solutions of the kinetic equations are only of any use if they are stable. That too must be,
and can be, checked within the WT formalism (I shall not deal with this; see Zakharov
et al. 1992). Thirdly, the k-space isotropy assumption is not always good, and there is
an interesting zoo of non-isotropic possibilities (I will ignore them all; see, e.g., Musher
et al. 1995).

Let us keep all this in mind, but this is about as far as one can get without actually
calculating w(p,k). In §8.4, I shall calculate it for the Langmuir-sound turbulence
(§7.2.3), after I have derived the dynamical equations for it. Once this is done, I will
show you how one can solve the WT kinetic equations and obtain steady-state, constant-
flux, nonequilibrium distributions and spectra.

7.5. Validity of WT Approximation

Since I have not yet fully revealed what the WT approximation consists of, I cannot just
yet give you a full account of the conditions for its validity. These will emerge piecemeal
here and in §§8.1 and 8.4, as some specific meat is put on the generic bones that have
emerged so far.

What should be clear at this point is that we have confined ourselves to a situation
where we must be able to think of our plasma as a gas of monocromatic waves with
definite wave numbers (momenta) and frequencies (energies), which interact subject to
conservation rules on both, e.g., (7.13) or (7.18). Matching wave numbers is a straightfor-
ward requirement that mathematically is traceable to the simple fact that the nonlinear
terms in the underlying dynamical equations [e.g., (2.12)], when Fourier transformed,
turn into convolution sums over wave numbers. In contrast, the matching of frequencies
is a more nontrivial proposition. At the very least, in order to be meaningful, it requires
that the wave frequencies be identifiable, i.e., that the waves survive (much) longer than
their own period of oscillation. In other words, the typical nonlinear interaction time is
long compared to the wave period:

ωktnl � 1 , (7.46)

as promised in §2.4.3. It is perhaps intuitive then that the delta functions constraining
the WT interaction probabilities, such as δ

(
ωp − ωp−k − Ωk

)
in (7.27), in fact have an

effective width of order ∼ t−1
nl , which is assumed small compared to any of the frequencies.

How well this assumption is satisfied depends on the amplitudes of the perturbations
(i.e., on the overall fluctuation level), which must remain sufficiently small. This has to
be checked for each particular system—see, e.g., §8.4.7,65 where I will finally bid farewell
to WT and move on to stronger stuff.

It happens quite often—indeed, more often than not—that a WT system drives itself
towards such (low) wave numbers, frequencies, and/or (high) amplitudes that the WT
applicability condition (7.46) gets broken, i.e., the frequency-matching delta functions are
broadened to the point that they no longer constrain interactions (there was a glimpse
of this at the end of §7.2.4). This turns the system from a weakly coupled to a strongly

65Another key assumption that enables one to write the kinetic equations in the form I did above
is the random-phase approximation, already alluded to at the end of §7.3.1 to excuse entropy
nonconservation and introduced properly in §8.4.2.
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coupled one, from weak turbulence to strong turbulence. In such a regime, it is no longer
true that monochromatic plasma waves are the natural elementary building blocks of
the nonlinear system, and some other entities, each formally composed of many Fourier
modes, emerge to claim pre-eminence. What they are is not always (indeed, not usually)
clear. I will attempt to illustrate this point in a specific way in §§8.5 and 8.6.

8. Langmuir Turbulence

This section is dedicated to one particular kind of plasma turbulence—probably the
best-, or at any rate the earliest-, studied kind: turbulence of coupled Langmuir and sound
waves. This is not the most relevant situation for most fusion (except perhaps inertial-
fusion) or astrophysical plasmas, but it has the advantage of involving the two most basic
plasma waves that we have already studied above, at length, and it also gives me an
opportunity to illustrate some concepts and methods that find their application in many
other plasma problems: how separation of scales enables one to derive reduced systems of
equations (§§8.1 and 8.2),66 how they turn out to have Hamiltonian structure (§8.3), how
one can use them to calculate probabilities of basic WT processes and thus complete,
and solve, the kinetic equations derived in §7.2 (§8.4), how the WT approximation breaks
down and waves (quasiparticles) cease to be the basic actors of plasma dynamics, ceding
ground to essentially nonlinear structures and how then a strongly turbulent regime
might be tackled, with great difficulty but also great ingenuity (§§8.5 and 8.6).

8.1. Zakharov’s Equations

So let me pick up where I left off in §7.2.3 and ask what dynamical equations are
satisfied by the plasmons and the phonons—so I can use these equations to calculate
w(p,k) (and, it will turn out, do much more besides). First, I would like to derive these
equations in a physically intuitive, if non-rigorous, way—I will clean up my act in §8.2.

8.1.1. Langmuir Waves

In Exercise 3.1, you had an opportunity to derive the linearised fluid equations for
Langmuir waves—they are just the density and velocity moments of the electron kinetic
equation, ignoring ions entirely:

∂δñe
∂t

+ ∇ · (n̄eũe) = 0, (8.1)

men̄e
∂ũe
∂t

= −en̄eẼ −∇δp̃e. (8.2)

The overtildes mark the quantities that will turn out to oscillate as a Langmuir wave.
The overbars designate the fields that are much slower than that—in the above, n̄e so
far just means the equilibrium density on top of which the perturbations occur. The last
term in (8.2) contains the electron pressure perturbation, which, in Exercise 3.1, you
found to be

δp̃e = 3Teδñe =
3

2
mev

2
theδñe (8.3)

at long wavelengths, i.e., if kvthe � ωpe (and so kinetic effects could be ignored). The

electric field is Ẽ = −∇ϕ̃, and the Poisson equation tells us that 4πeδñe = ∇2ϕ̃. Taking
the time derivative of (8.1) and using (8.2) and (8.3), we thus arrive at a closed equation

66In a different setting, this theme will be taken up again in §§15.2 and 15.3.
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for ϕ̃:

∂2

∂t2
∇2ϕ̃+ ∇ ·

(
4πe2n̄e
me

∇ϕ̃

)
− 3

2
v2

the∇4ϕ̃ = 0. (8.4)

In the linear problem, the dimensional factor in the second term is just ω2
pe, and then

from (8.4) we can promptly read off the dispersion relation (3.39) for a Langmuir wave:

ω2 = ω2
pe +

3

2
k2v2

the. (8.5)

Let me now posit that in a nonlinear system where the dominant interactions are between
Langmuir and sound waves, the nature of these interactions must be “modulational”:
sound waves are much slower than Langmuir waves and so the latter will “see” the
former simply as slow density modulation on top of the equilibrium. Mathematically this
is captured if we let

n̄e = n0e + δn̄e, (8.6)

where n0e is the homogeneous equilibrium density and δn̄e the density perturbation
associated with sound. This gives us just the right kind of nonlinearity: (8.4) becomes(

∂2

∂t2
+ ω2

pe −
3

2
v2

the∇2

)
∇2ϕ̃ = −ω2

pe∇ ·
(
δn̄e
n0e

∇ϕ̃

)
. (8.7)

In order to close the system, we need an equation for δn̄e, the electron-density perturba-
tion associated with sound waves.

8.1.2. Sound Waves

Let us work in the limit of cold ions, Ti � Te, when sound waves can thrive without
being bothered by Landau damping (§3.8). In this limit, they too can be described by
simple linearised fluid equations, derived in Exercise 3.6:

∂δni
∂t

+ n0i∇ · ui = 0, (8.8)

min0i
∂ui
∂t

= −∇δp̄e. (8.9)

Since ions are cold, only the electron pressure matters. We do not need to have bars
over the ion quantities because they do not have Langmuir-frequency variation, but the
electron pressure here is the slow, averaged part that the ions can “see”. If you did
Exercise 3.6, you know that electrons are isothermal at this slow time scale, viz., δp̄e =
Teδn̄e. Also, the Poisson equation for these perturbations just turns into a statement of
quasineutrality: Zδni = δn̄e (there cannot be any deviations from that on time scales
longer than the inverse plasma frequency; see §2.1); the same relationship is also of
course true for the equilibrium densities: Zn0i = n0e. The equation for sound waves
follows immediately:

∂2δn̄e
∂t2

= c2s∇2δn̄e. (8.10)

Now we need to find a way to modify this equation to account for the emission (or
absorption) of sound waves by Langmuir waves. The answer is intuitive: the average effect
of a fast-oscillating electric field on particles amounts to an additional effective pressure
equal to the energy density of the field—this is known as the ponderomotive force. Here
is a quick derivation. An electron’s equation of motion is

mer̈ = −eẼ(r). (8.11)
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Now split this motion into a fast-oscillating part and a slowly drifting part, r = r̄ + r̃,
and assume |r̃| � |r̄|. The fast-oscillating part satisfies

me
¨̃r ≈ −eẼ(r̄) ⇒ r̃ ≈ e

meω2
pe

Ẽ(r̄), (8.12)

assuming that Ẽ oscillates at the single frequency ωpe. Time-averaging (8.11) over the

fast oscillations and expanding Ẽ(r̄ + r̃) in small r̃, we get

me¨̄r ≈ −e
[
Ẽ(r̄) + r̃ ·∇Ẽ(r̄)

]
= − e2

meω2
pe

Ẽ ·∇Ẽ = − 1

n0e
∇ |∇ϕ̃|2

8π
. (8.13)

Adding this effective electron pressure |∇ϕ̃|2/8π (or, equivalently, an effective electric
potential) to (8.9) and retracing the route that led to (8.10), we get the desired equation
featuring a nonlinear coupling of sound waves to Langmuir waves:(

∂2

∂t2
− c2s∇2

)
δn̄e = c2s∇

|∇ϕ̃|2
8πTe

. (8.14)

Together with (8.7), this forms a closed system of equations.

Exercise 8.1. Is there a ponderomotive contribution to the effective ion pressure and need it
be taken into account?

8.1.3. Final Form of Zakharov’s Equations

We are one step away from the final form of the Zakharov (1972) equations. A further
simplification is achieved if, in (8.16), we take out the ωpe oscillations:

ϕ̃ =
1

2

(
ψe−iωpet + ψ∗eiωpet

)
, (8.15)

where ψ varies on a time scale much longer than ω−1
pe . Substituting (8.15) into (8.7)

and neglecting ∂2
t ψ � iωpe∂tψ, dividing through by −ωpee

−iωpet, and averaging out
oscillatory terms, we get Zakharov’s first equation:

∇2

(
iω−1

pe

∂ψ

∂t
+

3

2
λ2

De∇2ψ

)
=

1

2
∇ ·

(
δn̄e
n0e

∇ψ

)
. (8.16)

Zakharov’s second equation is the same as (8.14), but with the substitution of (8.15):(
∂2

∂t2
− c2s∇2

)
δn̄e = c2s∇2 |∇ψ|2

16πTe
. (8.17)

We have our closed system—and even a cursory glance at the structure of these equations
confirms that they should capture just the kind of interactions anticipated in §7.2.3: the
right-hand side of (8.17) is quadratic in ψ and so describes two plasmons coupling to
generate a phonon (or, rather, a plasmon emitting/absorbing a phonon and becoming a
different plasmon); the right-hand side of (8.16) contains a product of δn̄e and ψ and so
describes the modification of a plasmon by the emission or absoption of a phonon.

Exercise 8.2. Secondary instabilities of a Langmuir wave. That plasmons emit
phonons—i.e., that decay instabilities exist—can be demonstrated directly from the dynamical
equations (8.16) and (8.17). Consider a monochromatic Langmuir wave as the lowest-order
solution of Zakharov’s equations in the absence of nonlinearity, then perturb around it, linearise,
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and work out the secondary instabilities of the perturbations: what are the growth rates, the
peak-growth wave numbers, various parameter regimes, etc.? The best treatment of this topic
in the literature that I am aware of is the review by Thornhill & ter Haar (1978, §3) (although
these results already appear, presented with extreme pith, in Zakharov 1972). This is not really
kinetic theory, more fluid dynamics, but it is a challenging yet doable calculation that one
can sink one’s teeth into and enjoy. Note that some of the results of this calculation directly
anticipate §8.5.2.

8.1.4. Quasistatic Limit

The linear frequency of the variation of ψ in (8.16) is

δωk =
3

2
k2λ2

Deωpe =
3

4

k2v2
the

ωpe
. (8.18)

This frequency will still be greater than the sound frequency, enabling the ponderomotive source
term in the right-hand side of (8.17) to excite sound waves, provided

δωk
kcs
∼ kλDe

vthe

cs
� 1 ⇔ kλDe �

√
me

mi
. (8.19)

In the opposite limit,

kλDe �
√
me

mi
, (8.20)

the source term is quasistatic, no sound waves can be excited and (8.17) simply enforces a
balance between the electron pressure and the ponderomotive force:67

δn̄e = −|∇ψ|2

16πTe
. (8.21)

Putting this into (8.16) gets us a closed equation for ψ:68

∇2

(
iω−1

pe
∂ψ

∂t
+

3

2
λ2

De∇2ψ

)
= −

∇ ·
(
|∇ψ|2∇ψ

)
32πn0eTe

. (8.22)

The nonlinearity is cubic, so this is actually an example of a situation where four-wave interac-
tions will dominate nonlinear dynamics (see §7.2.2).

Let us check that the nonlinear term in (8.22) does not spoil the assumption that ψ changes
slowly compared to sound. The characteristic nonlinear time is

t−1
nl ∼ ωpeW, W =

|Ẽ|2
8πneTe

, (8.23)

where W is the nondimensionalised mean square amplitude of the Langmuir oscillations. Then

tnlkcs � 1 ⇔ W � kλDe

√
me

mi
. (8.24)

If we wanted to break this restriction, i.e., if ψ were to be allowed to saturate at higher amplitudes
than this, we would have to go back to (8.17).

If you are completely happy with the derivation in §§8.1.1 and 8.1.2, skip the next section,
but if you feel that the approximations and assumptions hoisted upon you are difficult to
accept at this level of (non-)rigour, read on: in §8.2, I provide a formal perturbative

67One might call this the incompressible limit of Zakharov’s equations.
68A mathematically identical equation, but with Te replaced by Te + Ti/Z in the right-hand
side, arises in the limit of hot ions—hot enough to stream quickly and thus cause the ion density
to have a simple Boltzmann response. This approximation is derived in §8.2.7.
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derivation of the Zakharov (1972) equations (8.16) and (8.17), which is surprisingly
difficult to find in the literature.

8.2. Formal Derivation of Zakharov’s Equations

8.2.1. Scale Separations

The problem has four characteristic timescales: the plasma oscillation frequency, the electron
streaming rate, the ion sound frequency and the ion streaming rate:

ωpe � kvthe � kcs ∼ kvthi. (8.25)

The relative size of these frequencies is controlled by the following three independent parameters:

kvthe

ωpe
∼ kλDe � 1,

kcs
kvthe

∼
√
me

mi
� 1,

kvthi

kcs
∼
√
Ti
Te
∼ 1. (8.26)

The scale separation between ions and electrons is non-negotiable as the mass ratio is always
small. As long as kλDe � 1, which we will assume here, the electron Landau damping is
exponentially small and the electrons will be fluid (as we will see shortly; it is no surprise, given
what we know from §3.5). Ions too behave as a fluid if they are cold (Ti � Te; cf. §3.8), which
is the limit most often considered in the context of Zakharov’s equations, if not necessarily one
that is most relevant physically.

8.2.2. Electron Kinetics and Ordering

As anticipated in §8.1, let us split the electron distribution function and the electrostatic
potential into two parts: the time-averaged (“slow”, denoted by overbars) and fluctuating (“fast”,
denoted by overtildes):

fe = f̄e + f̃e, ϕ = ϕ̄+ ϕ̃. (8.27)

The time average is taken over time scales longer than both ω−1
pe and (kvthe)

−1 but shorter

than (kcs)
−1 or (kvthi)

−1, i.e., f̄e and ϕ̄ are the electron distribution and potential that the ions
can “see”. The slow part of the electron distribution is assumed to consist of a homogeneous
Maxwellian equilibrium (5.6) plus a perturbation:

f̄e = f0e + δf̄e. (8.28)

The slow and fast distribution functions satisfy the following equations, which are obtained
by time averaging the Vlasov equation (1.50) for electrons (α = e, qα = −e) and subtracting
the average from the exact equation:

v ·∇δf̄e +
e

me
(∇ϕ̄) · ∂f̄e

∂v
+

e

me
(∇ϕ̃) · ∂f̃e

∂v
= 0, (8.29)

∂f̃e
∂t

+ v ·∇f̃e +
e

me
(∇ϕ̃) · ∂f̄e

∂v
+

e

me
(∇ϕ̃) · ∂f̃e

∂v
+

e

me

˜
(∇ϕ̃) · ∂f̃e

∂v
= 0, (8.30)

where all time evolution on ion scales is neglected because kvthe is large. The slow and fast parts
of the Poisson equation (1.51) are

−∇2ϕ̄ = 4πe(Zδni − δn̄e) = 4πe

(
Z

∫
dv δfi −

∫
dv δf̄e

)
, (8.31)

−∇2ϕ̃ = −4πeñe = −4πe

∫
dv f̃e, (8.32)

where δfi is the perturbed ion distribution function and δni its density. We shall solve (8.30)

and (8.32) for ϕ̃ and f̃e, use that to calculate the last term in (8.29), which will give rise to
the ponderomotive force, then solve (8.29) for f̄e in terms of ϕ̄, and finally use that solution in
(8.31) to get an expression for ϕ̄ in terms of fi. The latter can then be coupled with the ion
Vlasov–Landau equation (5.1) (α = i, qα = Ze), giving rise to a closed “hybrid” system for
kinetic ions and “fluid” electrons.
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In order to implement this plan, we shall carry out a perturbation expansion of the above
equations in the small parameter

ε = kλDe. (8.33)

The algebra becomes more compact if we first make the following ansatz, designed to remove
the third (the largest, as we will see) term in (8.30):69

f̃e = −u · ∂f̄e
∂v

+ h, (8.34)

where u is, by definition, the velocity associated with the plasma oscillation [cf. (5.47)]:

∂u

∂t
=

e

me
∇ϕ̃. (8.35)

Then the fast electron kinetic equation (8.30) becomes

∂h

∂t
= v ·∇

(
u · ∂f̄e

∂v

)
︸ ︷︷ ︸

ε2

− v ·∇h︸ ︷︷ ︸
ε3

+
e

me
(∇ϕ̄) · ∂

∂v
u · ∂f̄e

∂v︸ ︷︷ ︸
ε4

− e

me
(∇ϕ̄) · ∂h

∂v︸ ︷︷ ︸
ε5

+
˜e

me
(∇ϕ̃) · ∂

∂v
u · ∂f̄e

∂v︸ ︷︷ ︸
ε2

− e

me

˜
(∇ϕ̃) · ∂h

∂v︸ ︷︷ ︸
ε3

, (8.36)

where the ordering of each term in the small parameter (8.33) has been determined, as indicated
above, based on the following assumptions. The plasma-oscillation velocity (8.35) is

u

vthe
∼ keϕ̃

mevtheωpe
∼ kλDe

eϕ̃

Te
∼ ε, (8.37)

if, in general,70

eϕ̃

Te
∼ 1. (8.38)

Anticipating that the ponderomotive “potential” [see (8.13)] will enter on equal footing with
the slow potential and that the slow perturbed electron distribution will express the Boltzmann
response to the latter modified by the former, let us adopt the ordering

δf̄e
f0e
∼ eϕ̄

Te
∼ e2|Ẽ|2
meω2

peTe
∼ (kλDe)

2

(
eϕ̃

Te

)2

∼ ε2. (8.39)

Since the inhomogeneous terms in (8.36) are, thus, O(ε2), it follows that h ∼ ε2f0e and, since
the first term in (8.34) has no density moment, ñe ∼ ε2n0e.

From (8.36), to lowest order,

∂h(2)

∂t
= v ·∇u · ∂f0e

∂v
+

˜∂u

∂t
· ∂
∂v
u · ∂f0e

∂v

= − 2

v2
the

[
vivj∂iuj +

(
δij −

2vivj
v2

the

)
∂ui
∂t

uj

]
f0e, (8.40)

where I have used (8.35) and the fact that f0e is a Maxwellian.

69This is equivalent to splitting the electron distribution function into fast and slow parts using

as the velocity variable of f̄e the peculiar velocity of the particle around a centre oscillating with
velocity u (cf. DuBois et al. 1995): namely, set fe = f̄e(r,v−u(t, r)) + h(t, r,v) and expand in
small u.
70Note that this ordering means that the equations that are being derived will be, in principle,
suitable both for weak- and strong-turbulence regimes (see §8.4.7).
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8.2.3. Ponderomotive Response

With (8.40) in hand, we are now in a position to calculate the last term in (8.29). First, using
(8.34) and (8.35) and keeping terms of order ε2 and ε3,

e

me
(∇ϕ̃) · ∂f̃e

∂v
=
∂u

∂t
· ∂
∂v

(
−u · f0e

∂v
+ h(2)

)
=

2

v2
the

(
δij −

2vivj
v2

the

)
∂ui
∂t

ujf0e +
∂u

∂t
· ∂h

(2)

∂v

=
∂

∂t

{
2

v2
the

[
u2

2
− (u · v)2

v2
the

]
f0e + u · ∂h

(2)

∂v

}
− u · ∂

∂v

∂h(2)

∂t
. (8.41)

The first term is a full time derivative and so vanishes under averaging, whereas the second term
can be calculated using (8.40):

−u · ∂
∂v

∂h(2)

∂t
=

2

v2
the

[
vjul∂luj + viul∂iul −

2vivjvl
v2

the

ul∂iuj

− 2

v2
the

(
vlul

∂ui
∂t

ui + vjul
∂ul
∂t

uj + viul
∂ui
∂t

ul −
2vivjvl
v2

the

ul
∂ui
∂t

uj

)]
f0e

=
2

v2
the

{
u ·∇u · v + v ·∇

[
u2

2
− (u · v)2

v2
the

]

− 2

v2
the

∂

∂t

[
u2u · v − 2(u · v)3

3v2
the

]}
f0e

= 2v ·∇
[
u2

v2
the

− (u · v)2

v4
the

]
f0e. (8.42)

The last expression was obtained after noticing that any full time derivative vanishes under
averaging and that, u defined by (8.35) being a potential field, one could rewrite u · ∇u =
∇|u|2/2.

Note that (8.42) is O(ε3), as are the other two terms in (8.29). Inserting (8.42) into (8.29),
we obtain the following solution for the slow part of the perturbed elecron distribution:

δf̄e =

{
eϕ̄

Te
− 2

[
u2

v2
the

− (u · v)2

v4
the

]}
f0e. (8.43)

The first term is the Boltzmann response, the second the ponderomotive one. The resulting
electron density perturbation is

δn̄e
n0e

=
eϕ̄

Te
− u2

v2
the

. (8.44)

8.2.4. Electron Fluid Dynamics

In order to obtain the evolution equation for ϕ̃, we will need to solve (8.36), coupled to (8.32),
to higher order than the lowest, namely, up to ε4. Rather than solving the kinetic equation (8.36)
order by order, it turns out to be a faster procedure to take moments of it exactly and then
close the resulting hierarchy by calculating the second moment using h(2) given by (8.40).

The zeroth (density) moment of (8.36) is

∂ñe
∂t

+ ∇ · (n̄eu) + ∇ ·
∫

dv vh = 0, (8.45)

the continuity equation. The first moment is

∂

∂t

∫
dv vh = −∇ ·

∫
dv (uv + vu)f̄e −∇ ·

∫
dv vvh+

e

me
ñe∇ϕ̄+

e

me

˜̃ne∇ϕ̃. (8.46)

The first term on the right-hand side is zero to all orders up to at least ε4 because, according to
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(8.43), f̄e is even in v up to second order. The remaining terms are O(ε3), except the penultimate
one, which is O(ε5) and can be safely dropped. Combining (8.45) with (8.46) and using (8.35),
we have

∂2ñe
∂t2

+ ∇ ·
(
e

me
n̄e∇ϕ̃

)
−∇∇ :

∫
dv vvh+ ∇ ·

(
e

me

˜̃ne∇ϕ̃

)
= 0. (8.47)

This equation is valid up to and including terms of order ε4.
Note that, in order to maintain this level of precision, we need to keep the lowest-order

contribution to h in the second velocity moment. This satisfies (8.40), which it is now convenient
to rewrite as

∂h(2)

∂t
= − 2

v2
the

[
vivj∂iuj +

∂

∂t

(
u2

2
− uiujvivj

v2
the

)]
f0e. (8.48)

The stress tensor satisfies

∂

∂t

∫
dv vivjh = −n0ev

2
the

2
(∂iuj + ∂jui + δij∇ · u) +

∂

∂t
n0euiuj . (8.49)

Therefore,

∂

∂t

(
∇∇ :

∫
dv vvh

)
= −3

2
v2

the∇2∇ · (n0eu) +
∂

∂t
n0e∇∇ : uu. (8.50)

From (8.45), to lowest order, ∇ ·(n0eu) = −∂ñe/∂t and so the above equation can be integrated
in time:

∇∇ :

∫
dv vvh =

3

2
v2

the∇2ñe + n0e∇∇ : ũu. (8.51)

Inserting (8.51) into (8.47) and using also the fast Poisson equation (8.32) to express ñe via ϕ̃,
we obtain

∂2

∂t2
∇2ϕ̃+ ∇ ·

(
ω2

pe
n̄e
n0e

∇ϕ̃

)
− 3

2
v2

the∇4ϕ̃ = 4πen0e∇∇ : ũu−∇ ·
[
e

me

˜(∇2ϕ̃)∇ϕ̃

]
. (8.52)

The left-hand side of this equation is what was intuited in (8.7). The terms on the right-hand
side of (8.52), not captured in (8.7), are nonlinear interactions between Langmuir waves, which
will disappear in a moment.

The dominant ωpe oscillation in (8.52) can now be taken out in the way that was already
anticipated in §8.1.3, by introducing, via (8.15), the slow-varying complex amplitude ψ. Then,
from (8.35), to lowest order in ε,

u = i
e

2meωpe
∇
(
ψe−iωpet − ψ∗eiωpet

)
. (8.53)

Substituting (8.15) and (8.53) into (8.52), we get Zakharov’s first equation (8.16) in the same
way as we did in §8.1.3. The right-hand side of (8.52) disappears because we can average out
the oscillatory terms with frequencies ωpe and 2ωpe. Finally, substituting (8.53) into (8.44), we
have, for the slow density perturbation,

δn̄e
n0e

=
eϕ̄

Te
− |∇ψ|2

16πn0eTe
. (8.54)

To get ϕ̄, we need to bring in the ions.

8.2.5. Ion Kinetics

Since the left-hand side of the slow Poisson equation (8.31) is O(ε4), while its right-hand side
is O(ε2), (8.31) predictably turns into the quasineutrality equation

δn̄e = Zδni. (8.55)

Combined with (8.54), this becomes

eϕ̄

Te
=
|∇ψ|2

16πn0eTe
+

1

n0i

∫
dv δfi, (8.56)
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where ψ obeys (8.16). The first term in (8.56) is the effective ponderomotive “potential” (in the
fluid-dynamical language, it can also be thought of, perhaps more physically, as the effective
ponderomotive “pressure”: see §8.1.2). The ion distribution function fi = f0i+ δfi is found from
the ion Vlasov–Landau equation (5.1) with the slow potential ϕ̄:

∂fi
∂t

+ v ·∇fi −
Ze

mi
(∇ϕ̄) · ∂fi

∂v
=

(
∂fi
∂t

)
c

. (8.57)

Together with (8.16), (8.57) and (8.56) make up a closed hybrid system describing kinetic ions
and fluid electrons. The electrons affect the ions via the ponderomotive nonlinearity in (8.56),
while the ions modulate the plasma frequency and thereby the dynamics of the electrons.

8.2.6. Ion Fluid Dynamics

Let me now show how ions can become fluid, giving rise to the second equation (8.17) in the
classic Zakharov (1972) system.

The zeroth and first moments of (8.57) are

∂δni
∂t

+ ∇ ·
∫

dv vδfi = 0, (8.58)

∂

∂t

∫
dv vδfi + ∇ ·

∫
dv vvδfi = −Ze

mi
ni∇ϕ̄ = −c2sni∇

(
δni
n0i

+
|∇ψ|2

16πn0eTe

)
, (8.59)

where the last expression was obtained with the aid of (8.56). Combining these two equations
and keeping only the lowest-order terms, both in ε and in Ti/Te, which is now assumed small so
as to allow the ion pressure (stress) tensor in the left-hand side of (8.59) to be neglected, and
replacing δni/n0i with δn̄e/n0e (by quasineutrality), we get Zakharov’s second equation (8.17),
describing sound waves excited by the ponderomotive force.

8.2.7. Boltzmann Quasistatics

When the ions are not cold (Ti/Te is not small), (8.17) regains the ion pressure term, via
which it couples to the rest of the moments of δfi. This is a dissipation channel for the sound
waves, via Landau damping, at a typical rate ∼ kvthi. In the WT language, this is a regime in
which induced scattering of plasmons by ions (§7.2.4) should become the dominant process.

There is, however, a very simple limiting case where kinetic physics again becomes irrelevant.
The characteristic frequency δωk of ψ is given by (8.18). Consider the limit in which the ion
streaming rate greatly exceeds that frequency:

kvthi � δωk ∼ k2λ2
Deωpe ⇔ kλDe �

√
Ti
Te

me

mi
. (8.60)

This is best achievable (obviously) when ions are hot, the opposite limit to the one considered
in §8.2.6. In this limit, the ∂fi/∂t term in the ion kinetic equation (8.57) can be neglected.
It is then easy to verify, by direct substitution, that the resulting equation is solved by the
Maxwell–Boltzmann distribution:

fi =
n0i

(πv2
thi)

3/2
exp

(
− v2

v2
thi

− Zeϕ̄

Ti

)
⇒ δfi = −Zeϕ̄

Ti
f0i ⇒ δni

n0i
= −Zeϕ̄

Ti
. (8.61)

Thus, the ion response is simply Boltzmann. So is the (slow) electron response, except with an
additional effective potential associated with the ponderomotive force—we already know this
from (8.54). Combining (8.61) with that and with quasineutrality, via (8.56), we get

δn̄e = − |∇ψ|2

16π(Te + Ti/Z)
. (8.62)

Interestingly, this is mathematically the same result as (8.21) was for cold ions and kλDe �√
me/mi. Just like in that cold-ion quasistatic limit, in this, hot-ion one, everything is now

wrapped up in a single Zakharov equation—(8.22) with Te replaced by Te + Ti/Z,—which
describes Langmuir dynamics controlled by four-wave interactions (§7.2.2).
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8.3. Hamiltonian Form of Zakharov’s Equations

In order to make a transition from the dynamical equations for the fields ψ and δn̄e
to kinetic equations for the occupation numbers of plasmons and phonons, we need to
recast the former in terms of variables that we can directly connect to the energies and,
therefore, occupation numbers, of our “particles”, in the way it was done in (7.2) for
the quasiparticle formulation of QLT. Thus, for the plasmons, we again have the total
energy71

H l =
∑
p

~ωpNp = V
∑
p

p2|ψp|2

8π
≡
∑
p

~ωpa∗pap, (8.63)

where ψp is the Fourier transform of ψ defined by (8.15), so p2|ψp|2 = 2|Ẽp|2, averaged
over oscillations of frequency ωpe and above. A new variable

ap = p

√
V

8π~ωp
ψp (8.64)

has been introduced, which makes (8.63) look like a Hamiltonian of a system of particles
created or annihilated by the “operators” a∗p and ap. We shall see in a moment that this
is not a coincidence.

Let us now write the first Zakharov equation (8.16) in wave-number space:

p2

(
iω−1

pe

∂

∂t
− 3

2
p2λ2

De

)
ψp =

1

2
p ·
∑
k

(p− k)ψp−kξk, ξk ≡
(
δn̄e
n0e

)
k

, (8.65)

or, in terms of ap,

i
∂ap
∂t
− δωpap =

ωpe

2

∑
k,q

δp,k+q
p · q
pq

aqξk. (8.66)

I have made use of the previously introduced notation (8.18) for the “residual” frequency
δωp and also approximated ωp ≈ ωp−k ≈ ωpe in the nonlinear term.

Now let us turn to the second Zakharov equation (8.17), describing sound waves.
In fact, I need to walk back to the two fluid equations from which it originated: the
ion continuity equation (8.8) and the ion momentum equation (8.9), the former recast
in terms of ξ = δn̄e/n0e using quasineutrality and the latter with δp̄e = Teδn̄e + an
“effective pressure” term representing the ponderomotive force [see (8.13)]:

∂ξk
∂t

= −ik · ui,k,
∂ui,k
∂t

= −ik
(
c2s ξk + χk

)
, (8.67)

where, expanding the quadratic expression for the ponderomotive force as a Fourier
convolution and using (8.64),

χk ≡
(|∇ψ|2)k
16πmin0i

= −
∑
p

p · (k − p)ψpψ∗k−p
16πmin0i

=
~ωpe

2min0iV

∑
p,q

δk,p−q
p · q
pq

apa∗q. (8.68)

At the last step, I made use of the fact that ψq = ψ−q—this follows from (8.15) and
the reality condition ϕ̃−q = ϕ̃∗q. Now, clearly, the flow is potential, ui,k = ikφk, so our

71If the appearance of ~ in a purely classical calculation triggers you, you may safely set ~ = 1
everywhere. I carry it in order to keep track of dimensions, and for the uniformity of the
formalism between here and §7.
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equations become

∂ξk
∂t

= k2φk,
∂φk
∂t

= −c2s ξk − χk. (8.69)

The linear part of these equations is Hamiltonian, in canonical variables (ξk, φk), with
the Hamiltonian being (up to a multiplicative constant) the energy of the sound waves
(cf. Exercise 5.4):

Hs =

∫
dr

(
min0iu

2
i

2
+
n0eTe

2

δn̄2
e

n2
0e

)
=
min0iV

2

∑
k

(
k2φ2

k + c2s ξ
2
k

)
≡
∑
k

~Ωkb∗kbk,

(8.70)
where Ωk = kcs. The last step is accomplished by the standard transformation

bk =

√
min0iV

2~

(√
cs
k
ξk + i

√
k

cs
φk

)
. (8.71)

Note that, while ξk and φk are Fourier transforms of real fields (so ξ−k = ξ∗k and φ−k =
φ∗k), the new variable bk is genuinely complex and so contains full information about
both fields, which can be extracted back from it:

ξk =

√
~k

2min0iV cs

(
bk + b∗−k

)
, φk = −i

√
~cs

2min0iV k

(
bk − b∗−k

)
. (8.72)

The two equations (8.69) can, therefore, be wrapped into one:

i
∂bk
∂t
−Ωkbk =

√
min0iV k

2~cs
χk =

∑
p,q

Mkpqδk,p−qapa∗q, (8.73)

where the mode-coupling coefficients (“matrix elements”) are

Mkpq =
ωpe

2

√
~k

2min0iV cs

p · q
pq

. (8.74)

Using (8.72) in (8.66), we can get the first Zakharov equation into a form that features
the same coupling coefficients:

i
∂ap
∂t
− δωpap =

∑
k,q

Mkpqδp,k+qaq
(
bk + b∗−k

)
=
∑
k,q

Mkpqaq (bkδp,q+k + b∗kδp,q−k) .

(8.75)
It is now manifest that (8.75) and (8.73) are Hamiltonian equations in the form they are
usually written for creation-annihilation variables:

i~
∂ap
∂t

=
∂H

∂a∗p
, i~

∂bk
∂t

=
∂H

∂b∗k
, (8.76)

where the Hamiltonian consists of the free-plasmon energy (8.63) (with the constant
part of the frequency ωpe taken out), the free-phonon energy (8.70), and the interaction
Hamiltonian describing the emission/absorption of phonons by plasmons:

H = ~
∑
k

(δωka
∗
kak +Ωkb

∗
kbk) + ~

∑
k,p,q

δp,k+qMkpq

(
b∗ka
∗
qap + a∗paqbk

)
. (8.77)

The two terms in the interaction Hamiltonian manifestly correspond to the two diagrams
in Fig. 35.
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Exercise 8.3. Plasmon number conservation. Prove (and note) that our equations also
conserve the total number of plasmons N =

∑
p a
∗
pap (which is why it was OK to take the

constant-frequency part out of the Hamiltonian). In Exercise 7.4, you already showed that the
kinetic equation for Np also had this property. Note also that, unlike energy, N is not an
invariant of (8.7), so it is an adiabatic invariant whose conservation depends on the assumption
∂/∂t� ωpe, which got us from (8.7) to (8.16).

That our system ought to be Hamiltonian, and that the Hamiltonian for the three-wave
interactions described by the diagrams in Fig. 35 should have the general form (8.77),
could have been argued a priori, so the added value from the above derivations is that
we have also worked out the coupling coefficients Mkpq and the correspondence between
the creation-annihilation variables ak, bk and the physical fields ϕ̃, δn̄e. If you like the
Hamiltonian approach, you will find a very extensive treatment of its application to
plasma turbulence in the review by Zakharov et al. (1985)—and an even more general
(not specially focused on plasma physics), and more pedagogical, exposition in the now-
classic book by Zakharov et al. (1992).

Exercise 8.4. Hamiltonian for four-wave interactions. Consider the quasistatic version
(8.22) of the Zakharov system. By deriving the evolution equation for ak, or otherwise, show
that the plasmon Hamiltonian with four-wave interactions is

H = ~
∑
k

δωka
∗
kak + ~

∑
k,k′,p,p′

δk+k′,p+p′Mkk′pp′a
∗
pa
∗
p′akak′ , (8.78)

and calculate the coupling coefficients Mkk′pp′ . You will find the answers to this Exercise, as
well as to Exercises 8.5, 8.7, 8.9, and 8.11 in the literature cited above, or in the original, famous
paper by Zakharov (1972)—but following his derivations will not necessarily be easier than
working them out by yourself.

8.4. Weak Langmuir Turbulence

Let me now show you how to derive (§§8.4.1–8.4.2) and solve (§§8.4.3–8.4.6) the kinetic
equations (7.23) and (7.24) starting from the dynamical equations (8.73) and (8.75). As
far as I know, the example of WT considered here was first worked out by Zakharov &
Kuznetsov (1978) and became a minor classic of the WT genre.

Note that because our starting point is a fairly generic Hamiltonian system (with the
nature of the specific problem hidden in Mkpq), the basic strategies and ideas laid out
below will have much more general applicability than to the specific, narrow, and perhaps
even irrelevant, problem of Langmuir–sound turbulence at Ti � Te.

8.4.1. Perturbation Theory

We need evolution equations for Np = 〈|ap|2〉 and nk = 〈|bk|2〉, so let us multiply
(8.75) and (8.73) by a∗k and b∗k, respectively, subtract the complex conjugates of the
same, average72 and see what happens. In fact, we only need to do one equation, e.g.,
the sound-wave one (8.73), because we know that it will have the structure (7.23) and,
once we work out w(p,k), we will be able to write the Langmuir-wave kinetic equation
(7.24) without any further effort.

72What “average” means will be explained in §8.4.2.
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Thus, we have for the phonon occupation number:73

∂nk
∂t

= 2 Im
∑
p,q

δk,p−qMkpq

〈
b∗kapa

∗
q

〉
. (8.79)

As always in nonlinear problems, the second-order correlator depends on the third-order
one—the so-called closure problem. The perturbative solution to this problem is to assume
the nonlinearity to be weak and so to truncate the expansion for the fields in the higher-
order correlator at the linear level. As we shall see shortly, if we do this at the level of
the third-order correlator, everything will vanish, so we need to iterate once more.

Using (8.75) for ap and a∗q and (8.73) for b∗k, we get[
∂

∂t
+ i (ωp − ωq −Ωk)

] 〈
b∗kapa

∗
q

〉
= i

∑
k′,k′′

[
Mkk′k′′δk,k′−k′′

〈
a∗k′ak′′apa

∗
q

〉
−Mk′pk′′

(
δp,k′′+k′

〈
b∗kbk′ak′′a

∗
q

〉
+ δp,k′′−k′

〈
b∗kb
∗
k′ak′′a

∗
q

〉)
+Mk′qk′′

(
δq,k′′+k′ 〈b∗kb∗k′apa∗k′′〉+ δq,k′′−k′ 〈b∗kbk′apa∗k′′〉

)]
≡ iAkpq. (8.80)

Note that, since only the difference of Langmuir frequencies enters, I have, for brevity of
notation, replaced δωp with ωp. We do not need to go any further in perturbation theory
and so can solve the above equation treating the right-hand side as a constant (being an
average, it changes slowly in time compared to any of the waves’ oscillations):

〈
b∗kapa

∗
q

〉
=

1− e−i(ωp−ωq−Ωk)t

ωp − ωq −Ωk
Akpq → iπδ(ωp − ωq −Ωk)Akpq (8.81)

as t→∞ (i.e., after many wave periods), by the same token as in (5.40)—there will be
a lot of these delta functions in kinetic theory!

Now we need to calculate the fourth-order correlation functions inside Akpq. That will
require another conceptual step.

8.4.2. Random-Phase Approximation

Our dynamical equations (8.73) and (8.75), with their small nonlinearities, describe
the evolution of amplitudes and phases of the dynamical variables: ak = |ak|(t)eiθk(t) and
similarly for bk. The amplitudes evolve slowly (to lowest order in the nonlinearity, not
at all) and phases quickly: θk(t) ≈ ωkt. This is not unlike (indeed, exactly analogous)
to ballistic motion of particles in an ideal gas. When nonlinearity is introduced, even
if small, the trajectories are perturbed and phases quickly stochasticised—this too is
analogous to molecular chaos arising even from infrequent collisions between particles.74

Thus, we shall assume the randomness of phases and consequent vanishing (to lowest
order in the perturbation theory) of correlations between the dynamical variables except

73I have removed the time averaging (denoted by overbars) that was needed to iron out variation
of the Langmuir electric fields on time scales shorter than the sound frequency. Any sensible
averaging here will take care of that automatically.
74The fact that the wave frequencies are dispersive helps: as time goes on, different k’s
decorrelate—this is similar to phase mixing.
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when their phases manage to cancel exactly.75 To wit:

〈ak〉 =
〈
|ak|eiθk

〉
= 0, (8.82)

〈akak′〉 =
〈
|ak||ak′ |ei(θk+θk′ )

〉
= 0, (8.83)

〈aka∗k′〉 =
〈
|ak||ak′ |ei(θk−θk′ )

〉
= Nkδk,k′ . (8.84)

By the same token, all odd-order correlators vanish, as do all even-order ones that do
not have an equal number of occurrences of ak and a∗k. Thus, taking, e.g., one of the
fourth-order correlators from (8.80):〈

a∗k′ak′′apa
∗
q

〉
= Nk′Np

(
δk′,k′′δp,q + δp,k′δq,k′′

)
. (8.85)

Also, in a system where frequencies of different types of waves are well separated (ωp �
Ωk always), only correlations between the same species of waves survive because otherwise
phases cannot be matched. Let us do two other correlators in (8.80):〈

b∗kbk′ak′′a
∗
q

〉
= nkNqδk,k′δq,k′′ , 〈b∗kbk′apa∗k′′〉 = nkNpδk,k′δp,k′′ . (8.86)

The rest of the correlators in (8.80) are zero.

Exercise 8.5. Work out, under the same assumptions, the 6th-order correlator
〈
akapaqa

∗
k′a
∗
p′a
∗
q′
〉

in terms of the second-order ones (Nk = 〈|ak|2〉). This will come useful in Exercise 8.7.

We are done: the right-hand side of (8.80) is

Akpq = MkpqNpNq −MkpqnkNq +MkqpnkNp

= Mkpq [NpNq + (Np −Nq)nk] . (8.87)

Note that the first term in (8.85) did not contribute because M0k′k′ = 0, and that
Mkpq = Mkqp was used to simplify things. Putting (8.87) back into (8.79), via (8.81),
we recover, triumphantly, the anticipated kinetic equation in the form (7.23):

∂nk
∂t

= 2π
∑
p

M2
k,p,p−kδ(ωp − ωp−k −Ωk) [NpNp−k + (Np −Np−k)nk] ≡

∑
p

Tp,k .

(8.88)
Manifestly, by comparison with (7.23) [or (7.27)],

w(p,k) = 2πM2
k,p,p−k = w0k

(
p

p
· p− k
|p− k|

)2

, w0 =
π~ω2

pe

4min0iV cs
. (8.89)

In fact, to calculate this, we did not even need to follow all of the terms in (8.80), it
was enough just to work out one of them, e.g.,

〈
a∗k′ak′′apa

∗
q

〉
∝ NpNp−k. With (8.89)

in hand, we also have the kinetic equation (7.24) for the plasmons: to write it in a short
form anticipated in (7.26),

∂Np
∂t

=
∑
k

(Tp+k,k − Tp,k) , (8.90)

where Tp,k is the transfer function (7.27), now fully specified by the expression under
the wave-number sum in (8.88).

The rules (8.82–8.86), and similar, for calculating correlators are generally known as

75“Exactly” means exactly here: this is not just about matching linear frequencies!
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the random-phase approximation (RPA). Since they amount to splitting higher-order cor-
relators into second-order ones, they are mathematically equivalent to assuming the fields
to be Gaussian to lowest order in the perturbation theory (the dynamical variables are an
accumulation of a sequence of random, independent kicks due to nonlinear interactions
with each other—an instance of Central Limit Theorem, one might argue). Recalling
the calculations in §7.2, it is now obvious that this assumption was implicitly already
made when the rates of change of occupation numbers were written as products of these
numbers—a quasiparticle version of Boltzmann’s (in fact, Maxwell’s and Ehrenfest’s)
Stosszahlansatz (no wonder then that the standard form of the collision integral emerged
so easily in §7.2.5). Just how valid, or otherwise, this assumption might be, is, as often
with such things, a subtler question than it looks. I will sweep it resolutely under the
carpet, while referring you to extended discussions of the matter in the textbooks by
Zakharov et al. (1992) and Nazarenko (2011), and move on happily to play with the
kinetic equations (8.88) and (8.90).

Exercise 8.6. To practice perturbation theory and the use of RPA, write, starting from (8.75),
the evolution equation for Np in terms of third-order correlators, then solve for the latter in terms
of fourth-order ones, split the averages, and verify that the kinetic equation for the plasmons is
indeed (8.90).

Exercise 8.7. Kinetic equation for weak Langmuir turbulence with four-wave inter-
actions. Starting from the Hamiltonian derived in Exercise 8.4, work out, along the same lines
as done above, the kinetic equation for the plasmon occupation number in Langmuir turbulence
with four-wave interactions.

8.4.3. Further Simplifications and Approximations

As I promised in §7.4, I shall look for isotropic solutions of the kinetic equations (8.88)
and (8.90), so Np depends only on p and nk on k. This is sensible because the frequencies
only depend on the magnitudes of the wave numbers, ωp = ωp, Ωk = Ωk—there are no
special directions in the system.76 Since both ωp and Ωk are simple power functions,

ωp = ωpe +
3v2

the

4ωpe
p2 ≡ ωpe + αp2 ≡ ωpe + δωp, Ωk = csk, (8.91)

there are one-to-one correspondences between wave numbers and frequencies, a feature
that will greatly simplify calculations. Indeed, we can consider the occupation numbers
to be functions of the frequencies only: Np = N(ωp) and nk = n(Ωk). Then the transfer
function is also a function of frequencies only:

Tp,k = w0k

(
p2 − p · k
p|p− k|

)2

δ
(
ωp − ω|p−k| −Ωk

)
[NpNp−k + (Np −Np−k)nk]

≡ δ
(
ωp − ω|p−k| −Ωk

)
T̃ (ωp, Ωk). (8.92)

Everything inside T̃ (ωp, Ωk) that depends on ω|p−k| is reconstructible in terms of ωp and
Ωk via the delta function. This includes p ·k, which appears in the prefactor: indeed, the
argument of the delta function is77

αp2 − α|p− k|2 −Ωk = α(2p · k − k2)−Ωk = 0 ⇒ p · k =
k2

2
+
Ωk
α
. (8.93)

76This will become spectacularly untrue in systems with a background magnetic field: see §§15.3
and 15.4.
77So an “optimal” phonon for a plasmon to emit is one with k ≈ 2p (this was Exercise 7.3b).
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A very attractive further simplification is now possible if we assume δωp � Ωk (which
is true outside the quasistatic limit of §8.1.4):

Tp+k,k = δ
(
ω|p+k| − ωp −Ωk

)
T̃ (ω|p+k|, Ωk)

≈ δ
(
ω|p+k| − ωp −Ωk

) [
T̃ (ωp, Ωk) +

(
ω|p+k| − ωp

)︸ ︷︷ ︸
= Ωk

∂T̃

∂ωp

]
(8.94)

In the same vein, expanding Np−k = N(ω|p−k|) in (8.92) in ωp − ω|p−k| = Ωk and using
(8.93) in the prefactor, we find

T̃ (ωp, Ωk) ≈ w0k

(
1− k2

2p2

)2(
N2
p +Ωknk

∂Np
∂ωp

)
. (8.95)

Note that Ωk∂Np/∂ωp = (csk/2αp)∂Np/∂p.
From (8.95), we see immediately that for the Rayleigh–Jeans distributions (7.41),

T̃ (ωp, Ωk) = 0, so they are (still) legitimate stationary solutions of our equations. It
makes sense that these solutions should be there, but they are not what we are after—we
should be looking for the constant-flux solutions promised in §7.4.

8.4.4. Plasmon Flux

Let us prepare to use (8.94) and (8.92) in the plasmon kinetic equation (8.90), where
we can simplify the k sum by noticing that the dependence on the direction of k (with
respect to p) is only left inside the delta functions:∑
k

δ
(
α(2p · k ± k2)− csk

)
=

V

(2π)3

∫ ∞
0

dk k2 2π

∫ 1

−1

dcos θ δ
(
α(2pkcos θ ± k2)− csk

)
,

=
V

4π2

∫ 2p±cs/α

0

dk k

2αp
, (8.96)

where “+” applies to the integral of (8.94) and “−” to the integral of (8.92). Note that
cs/α� 2p because Ωp � δωp. We can now turn the plasmon kinetic equation (8.90) into
the conservative form (7.44) by defining, as was done in §7.4, N̄p = (V p2/2π2)Np and
using (8.96):

∂N̄p
∂t
≈
(
V

2π2

)2
p

4α

{∫ 2p+cs/α

0

dk

[
kT̃ (ωp, Ωk) + kΩk

∂T̃

∂ωp

]
−
∫ 2p−cs/α

0

dk kT̃ (ωp, Ωk)

}

≈
(
V

2π2

)2
p

4α

(
2cs
α

2pT̃ +

∫ 2p

0

dk
csk

2

2αp

∂T̃

∂p

)

=

(
V

2π2

)2
cs

8α2

(
8p2T̃ +

∫ 2p

0

dk k2 ∂T̃

∂p

)
= −∂Γp

∂p
, (8.97)

where the plasmon-number flux is

Γp = −
(
V

2π2

)2
cs

8α2

∫ 2p

0

dk k2T̃ (ωp, Ωk)

= −
(
V

2π2

)2
w0cs
8α2

∫ 2p

0

dk k3

(
1− k2

2p2

)2(
N2
p +

csknk
2αp

∂Np
∂p

)
. (8.98)
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I have used the approximate expression (8.95) for T̃ (ωp, Ωk). This approximation is
called the “diffusion approximation” because under it, (8.97) has turned into a diffusion
equation for N̄p in wave-number space.78

So this is what I promised you in §7.4: a specific expression for a flux, setting which to
be constant will yield stationary nonequilibrium distributions. Here is how to find them.
Let us look for power-law solutions:

Np = Ap−x, nk = Bk−y. (8.99)

Putting these into (8.98) and rescaling p out of the integral by introducing a new
integration variable ξ = k/p, we get

Γp = −
(
V

2π2

)2
w0csA

2

8α2
p4−2x

∫ 2

0

dξ ξ3

(
1− ξ2

2

)2(
1− csBx

2αA
ξ−y+1px−y−1

)
︸ ︷︷ ︸

≡ I1(p)

. (8.100)

This can only be independent of p if the powers of p in both terms vanish, giving x = 2
and y = x− 1 = 1, so

Np = AΓ p
−2, np = BΓ p

−1 . (8.101)

I have equipped the constants with a subscript Γ to emphasise that they are specific to
the regime in which the distributions are determined by the constancy of the plasmon
flux.

Substituting (8.101) back into (8.100), we get, after doing the integral I1 = 4/3:

Γ = −
(
V

2π2

)2
w0csA

2
Γ

6α2

(
1− csBΓ

αAΓ

)
. (8.102)

The sign of this expression is not definite, so we do not yet have a way of knowing
whether the plasmon number flows to smaller or larger p. The answer is that it will flow
to smaller p, but we will only be able to deduce this formally once we know what happens
with the energy flux.

78That this simplification should be possible is a particular feature of the problem at hand, not
a generic property of WT. Neither is it essential to have such an approximation in order to be
able to find constant-flux, power-law solutions as I shall do below. Such solutions (can) also
exist in cases where the rates of change of quasiparticle occupation numbers are only explicitly
expressible as wave-number integrals—a famous example is Exercise 8.9.
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8.4.5. Energy Flux

Let us turn to the phonon kinetic equation (8.88). This contains a similar integral to
those we encountered above:

∂nk
∂t

=
∑
p

δ
(
ωp − ω|p−k| −Ωk

)
T̃ (ωp, Ωk)

=
V

(2π)3

∫ ∞
0

dp p2T̃ (ωp, Ωk) 2π

∫ 1

−1

dcos θ δ
(
α(2pkcos θ − k2)− csk

)
≈ V

2π2

w0

4α

∫ ∞
k/2

dp p

(
1− k2

2p2

)2(
N2
p +

csknk
2αp

∂Np
∂p

)
=

V

2π2

w0A
2

4α
k2−2x

∫ ∞
1/2

dζ ζ1−2x

(
1− 1

2ζ2

)2(
1− csBx

2αA
ζx−2kx−y−1

)
︸ ︷︷ ︸

≡ I2(k)

. (8.103)

At the last step, I substituted the power-law solutions (8.99) and rescaled k out of the
integral by changing the integration variable to ζ = p/k.

We are now ready to construct an equation for the evolution of the total-energy
spectrum

Ēk =
V k2

2π2
(~Ωknk + ~δωkNk) . (8.104)

This was already defined in (7.42), but here I have taken out the bit corresponding to the
constant part of the plasmon frequency, ~ωpeNk, because that has the same evolution as
the plasmon number, governed by (8.97). I shall call Ēk “residual energy”. Using (8.103),
(8.97) and (8.100), we get

∂Ēk
∂t

=

(
V

2π2

)2
w0A

2

4α
~Ωkk4−2xI2(k)− ~δωk

∂Γk
∂k

=

(
V

2π2

)2 ~w0csA
2

4α

[
k5−2xI2(k) +

1

2
k2 ∂

∂k
k4−2xI1(k)

]
︸ ︷︷ ︸

= k5−2x [I2 + (2− x)I1]

≡ −∂εk
∂k

. (8.105)

This expression can only be scale-invariant if the k dependence in I1 and I2 disappears.
The condition for that is

y = x− 1. (8.106)

In fact, this could have perhaps been guessed a priori: it is just the statement that
the contributions to Ēk from the phonons and the plasmons have the same scaling:
Ωknk ∼ δωkNk.

Adopting this assumption, we conclude immediately that a stationary solution requires

I2 + (2− x)I1 = 0, (8.107)

where the integrals, which now depend only on the exponent x and on the constants A
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and B, are

I1 =

∫ 2

0

dξ ξ3

(
1− ξ2

2

)2(
1− csBx

2αA
ξ−x+2

)
, (8.108)

I2 =

∫ ∞
1/2

dζ ζ1−2x

(
1− 1

2ζ2

)2(
1− csBx

2αA
ζx−2

)
=

∫ 2

0

dξ ξ2x−3

(
1− ξ2

2

)2(
1− csBx

2αA
ξ−x+2

)
. (8.109)

The last transformation of I2 was accomplished by changing the integration variable to
ξ = 1/ζ, mappping the integration domain of I2 onto that of I1. The two integrals become
identical at x = 3, which then conveniently solves (8.107). Thus, we have obtained the
constant-residual-energy-flux solutions:

Nk = Aεk
−3, nk = Bεk

−2 . (8.110)

As in (8.101), the constants have acquired a subscript indicating that they pertain to the
constant-ε regime only.

Let us now look at the residual-energy flux. Unlike for Γp in (8.98), we do not have a
nice general expression for εk in terms of Nk and nk. For power-law solutions, however,
we can easily get εk from (8.105) by direct integration:

εk = −
(
V

2π2

)2 ~w0csA
2

4α

I2 + (2− x)I1
6− 2x

k6−2x. (8.111)

The k dependence does indeed disappear at x = 3, but the remaining expression has a
0/0 indeterminacy. By L’Hôpital’s rule,

−
[
I2 + (2− x)I1

6− 2x

]
x=3

=
1

2

[
∂I2
∂x

+ (2− x)
∂I1
∂x
− I1

]
x=3

= c1 + c2
csBε
αAε

, (8.112)

where the numerical coefficients, arising from the ugly melée of fractions and logs that is
the exact calculation of I1, I2, and their derivatives, are

c1 =
4(3 ln 2− 1)

9
≈ 0.035, c2 =

3754

3675
− 44 ln 2

35
≈ 0.150. (8.113)

For the record,

I1 =
4

3
+

25−xx [32 + x(x− 10)]

(x− 6)(x− 8)(x− 10)

csB

αA
, (8.114)

I2 =
22x−3 [4 + x(x− 3)]

x(x2 − 1)
− 2x−1 [8 + x(x− 2)]

(x+ 2)(x+ 4)

csB

αA
, (8.115)

hence, after differentiation and substitution of x = 3, the values (8.113).

The useful takeway is that the coefficients (8.113) are positive, and so then is the residual-
energy flux (8.111), always:

ε =

(
V

2π2

)2 ~w0csA
2
ε

4α

(
c1 + c2

csBε
αAε

)
> 0 . (8.116)
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Figure 39. Direct and inverse cascades. Life in the shaded regions is not described by the
scale-invariant WT calculation, but the spectra and cascades in between are. The dissipation
region at small scales starts at kλDe ∼ 1, where Langmuir waves start getting heavily Landau
damped (cf. Fig. 14). The (presumed) dissipation region at large scales, where WT breaks down,
should start around k ∼ kc given by (8.127).

8.4.6. Direct and Inverse Cascades

Thus, if energy is injected into a plasmon–phonon gas at some wave number k0 and at
the rate ε, it will be cascaded directly, i.e., flow to larger wave numbers (smaller scales)
k > k0, leaving in its wake the distributions (8.110). The energy here is the residual
energy (8.104), from which the constant part of the plasmon frequency has been taken
out.

The latter (in fact, dominant) part of the total energy,
∑
p ~ωpeNp, is proportional to

the plasmon number N and conserved separately. It cannot also have a direct cascade.
Indeed, the plasmon flux is given by (8.100) and we can easily calculate it for the spectra
(8.110), i.e., for x = 3 and y = 2: using (8.114),

Γk = −
(
V

2π2

)2
w0csA

2
ε

8α2

(
4

3
− 44

35

csBε
αAε

)
k−2 → 0 as k →∞. (8.117)

So it peters out at small scales. The natural conclusion is, therefore, that the plasmon
number will cascade inversely, i.e., flow to smaller wave numbers (larger scales) k < k0.
The expression (8.102) must then be negative—not being sign-definite, it can be, implying
csBΓ < αAΓ for the distributions (8.101).

The dual-cascade picture just described is illustrated in Fig. 39.

Exercise 8.8. What is the residual-energy flux at k < k0? Does it matter in this region?

There is a very simple dimensional argument, invented by Fjørtoft (1953) in the context of
2D turbulence, that allows one to predict which invariant will flow to small scales and which to
large. Dimensionally, the constant-flux distributions must satisfy

kN̄k
τk
∼ Γ, kĒk

τk
∼ ~αk3N̄k

τk
∼ ε, (8.118)

where τk is the effective rate at which nonlinear interactions happen at the scale k−1. At the
injection wave number k0, this implies that

ε ∼ ~αk2
0Γ. (8.119)

If there were a direct cascade of plasmon number, this would imply, at k � k0, an arriving
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residual-energy flux

kĒk
τk
∼ ~αk2Γ � ε. (8.120)

No such supply of residual energy is available from the injection scale, so this scenario cannot
be realised. In contrast, if the plasmon number cascades inversely, to k � k0, the amount of
residual energy arriving there is minuscule, so everything is fine. The basic conclusion is that
the invariant that has more powers of k cascades directly and the one that has fewer inversely.

Let me summarise our formal progress. We have found the scaling of the distributions,
the direction of cascades, and the relationships (8.102) and (8.116) between the constant
fluxes corresponding to these cascades and the constants AΓ , BΓ , Aε, and Bε in the
distributions (8.101) and (8.110). Thus, we have a viable solution.79 Note that the
fact that the integrals (8.108) and (8.109) that went into the calculation of the fluxes
converged is the confirmation of locality of fluxes—a blow up would have indicated that
the whole approach of solving in scale-invariant ranges of k away from injection and
dissipation scales had, in fact, been inapplicable.

There is one outstanding task that I will not take up. Since the constants AΓ , BΓ and
Aε, Bε are in general different, we have four constants to determine and so far only two
equations relating them to the fluxes: (8.102) and (8.116). The additional constraints
will come from matching the fluxes to the injection region around k0, where the (in
general, nonuniversal) physics of energy injection will connect Γ and ε to the perturbation
amplitudes—and thus to k0 and the constants.

An elegant way to sort this out would be to demand that the plasmon flux (8.117) at k > k0

and the energy flux at k < k0 (calculated in Exercise 8.8) be exactly zero. The former condition
gives a nontrivial relationship between Aε and Bε, but in trying to enforce the latter, one runs
into the problem that setting εk = 0 also makes Γ = 0 at k < k0. This exhumes from under the
rug a subtlety going rather beyond the range of issues that I wish to enagage with here. The
problem at hand has an annoying degeneracy: the constant-Γ scalings (8.101) actually coincide
with the scalings of the equilibrium Rayleigh–Jeans distributions (7.41). Does this mean that
they cannot support anything other than zero fluxes? This wrinkle was ironed out by Kanashov
& Rubenchik (1980), whose solution is reproduced at the end of §3.2.2 of Zakharov et al. (1992):
the gist of it is that the true solutions are, in fact, ever so slightly different from the power
laws (8.101) (there are logarithmic corrections) and can support non-zero fluxes after all. Do
investigate if you are intrigued.

This is as much as I shall say about the formal WT theory. The subject is much vaster
than this, and full of deep insights, subtle nuances, clever tricks, twists and turns. I
have chosen to work through one complete calculation, which features many of the key
ideas and methods of the WT theory, but if you wish to become an expert, read the
textbooks by Zakharov et al. (1992) and Nazarenko (2011) and the rest of the literature
cited above.80 Either of Exercises 8.9 or 8.10 offers a proactive independent-study path
that should prove both challenging and exciting.

Exercise 8.9. Spectra of Langmuir turbulence with four-wave interactions. Starting
from the kinetic equation derived in Exercise 8.7, work out the Langmuir-wave spectra arising
from four-wave interactions. Your conclusion should be that plasmons will flow to larger scales,

79It is perhaps worth spelling out that this is a solution. No proof has been provided, and there
is none, that the isotropic solution is the only one possible. Indeed, anisotropic solutions do
exist. I again refer you to Musher et al. (1995) for a taste of them.
80The example that I have chosen is not, in fact, (in my view) particularly clearly presented in
Zakharov et al. (1992), or in the original paper by Zakharov & Kuznetsov (1978), so I hope this
section has provided some added value.
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leaving behind a distribution Nk ∝ k−7/3. The answers are in Zakharov (1972) or Zakharov
et al. (1992). In getting there, you will learn about Zakharov transformations, an inspired feat of
analytical skulduggery, of which the mapping ζ = 1/ξ in §8.4.5 was an almost trivial example.
You will also experience locality not being always guaranteed.

Exercise 8.10. Induced scattering of Langmuir waves on ions. This is an independent-
study topic. Consider the regime (Ti ∼ Te) in which sound waves are strongly damped but
not so strongly as for the hot-ion quasistatic limit (§8.2.7) to apply. That is, the system is
described by the first Zakharov equation (8.16) coupled via δn̄e to the ion kinetic equation
(8.57). In this regime, the dominant nonlinear process is the induced scattering of plasmons on
ions (analogous to what was considered in §7.2.4). Work out what the scattering probability
is, what, therefore, are the kinetic equations for the plasmons and the ions, and study what
kind of solutions they might have. In the literature, the common monicker for this regime is
“isothermal Langmuir turbulence” (“isothermal” in the sense that Ti = Te; the Langmuir–
sound turbulence discussed above is, accordingly, “nonisothermal Langmuir turbulence”). In
navigating the literature, you may choose to follow the Tsytovich approach, featuring heavy-
duty perturbative kinetic calculations (see the books cited at the end of §7.1 or the original
papers cited in §7.2.4), or (or and?) the Zakharov one, with a more Hamiltonian flavour (see
reviews by Zakharov et al. 1985 and Musher et al. 1995, the latter focussing specially on WT).
If you plough through even some of it, you have my respect, but you may well emerge with an
enduring hatred of the Soviet scientific writing style.

8.4.7. Breakdown of WT Approximation

Let me focus on a key finding of the above WT calculation: both the plasmons’ number
N and, to lowest approximation, their energy ~ωpeN are pushed by the WT interactions
to ever larger scales. As phonons have a shallower distribution at these scales than the
plasmons, nk ∝ kNk (and an even shallower energy spectrum ~kcsnk), everything is
dominated by the plasmons there—a phenomenon sometimes referred to as the formation
of a “Langmuir condensate”. I shall now argue that the WT approximation will break
down for this condensate, below a certain critical wave number.

The condition for a system to be in the WT regime is that quasiparticles endure over a
number of interactions, i.e., their frequencies must be large compared to the characteristic
rate at which the nonlinearity acts—in §7.5, I wrote this as (7.46). Let us check when
this is satisfied for Zakharov’s equations. For the first of them, (8.16), describing the
evolution of the plasmon field, this requirement takes the form

δωk =
3

2
k2λ2

Deωpe � t−1
nl ∼ ωpe

δn̄e
n0e

⇔ δn̄e
n0e
� k2λ2

De , (8.121)

an upper limit on the perturbed density amplitude, or, equivalently, a lower limit on the
wave number.

Now consider the second Zakharov equation (8.17). The condition for the nonlinear
term in this equation to be small compared to the linear terms is

δn̄e
n0e
�W =

|Ẽ|2
8πneTe

, (8.122)

where W is the ratio of electric-field energy density to the electron thermal pressure—a
measure of the energy in the plasmon field. Obviously, in order for the conditions (8.122)
and (8.121) to be realisable simultaneously, it must be the case that

W � k2λ2
De . (8.123)
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Note that since Ẽ = −∇ϕ̃, this condition is equivalent to

eϕ̃

Te
� 1, (8.124)

whereas Zakharov’s equations are perfectly valid when eϕ̃/Te ∼ 1 [see (8.38)], so they
are able to describe non-WT dynamics.

As Langmuir excitations move to smaller k’s, the condition (8.123) of WT’s validity
for those excitations at those scales, viz.,

1

neTe

∫ k

0

dp ~ωpeN̄p � k2λ2
De, (8.125)

becomes ever more stringent and eventually untenable. I have integrated the plasmon
energy only up to k so as to include just the larger-scale excitations. Let us estimate
when (8.125) becomes untenable. Since, according to (8.101), Np ∝ p−2, we have81

N̄p ∝ p2Np ∝ p0 ⇒ N ∼
∫ k0

0

dp N̄p ∼ k0N̄p ⇒
∫ k

0

dp ~ωpeN̄p ∼
kH l

k0
,

(8.126)
where H l ≈ ~ωpeN ≡WneTe is the total plasmon energy, with W as defined in (8.122).
Therefore, the critical wave number kc at which WT breaks down is

kcλDe ∼
W

k0λDe
. (8.127)

Thus, WT drives itself into a strong-turbulence regime. Something strongly nonlinear
must happen at k . kc for these scales to receive the plasmon flux supplied to them by
the WT cascade and, if there is to be a stationary state, to dissipate it. What that might
be is the subject to which I shall now turn.

Exercise 8.11. Breakdown of WT approximation for Langmuir turbulence in the
quasistatic limit. In §8.1.4, we saw that at kλDe �

√
me/mi, the ponderomotive force arising

from the plasmon field becomes too slow to generate sound waves and the ion dynamics instead
become quasistatic. Then there are no longer sound waves, and the inequality (8.122) turns into
equality. Together with (8.121), it again gives (8.123) as the validity condition for WT—but this
is a different WT, one in which four-wave interactions dominate. As shown in Exercise 8.9, this
too will support an inverse plasmon cascade (indeed it is the sole physically realisable constant-
flux solution for that kind of turbulence). Suppose the transition to this WT regime happens
before the critical wave number (8.127) is reached. Estimate the critical wave number at which
WT will break down in this case.

Exercise 8.12. Weak MHD turbulence. If you have already followed §15.3, this is a good
place to do Exercise 15.12. Note in particular the rather subtle set of issues around the breakdown
of WT approximation for weak RMHD turbulence—you can think about that on your own
and/or read Schekochihin (2022, §4 and Appendix A).

81The contribution to N from p > k0 is not, strictly speaking, negligible. Since Np ∝ p−3 in that

range [see (8.110)], the shell-integrated distribution is N̄p ∝ p−1. This will give an additional
contribution to N of the order of ln(1/k0λDe) (assuming dissipation kicks in at kλDe ∼ 1). This
is a log of a largish number, but it is not a big crime to view it as order unity. Note that unlike the
plasmon energy, the energy of the phonons is very heavily dominated by the smallest scales (λDe)
because, at k > k0, nk ∝ k−2 and so the corresponding 1D energy spectrum is ∝ Ωkk2nk ∝ k.
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8.5. Kinetics and Fluid Dynamics of Langmuir Condensate

The WT inverse cascade has filled large scales with a Langmuir condensate, which we
no longer assume satisfies the WT assumptions. Phonons are scarce. What can be done
to describe this situation? Here is another flavour of quasiparticle kinetics that is both
useful and interesting to play with.

8.5.1. Spatially Inhomogeneous Quasiparticle Kinetics

Let us consider the interaction of the condensate with a very slow and very large-
scale (much larger than the plasmon scales) density field—a gentle modulation of the
plasmon frequency. Zakharov’s equations (8.16) and (8.17) are still valid. We shall still
want to treat the Langmuir oscillations as quasiparticles but now let us think of them
as living in a spatially varying density field (equivalently, potential) determined by the
ion motions, with the latter not necessarily quantisable into phonons—meaning that the
nonlinearity in (8.17) no longer needs to be small. This breaks the restriction (8.122)
and, therefore, (8.123) no longer needs to be satisfied, even though (8.121) can still hold
(and so plasmons are still plasmons). This partial liberation from WT will allow us to
derive again the kinetic equation for the plasmons by working out an evolution equation
for their average energy at each wave number, but this time treating the slow density
field δn̄e as non-random, and thus not involved in the averaging. This approach and the
results of it that I will show below (§8.5.2 and Exercises 8.13 and 8.14), were pioneered,
early in the WT game, by Vedenov & Rudakov (1965) and pedagogically expanded in
the follow-up paper by Vedenov et al. (1967).

Mathematically, the new trick is to introduce a two-point correlation function of the
plasmon field

〈ψ(r)ψ∗(r′)〉 = C(R,ρ), R =
r + r′

2
, ρ = r − r′, (8.128)

and treat it as a function not of r and r′ but the two new variables R and ρ introduced
above. We shall assume that ∇ρC �∇RC, i.e., that the ρ variable captures the smaller
scales at which plasmons exist, while R picks up the spatial inhomogeneity associated
with the gentle variation of δn̄e (this is the same as taking the limit, which I have so far
avoided, of phonon wave numbers being small compared to the plasmon ones, k � p in
the notation of §7.2.3; this limit should be recoverable from our new approach). In terms
of the new variables,

r = R+
ρ

2
, r′ = R− ρ

2
, ∇r =

1

2
∇R + ∇ρ, ∇r′ =

1

2
∇R −∇ρ. (8.129)

The average energy density of the plasmon field at any given point R in space is

〈|∇ψ(R)|2〉
8π

=

[
∇r ·∇r′〈ψ(r)ψ∗(r′)〉

8π

]
r=r′=R

≈

[
−
∇2
ρC(R,ρ)

8π

]
ρ=0

=
∑
p

p2Cp(R)

8π
≡
∑
p

~ωpfp ⇒ fp(R) ≈ p2Cp(R)

8π~ωpe
, (8.130)

where Cp(R) is the Fourier transform of C(R,ρ) =
∑
p e

ip·ρCp(R) with respect to ρ.
The new definition of the plasmons’ occupation-number density fp is obvious; what I
previously called their occupation number is the integral of this new quantity over all
space: Np =

∫
dR fp(R), but the new feature now is that fp is allowed to vary (slowly)

in space.
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Let us make an enlightened guess as to what the kinetic equation for fp(R) must be.
This is a distribution function of quasiparticles whose one-particle Hamiltonian is

H1(R,p) = ~ωp(R) ≈ ~ωpe

[
1 +

1

2

δn̄e(R)

n0e
+

3

2
p2λ2

De

]
. (8.131)

Its dependence on the quasiparticle momentum ~p comes from the usual wave-number
dispersion in the frequency and its dependence on the particle position R from the fact
that the frequency is slowly modulated in space by δn̄e. Then, by Liouville’s theorem,
the distribution function of these particles must satisfy (with ~’s helpfully cancelling) an
equation that is quite familiar to the practitioners of “ray-tracing” optics:

∂fp
∂t

= −Ṙ ·∇Rfp − ṗ ·
∂fp
∂p

= −∂ωp
∂p
·∇Rfp + (∇Rωp) · ∂fp

∂p
. (8.132)

Denoting by vp = 3ωpeλ
2
Dep the group velocity of a Langmuir wave and resuscitating

the §8.3 notation ξ = δn̄e/n0e, we get

∂fp
∂t

+ vp ·∇Rfp −
ωpe

2
(∇Rξ) ·

∂fp
∂p

= 0 . (8.133)

This looks exactly like the electrostatic Vlasov equation (1.50), with the wave’s group
velocity playing the part of quasiparticle’s velocity and the ion-scale (electron) pressure
providing the effective potential. The proof that this really works is given below, but the
easily convinced and the impatient can leap over it.

Derivation of (8.133). The starting point must be Zakharov’s first equation (8.16), which I
would like to rewrite as follows

∇2
r

(
iω−1

pe
∂ψ

∂t
+

3

2
λ2

De∇2
rψ −

ξψ

2

)
= −1

2
∇r · (ψ∇rξ) . (8.134)

Let us multiply this equation by ∇2
r′ψ
∗(r′) and subtract the same equation but complex-

conjugated and with r and r′ swapped:

∇2
r∇2

r′

[
iω−1

pe
∂

∂t
+

3

2
λ2

De

(
∇2
r −∇2

r′
)
− ξ(r)− ξ(r′)

2

]
ψ(r)ψ∗(r′) =

− 1

2

{
∇2
r′∇r ·

[
ψ(r)ψ∗(r′)∇rξ(r)

]
−∇2

r∇r′ ·
[
ψ(r)ψ∗(r′)∇r′ξ(r′)

]}
. (8.135)

Now average this equation, leaving ξ outside the averages, as promised above, and use (8.129) to
transform everything to the (R, ρ) variables. Assuming slow variation of ξ, we may approximate

ξ(r) ≈ ξ(R) +
ρ

2
·∇Rξ(R), ξ(r′) ≈ ξ(R)− ρ

2
·∇Rξ(R) ⇒ ∇rξ(r) ≈∇r′ξ(r′) ≈∇Rξ(R)

(8.136)
and neglect ∇RC compared to ∇ρC wherever opportune. The result is

∇4
ρ

[
iω−1

pe
∂

∂t
+ 3λ2

De∇ρ ·∇R −
1

2
(ρ ·∇Rξ)

]
C(R,ρ) = −∇2

ρ

[
(∇Rξ) ·∇ρC(R,ρ)

]
. (8.137)

Finally, Fourier transform in ρ and divide through by −ip2:(
ω−1

pe
∂

∂t
+ 3λ2

Dep ·∇R
)
p2Ck =

p2

2
(∇Rξ) ·

∂Cp
∂p

+ (∇Rξ) ·pCp =
1

2
(∇Rξ) ·

∂

∂p
p2Cp. (8.138)

Since Cp is fp times a constant [see (8.130)], (8.138) only needs to be divided by 8π~ to become
the anticipated kinetic equation (8.133), q.e.d.

To (8.133) must be appended an equation for ξ(R), which is just the second Zakharov
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equation (8.17), whereby ξ is coupled to the plasmon distribution via the ponderomotive
force: (

∂2

∂t2
− c2s∇2

R

)
ξ(R) = ∇2

R

~ωpe

2min0i

∑
p

fp(R) . (8.139)

In our new kinetic system, where fp(R) is coupled to the field ξ(R), (8.139) plays the
role of the Poisson equation (1.51).

We can do with the Vedenov–Rudakov system (8.133) and (8.139) all the same things
that we know how to do with the Vlasov–Poisson system (1.50) and (1.51), e.g., derive
the “Landau damping” of a sound wave in a plasmon gas (Exercise 8.13) or work out the
QL diffusion of the latter in a random field of sound waves (Exercise 8.14), but the really
interesting new phenomenon for the sake of which this has all been done is that the
plasmon gas—the Langmuir condensate pumped up by the WT cascade—is unstable.
This is an effect in which the ability to handle spatially inhomogeneous quasiparticle
distributions provided to us by this new formalism turns out to be essential.

Exercise 8.13. Damping of a sound wave in a plasmon gas. (a) Via a calculation
analogous to those in §3, work out the dispersion relation for a weakly damped sound wave
propagating through plasmon gas and calculate its Landau-damping rate.

(b) Show that this is the same result as can be derived from the phonon kinetic equation (7.23)
under appropriate assumptions. What is, therefore, w(p,k) and does it agree with (8.89)?

Exercise 8.14. QL diffusion of plasmon gas. (a) Construct a QLT, analogously to §6, of
plasmon diffusion in a stochastic field of sound waves.

(b) Show that this is also derivable from the plasmon kinetic equation (7.24) under appropriate
assumptions. Again make sure that you have calculated w(p,k) correctly.

Exercise 8.15. Plasmon–ion kinetics. Lifting the cold-ion approximation, i.e., allowing Ti ∼
Te, write a closed set of equations for coupled dynamics of plasmons and ions.

8.5.2. Modulational Instability of Plasmon Gas

Let us take the analogy between quasiparticle kinetics and “real” kinetics another
logical step further and derive the “fluid dynamics” of the plasmon gas. Namely, define
the density and velocity of the “plasmon flow”,

N(R) =
∑
p

fp(R), U(R) =
1

N(R)

∑
p

vpfp, (8.140)

and work out the evolution equations for them by taking moments of (8.133). As usual,

∂N

∂t
+ ∇ · (NU) = 0, (8.141)

N

(
∂U

∂t
+U ·∇U

)
= −∇ · P− 3

2
ω2

peλ
2
DeN∇ξ, (8.142)

where the “plasmon pressure”

P =
∑
p

(vp −U)(vp −U)fp (8.143)

will be neglected, subject to a posteriori confirmation in Exercise 8.16.
This assumption of “cold” plasmons gives us a closed set of the plasmon-fluid equations,

which we can now linearise around a homogeneous, static state with a constant density
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Figure 40. Modulational instability creates “caverns” filled with Langmuir oscillations
(δN > 0), expelling plasma particles (δn̄e < 0).

N0 and velocity U0 = 0:

∂ δN

∂t
+N0∇ ·U = 0, (8.144)

∂U

∂t
= −3

4
v2

the∇ξ, (8.145)

∂2ξ

∂t2
− c2s∇2ξ =

~ωpe

2min0i
∇2δN, (8.146)

the last equation being (8.139). Assuming perturbations ∝ e−iΩt+ik·R converts these
equation into the dispersion relation

Ω4 − k2c2sΩ
2 − k4v4

0 = 0, v4
0 =

3~ωpeN0v
2
the

8min0i
=

3

8
Wv2

thec
2
s , (8.147)

where W = ~ωpeN0/n0eTe is the dimensionless Langmuir exitation level, already defined
in (8.122). The solution of this dispersion relation is

Ω2
k =

k2c2s
2

(
1±

√
1 + 4

v4
0

c4s

)
. (8.148)

The “+” root is the sound wave with a nonlinear modification of the frequency due to
finite W (i.e., due to the plasmon gas supplying additional background pressure). The
much more exciting “−” root is always unstable (Ω2

k < 0)—this is called the modulational
instability. The two interesting limits are the subsonic and the supersonic:

v0 � cs ⇔ W � me

mi
⇒ Ωk ≈ i

kv2
0

cs
, (8.149)

v0 � cs ⇔ W � me

mi
⇒ Ωk ≈ ikv0. (8.150)

The nature of the unstable perturbation becomes transparent if we work out the
perturbation of the density of plasmons vs. that of ions and electrons: using (8.144)
and (8.145), for Ω2

k < 0,

δNk
N0

= −3k2v2
the

4|Ω2
k|

(
δn̄e
n0e

)
k

. (8.151)

Thus, the system breaks up into regions of low plasma density with high concentration of
plasmons and vice versa (Fig. 40). The mechanism for the instability is quite simple: since
ξ has the opposite sign to δN , the force in (8.145) is a negative pressure (on plasmons).
An initial upward perturbation of the plasmon density in a region will act to suck in more
plasmons while expelling plasma particles from that region by ponderomotive force. In
other words, regions of high electric-energy (plasmon) density push out the plasma and
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regions of high plasma density push out the plasmons. Thus, the system breaks up into
so-called “caverns” filled with Langmuir-oscillating electric fields. Inside these caverns,
the plasma frequency is smaller than outside (because δn̄e < 0), so Langmuir waves will
have a tendency to get trapped in them when the perturbation amplitude becomes finite
and the modulational instability saturates.

Thus, the Langmuir condensate is not made up of monochromatic waves freely running
around the system but rather of spatially localised plasmon bunches, known as cavitons.
It is tempting to think of them as the new quasiparticles—and indeed in 1D you can do
that because stable 1D soliton solutions to Zakharov’s equations exist (§8.5.3). In 3D,
however, the situation is trickier (§8.5.4).

Exercise 8.16. Validity of the cold-plasmon approximation. Work out the condition
under which the results above are consistent with the neglect of the plasmon pressure in (8.142).
You should find

∆p2λ2
De �


W if W � me

mi
,√

W
me

mi
if W � me

mi
,

(8.152)

where ∆p2 is the mean square width of the plasmon distribution [cf. the WT validity condi-
tion (8.123)].

Exercise 8.17. Kinetic modulational instability. Relax the cold-plasmon assumption and
work out a kinetic theory of the modulational instability by linearising (8.133) and (8.139)
directly, without recourse to fluid equations (this is actually the same calculation as in Exer-
cise 8.13, just with a different focus).

8.5.3. Langmuir Solitons

Coming soon, but for now, see Gorev et al. (1976), Thornhill & ter Haar (1978), and Kingsep
(1996).

8.5.4. Langmuir Collapse

In 3D, caverns filled with plasmons (cavitons) will collapse self-similarly, in finite time.
Here is the simplest, although nonrigorous, way to see this.

Let us imagine that modulational instability has resulted in the Langmuir condensate
breaking up in many isolated cavitons, so we can treat each as a separate entity. Za-
kharov’s equation (8.16) conserves the plasmon number, and we shall assume (somewhat
cavalierly) that it does so in each individual caviton. Then, whatever the caviton does,
it must be the case that

N ∼ E2ld ∼ const ⇒ E2 ∼ 1

ld
, (8.153)

where E2/8π is the energy density of the Langmuir electric fields inside the caviton, l its
characteristic size and d its dimension. This implies that if the caviton is not stationary,
either E inside it will grow while its size diminishes, or vice versa. The possibility that
E decays is not interesting because it would take us back to a homogeneous Langmuir
condensate, which we know is unstable.

Let us then explore what kind of self-similar solutions of Zakharov’s equations might
exist that accommodate growing E. The two equations (8.16) and (8.17) can be written
schematically in a “scaling” form keeping only the powers of the characteristic scale l
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and characteristic time τ associated with each term, viz.,

∇2

(
iω−1

pe

∂ψ

∂t
+

3

2
λ2

De∇2ψ

)
=

1

2
∇ · (ξ∇ψ) ⇒

[
E

τ

]
+

[
E

l2

]
=

[
ξE

]
, (8.154)(

∂2

∂t2
− c2s∇2

)
ξ = c2s∇2 |∇ψ|2

16πn0eTe
⇒

[
ξ

τ2

]
+

[
ξ

l2

]
=

[
E2

l2

]
, (8.155)

where E ∼ ∇ψ and I continue using the notation ξ = δn̄e/n0e. Each of these two
equations will boil down to a balance between two of its terms, with the third one
negligible. At least one term involving τ must survive somewhere if there is to be a time-
dependent solution. One can systematically go through all possible options as to which
terms to neglect, hence work out the scalings of E, ξ, and τ with l and then check that
the neglected terms do indeed vanish in comparison with the retained ones as l→ 0. It is
not hard to convince oneself that the only viable possibility is to drop the first term on
the left-hand side of (8.154) (i.e., the first Zakharov equation turns into static relation)
and the second term on the left-hand side of (8.155) (i.e., the dynamics are supersonic).

Exercise 8.18. Check this. Show that the physical regime in which these approximations hold is

W � me

mi
, (8.156)

the supersonic limit that already made an appearance in (8.150).

The remaining balances then imply

ξ ∼ 1

l2
, E2 ∼ ξl2

τ2
∼ 1

τ2
⇒ τ ∼ ld/2, (8.157)

where (8.153) was used at the last step. Knowing this, we see that it was fine to neglect
the first term in (8.154) if

l2

τ
→ 0 as l→ 0 ⇔ d < 4, (8.158)

and the second term in (8.155) if

τ

l
→ 0 as l→ 0 ⇔ d > 2. (8.159)

You can see why d matters. At d = 3, we have a perfectly legitimate possibility.
Finally, what is the relationship of τ to time? Since l → 0 with advancing time, we

must have τ → 0 as well. The only way to achieve that is τ = t0 − t, where t0 is some
fixed time. Then

E2 ∼ 1

(t0 − t)2
,

δn̄e
n0e
∼ 1

(t0 − t)4/3
, l ∼ (t0 − t)2/3 . (8.160)

Thus, the caviton collapses to a point and fields inside it go to infinity in finite time. The
collapse is explosive.

This is, of course, not actually a solution of anything yet, only a piece of initial back-
of-the-matchbox scoping out. At the very least, three further things must be done.

(i) The scalings (8.160) can be used to design the self-similar solution of Zakharov’s
equations (8.154) and (8.155), where the spatial dependence can be made spherically
symmetric (since we have implicitly assumed the caviton to have only one scale), the
new similarity variable is r/(t0− t)2/3, and the terms anticipated to be negligible should



132 A. A. Schekochihin

be neglected (note, however, that ψ is a complex field and can have a time-dependent
phase, which we have learned nothing about in the above consideration, but which can be
chosen to have such a time dependence that self-similarity is not destroyed). One could
then see if the resulting equations have a reasonable solution.

(ii) What if W � me/mi, i.e., as you saw in Exercise 8.18, the supersonic regime
does not apply? It turns out that one can show that there is still a collapse, which will
eventually take the plasmon energy beyond the supersonic limit, returning the above
solution to relevance.

(iii) How inevitable is the collapsing solution? Can one demonstrate formally that it
cannot be avoided? It turns out that one can.

Zakharov (1972) did all of those things, so I refer you to his paper for further mathemat-
ical enlightenment.

Why does Langmuir collapse matter? It matters because it provides a scenario for
how energy pumped by WT from small scales into the Langmuir condensate at large
ones might find a way to get dissipated. If the condensate breaks up into cavitons,
which then collapse in finite time down to scales as small as λDe (which is the limit of
validity of the equations predicting the collapse), then it is reasonable to think that the
electric energy trapped in the cavitons will then be deposited into electrons via Landau
damping, or some nonlinear version thereof (also a tricky subject: see §§12.2–12.4). Thus,
the nonlinear physics finally accomplishes, by a circuitous route, what nonlinear physics
is supposed to accomplish: bring energy from injection to thermalisation.

8.6. Strong Langmuir Turbulence

The task of the strong-turbulence theory then is to work out the distribution of energy
in k space that is left in the wake of (or as signature of) its journey from cavitons formed
by the modulational instability out of the Langmuir condensate at large scales, through
their collapse to small scales, and finally to electron heat. There is no textbook-level
certainty about the answers here, but there are many clever ideas.

8.6.1. Soliton Turbulence

Coming soon; see Kingsep et al. (1973), Gorev et al. (1976).

8.6.2. Caviton Turbulence

Coming soon. See reviews by Gorev et al. (1976), Thornhill & ter Haar (1978), Rudakov
& Tsytovich (1978), Goldman (1984), Zakharov et al. (1985), and Robinson (1997),
which document the accumulation and evolution of views over time, until saturation was
reached.

Exercise 8.19. Statistical mechanics of Langmuir condensate. Pelletier (1980a,b) made
a clever attempt to deploy the machinery of condensed matter physics to describe the statistical
ensemble of strongly interacting plasmons with the Hamiltonian (8.78). If you like that sort of
cross-cultural spirit, work through his calculation and see what you think.

Much of what I have dealt with in §§7.2–8.6 has been basically fluid turbulence—
the kinetics was of quasiparticles. The fluctuating fields were perturbations on top of
an equilibrium, which was hovering in the background and assumed to be Maxwellian
whenever it needed to be specified. At no point after §7.1, with the brief exceptions of
§§7.2.4, 7.2.5 and Exercise 8.10, did I engage with the question of the evolution of f0,
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promised in §2 to be amongst the central ones in these Lectures. I am now going to come
back to it from a number of very different angles than I have presented so far.

9. Nonlinear Stability and Thermodynamics of Collisionless Plasma

Let me go back to the generalist agenda first articulated at the beginning of §4: What
kind of equilibria are stable?82 Are there universal distributions to which a collisionless
plasma will relax? This time I shall ask the stability question while eschewing any recourse
to linear theory. Later on, this will nudge us towards certain distributions that will turn
out to make some sense statistical-mechanically (§10) and that I will then show to be
obtainable via QLT (§11).

I will start by presenting this material as a formal template for proofs of nonlinear
stability (§9.1), but, after a revealing example (§9.2), it will become clear why I keep
referring to it as “thermodynamics” (§9.3).

9.1. Nonlinear Stability Theory: Thermodynamical Method

The general idea of the method is to find, for a given initial equilibrium distribution
f(0), an upper bound on the amount of energy that might be transferred into electromag-
netic perturbations (not necessarily small). If that bound is zero, the system is stable;
if it is not zero but is sharp enough to be nontrivial, it gives us a constraint on the
amplitude of the perturbations in the saturated state.

Here is how it is done.83 Let us introduce a functional

F =

∫
dr

E2 +B2

8π︸ ︷︷ ︸
≡ U

+

∫
dQ

[
A(Q, f)−A(Q, f∗)

]
︸ ︷︷ ︸

≡ A [f, f∗]

= U + A [f, f∗], (9.1)

where Q = (r,v) is the phase-space variable and f∗ is some trial distribution, which
will sometimes represent our best guess about the properties of the stable distribution
towards which the system wants to evolve and/or in the general vicinity of which we are
interested in investigating stability. The function A(Q, f) is chosen in such a way that,
for any f ,

A [f, f∗] > 0, (9.2)

so, obviously, f∗ is then the minimiser of A [f, f∗]. If A [f, f∗] is also chosen so that F
is conserved by the (collisionless) Vlasov–Maxwell equations, then F (t) = F (0) and the
inequality (9.2) gives us an upper bound on the field energy at time t:

U (t)−U (0) = A
[
f(0), f∗

]
−A

[
f(t), f∗

]
6 A

[
f(0), f∗

]
, (9.3)

where f(0) is the initial (t = 0) equilibrium whose stability is under investigation.
The bound (9.3) implies stability if A [f(0), f∗] = 0, i.e., certainly for f(0) = f∗. This
guarantees stability of any f∗ for which a functional A [f, f∗] satisfying (9.2) and giving
a conserved F can be produced.

82In Q-6, isotropic, monotonically decreasing equilibria were found to be stable not just
against infinitesimal (linear), electrostatic perturbations, but also against small but finite
electromagnetic ones, giving us a taste of a powerful nonlinear constraint.
83These ideas appear to have crystallised in the papers by T. K. Fowler in the early 1960s (see
his review, Fowler 1968; his reminiscences and speculations on the subject 50 years later can
be found in Fowler 2016). A number of founding fathers of plasma physics were thinking along
these lines around the same time (references are given in opportune places below).
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This argument is based on the assumption that if the total electromagnetic enegy decreases, that
corresponds to initial perturbations decaying. You might wonder what happens if U (0) contains
some equilibrium magnetic field and if that equilibrium is unstable: can the equilibrium field’s
energy be tapped and transferred partially into unstable perturbations of kinetic energy in such
a way that U (t) < U (0) even though the system is unstable? I do not know how to isolate
formally the set of conditions under which this is impossible (you may wish to think about this
question; §17 might help). To avoid this problem, we could either restrict all considerations in this
section to unmagnetised initial equilibria or consider initial states that are small perturbations
over stable magnetised equilibria (e.g., a straight homogeneous magnetic field (15.1), or force-
free, minimum-energy equilibria, §16.3), with the understanding that U (0) contains only the
perturbed part of the magnetic energy. The latter approach connects F , via §9.4, to free energy
and its generalisations in drift-kinetic and gyrokinetic theories (Schekochihin et al. 2009; Kunz
et al. 2015, 2018)—see Exercise 21.3.

Physically, the above construction is nontrivial if the bound (9.3) is smaller than the
total initial kinetic energy of the particles:

A
[
f(0), f∗

]
<
∑
α

∫
dQ

mαv
2

2
fα(0) ≡ K (0). (9.4)

It is obvious that one cannot extract from a distribution more energy than K (0), but
the above tells us that, in fact, one might only be able to extract substantially less.
A
[
f(0), f∗

]
is an upper bound on the available energy of the distribution f(0). The

sharper it can be made, the closer we are to learning something useful. Thus, the idea
is to identify some suitable functional A [f, f∗] for which F is conserved, and some class
of trial distributions f∗ for which (9.2) holds, then minimise A

[
f(0), f∗

]
within that

class, subject to whatever physical constraints one can reasonably expect to hold: e.g.,
conservation of particles, momentum, and/or any other (possibly approximate) invariants
of the system (e.g., its adiabatic invariants; see Helander 2017, 2020).84

To make some steps towards a practical implementation of this programme, let us first
investigate how to choose A in such way as to ensure conservation of F :

dF

dt
=

dU

dt
+
∑
α

∫
dQ

∂A

∂fα

∂fα
∂t

=
∑
α

∫
dQ

(
∂A

∂fα
− mαv

2

2

)
∂fα
∂t

= 0. (9.5)

The second equality was obtained by using the conservation of total energy,

d

dt
(U + K ) = 0, K =

∑
α

∫
dQ

mαv
2

2
fα, (9.6)

where K is the kinetic energy of the particles. Now (9.5) tells us how to choose A:

A(Q, f) =
∑
α

[
mαv

2

2
fα +Gα(fα)

]
, (9.7)

where Gα(fα) are arbitrary functions of fα. These can be added to A because Vlasov’s

84Krall & Trivelpiece (1973) comment with a slight air of resignation that, with the rules of
the game much vaguer than in linear theory, the thermodynamical approach to stability is
“more art than science”. In the Russian translation of their textbook, this statement provokes
a disapproving footnote from the scientific editor (A. M. Dykhne), who observes that the right
way to put it would have been “more art than craft”.
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equation has an infinite number of invariants: for any (sufficiently smooth) Gα(fα),

d

dt

∫
dQGα(fα) = 0. (9.8)

This follows from the fact that, in the absence of collisions, the kinetic equation (1.30)
expresses the conservation of phase volume in (r,v) space (the flow in this phase space
is divergence-free).

Exercise 9.1. Prove the conservation law (9.8), assuming that the system is isolated.

These conserved quantities are sometimes referred to as Casimir invariants. The existence of
an infinite number of conservation laws suggests that the evolution of a collisionless system
in phase space is much more constrained than that of a collisional one, when the evolution is
constrained only by conservation of particles, momentum and energy and the requirement (5.12)
that entropy must not decrease. These constraints will play a major role in the discussion of
collisionless relaxation in §§10 and 11. Keep in mind, however—and continue keeping in mind
throughout that discussion—that it is an open question how long these constraints, in fact,
survive in a real plasma. We saw in §5.5 that, in the presence of perturbations with k 6= 0,
phase mixing would activate collisions after a time t ∝ ν−1/3—much shorter than the collision
time ν−1, but, formally, still asymptotically long in the limit ν → +0. However, in turbulent
plasmas, it is likely that the collisional phase-space scales are, in fact, reached over times that
are independent of ν as ν → +0—just like in hydrodynamic turbulence, viscous (“Kolmogorov”)
scales are reached on timescales independent of viscosity as the latter tends to +0, a property
know as the “dissipative anomaly”. For now, I shall push on while ignoring this issue, but will
return to it in §12.4.4 onwards.

A quick sanity check is to try Gα(fα) = 0. The inequality (9.2), A [f, f∗] > 0, is then
certainly satisfied for f∗ ∝ δ(v) and the bound (9.3) becomes

U (t)−U (0) 6 K (0), (9.9)

i.e., one cannot extract any more energy than the total energy contained in the
distribution—indeed, one cannot. Let us now see how to learn something more nontrivial.

9.2. Fowler’s Thermodynamics

The formula (9.7) guarantees that the functional F given by (9.1) will be conserved by
a collisionless plasma, but we still have the challenge of choosing G(f) and f∗ in such a
way that (9.2) is satisfied, i.e., that f∗ is the maximiser of −

∫
dQA(Q, f). It is hard not

to think immediately, as Fowler (1963, 1968) did, of thermodynamic entropy. As we know
from statistical mechanics, the solution to the problem of maximising the entropy (5.11)
subject to fixed kinetic energy and particle number,

−
∫

dQ f ln f − β
(∫

dQ
mv2

2
f −K

)
− λ

(∫
dQ f −N

)
→ max, (9.10)

is the Maxwellian distribution

f∗ = e−1−λ−βmv2/2 ≡ C exp

(
−mv

2

2T

)
, (9.11)

where I have renamed the Lagrange multipliers β = 1/T , λ = −1 − lnC, and dropped
the species index (all of this works species by species). It is then quite obviously the case
that if we let

G(f) = Tf

(
ln
f

C
− 1

)
, (9.12)
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then, for any f and any constants C and T ,

A [f, f∗] =

∫
dQ

[
mv2

2
(f − f∗) +G(f)−G(f∗)

]
> 0. (9.13)

We have got our available-energy function! Note that this argument also implies stability
of any Maxwellian distribution (9.11) to finite perturbations (no available energy in f∗).

With this choice of A [f, f∗], (9.3) now provides an upper bound on the energy of the
electromagnetic fields that can be extracted from any given initial distribution f(0). In
order to make this bound as sharp as possible, one picks the constants C and T (and,
therefore, determines f∗) so as to minimise A [f(0), f∗].

As far as C is concerned, it is not hard to see that

∂A [f(0), f∗]

∂C
=
T

C

∫
dQ [f∗ − f(0)] = 0 ⇒ C =

N

V

( m

2πT

)3/2

≡ C∗(T ), (9.14)

i.e., the number of particles N =
∫

dQ f(0) (of each species) must be the same for the
initial distribution and for f∗.

Setting C = C∗(T ), let us now minimise A [f(0), f∗] with respect to T . Observe first
that (9.13) can be slightly simplified:

A [f(0), f∗] = K (0) + T

∫
dQ f(0) ln

f(0)

C∗(T )
. (9.15)

Minimising this gives us

∂A [f(0), f∗]

∂T
=

∫
dQ f(0) ln

f(0)

C∗(T )
+

3

2
N = 0. (9.16)

The root T∗ of this equation is straighforward to extract. It is then rather illuminating
to observe that, with T = T∗, (9.15) becomes simply

min
C,T

A [f(0), f∗] = K (0)− 3

2
NT∗ = K (0)−K∗, (9.17)

i.e., just the difference between the kinetic energies of the initial distribution and the
target Maxwellian distribution, whose temperature is set by (9.16).

9.2.1. Anisotropic Equilibria

To test-drive Fowler’s method, let me consider an anisotropic initial distribution—the
case that, at the end of §4, I had to relegate to Exercise 4.8 as it needed substantial
extra work if it were to be handled by the method developed there. The bi-Maxwellian
distribution is a useful and certainly the simplest model for anisotropic equilibria:

f(0) = C exp

(
−mv

2
⊥

2T⊥
−
mv2
‖

2T‖

)
, C = n

(
m

2πT

)3/2

, (9.18)

where T = T
2/3
⊥ T

1/3
‖ and T⊥ and T‖ are the “temperatures” of particles’ motion

perpendicular and parallel to some special direction. Is this distribution unstable? (Yes:
see Q-3.) To obtain an upper bound on the energy available for extraction from it,
compute ∫

dQ f(0) ln
f(0)

C∗(T )
=

3

2
N

(
ln
T∗

T
− 1

)
. (9.19)
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Substituting this into (9.16), we see that the latter equation is satisfied for T∗ = T . The
resulting estimate (9.17) of the available energy is

U (t)−U (0) 6 min
C,T

A [f(0), f∗] =
3

2
N

(
2

3
T⊥ +

1

3
T‖ − T

2/3
⊥ T

1/3
‖

)
. (9.20)

The bound is zero when T⊥ = T‖ and is always positive otherwise (because it is the
difference between an arithmetic and a geometric mean of the two temperatures). We do
not, of course, have any way of knowing how good an approximation this is to the true
saturated level of whatever instability (if any) might exist here in any particular physical
regime,85 but this does show that temperature anisotropy is a source of free energy.

Further examples of such calculations can be found in Krall & Trivelpiece (1973, §9.14) and
Fowler (1968). A certain further development of the methodology discussed above allows one
to derive upper bounds not just on the energy of perturbations but also on their growth rates
(Fowler 1964, 1968). If you feel that Fowler’s privileging of the Maxwellian is arbitrary and
unjustified, Exercise 10.1 is for you, but first do this one.

Exercise 9.2. Fowler’s thermodynamics for beams. For some conveniently chosen model
of a two-beam distribution (see §§3.7, 4.4, 10.1.3, and Q-4 for inspiration), calculate the upper
bound on the available energy by Fowler’s method.

9.3. Why This is Thermodynamics

As already hinted by my language and notation, F is the generalised version of the
free energy (5.19), which was, in fact, the difference between the free energy of a given
state of plasma and the free energy of a state characterised by f∗: in thermodynamic
notation, we have

F = U + δK −
∑
α

TαδSα , (9.21)

where δK = K −K∗, δSα = Sα[fα] − Sα[f∗α], and Sα[fα] is the entropy associated
with the distribution fα. Comparing this with (9.1), we see that

A [f, f∗] = K −K∗ −
∑
α

Tα (Sα[fα]− Sα[f∗α]) , (9.22)

where, from (9.7), our choice of entropy is

Sα[fα] = − 1

Tα

∫
dQGα(fα). (9.23)

Thus, picking G(f) is equivalent to picking an “effective entropy” function for the
collisionless system and thereby choosing a particular “thermodynamics”. If one then
computes f∗ by maximising this entropy subject to fixed K , the inequality (9.13) is
guaranteed. All Fowler did was use the standard thermodynamic entropy (5.11) in this
argument. Clearly, this was begging to be done, but, in fact, why should this be the

85Nominally, this calculation applies with equal validity to many different instabilities that can
be triggered by temperature anisotropy in both unmagnetised and magnetised plasmas—and
indeed also to some anisotropic distributions that are, in fact, stable (which is common in
magnetised plasmas where the externally imposed magnetic field is sufficiently large). Well,
the fact that some energy is available does not mean that it will always be extracted. Indeed,
Exercises 9.2, 9.3, 10.1 and 11.8 suggest that there are situations of interest in which none of
the available-energy bounds derived in §9 represents an adequate estimate of what will actually
happen.
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entropy for a collisionless plasma? Let us see if we can do anything more general, or
better justified.

This may be an opportune place to pause and explain why entropy in a collisionless plasma
is not “obviously” always just −

∫
dQ f ln f . Indeed, is this not the expression that Shannon

(1948) and Jaynes (2003) teach us that we must always go for, as we did in (5.11)? The crucial
thing to realise is that the distribution function f(Q) is not the probability that is supposed
to go into Shannon’s entropy, it is just the continuous version of the occupation number of a
single-particle state given by the phase-space location Q (this is textbook material: see, e.g.,
Schekochihin 2019). The complete state of a box of classical gas or plasma is, in general, described
by the joint probability of having a particle at Q1, another particle at Q2, and so on for all N
particles in the system. Let me call this object fN (Q1, . . . ,QN ), a probability-density function
in a 6N -dimensional space. The Shannon entropy of this system is

S = −
∫
· · ·
∫

dQ1 . . .dQNfN (Q1, . . . ,QN ) ln fN (Q1, . . . ,QN ). (9.24)

Now, since we assume, for a non-degenerate, classical plasma that particles do not know about
each other and have identical distributions,

fN (Q1, . . . ,QN ) = f(Q1) · · · f(QN ), (9.25)

we can immediately conclude that

S = −N
∫

dQ f(Q) ln f(Q), (9.26)

recovering (5.11) up to an irrelevant multiplicative constant. For a collisionless plasma, no such
simplification is possible. Its state is characterised, by definition, by some particular instantiation
of the distribution function (phase density) f(Q), which, in a highly phase-mixed, turbulent
system, is a random variable. In principle, if we imagine an ensemble of such systems, there is
a probability measure on the space of these functions, P [f ]. Then the Shannon entropy for the
system is

S = −
∫

Df P [f ] lnP [f ], (9.27)

functionlly integrated over all possible f . This is not very helpful. The reason this does not
break up into anything immediately obvious in terms of Q-space integrals of functions of f is
that a collisionless system is, in a manner of speaking, quantum—it conserves phase volume
and so different bits of phase space cannot just be filled independently of each other, there is a
kind of Pauli exclusion principle for phase volumes. This property will become explicit in §10.
In §§10.3 and 11.7, I will formulate a generalised kinetic theory (“hyperkinetics”) in which a
version of (9.27) does indeed emerge as the right kind of entropy.

9.4. Kruskal–Oberman Thermodynamics of Small Perturbations

There is a neat development (due, it seems, to Kruskal & Oberman 1958) of the
formalism presented at the beginning of this section that allows one to dispense with
Maxwellian equilibria at the price of keeping departures from the equilibrium small.

Let us investigate the stability of isotropic distributions with respect to small (but
not necessarily infinitesimal) perturbations, i.e., take f(t) = f∗ + δf(t), δf � f(0). Let
also f(0) = f∗, so the available-energy bound (9.3) will imply stability if we can find
such a G(f) that (9.2) holds.

In (9.7), we expand

G(f) = G(f∗) +G′(f∗)δf +G′′(f∗)
δf2

2
+ . . . (9.28)
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and use this to obtain, keeping terms up to second order,

A
[
f(t), f∗

]
=

∫
dQ

{[
mv2

2
+G′(f∗)

]
δf +G′′(f∗)

δf2

2

}
. (9.29)

Suppose we contrive to pick G(f∗) in such a way that

G′(f∗) = −mv
2

2
≡ −ε, (9.30)

obliterating the first-order term in (9.29). Fowler’s effective entropy (9.12) certainly has
this property, but, hopefully, it is not the only one that does. Noting that f∗ = f∗(ε) by
assumption (it is isotropic) and assuming also that it is a monotonic function of ε, we
can differentiate (9.30) with respect to f∗ and get

G′′(f∗) = − 1

∂f∗/∂ε
⇒ A

[
f(t), f∗

]
=

∫
dQ

δf2

2(−∂f∗/∂ε)
. (9.31)

We see that A
[
f(t), f∗

]
> 0 and, therefore, (9.3) with f∗ = f(0) implies stability if (for

every species)

∂f∗
∂ε

< 0 ⇒ stability . (9.32)

Besides stability, this construction has given us a conserved quadratic free energy for
our system:

F = U + A [f, f∗] =

∫
dr

E2 +B2

8π
+
∑
α

∫∫
drdv

δf2
α

2(−∂f∗α/∂εα)
. (9.33)

The stability condition (9.32) makes F positive definite and so no wonder the system
is stable: perturbations around f∗ have a conserved norm! For a Maxwellian equilib-
rium, −∂f∗/∂ε = f∗/T , so this F becomes (the electromagnetic version of) the free
energy (5.19). Then, in the spirit of §9.3, (9.33) is a natural generalisation of that free
energy to non-Maxwellian, collisionless plasmas.

In Q-6, the results of this section are obtained in a more straightforward way, directly from the
Vlasov–Maxwell equations.

This style of thinking has been having a revival: see, e.g., the discussion of firehose and mirror
stability of a magnetised plasma in Kunz et al. (2015). Generalised free-energy invariants like F
are important not just for stability calculations, but also for theories of kinetic turbulence in
weakly collisional environments, e.g., the solar wind (see, e.g., Schekochihin et al. 2009).

9.5. Gardner’s Theorem

The stability condition (9.32), viz., the statement that if the equilibrium distributions
of all species depend only on the particle energy and decrease monotonically with it, then
the system is stable, is, in fact an extremely general and fundamental result—as was
shown by Gardner (1963) in a classic two-page paper.86 The proof is as follows.

For every species (suppressing species indices), let me take G(f) = 0 in (9.7), but

86The stability of Maxwellian equilibria against small perturbations was first proved by
W. Newcomb, whose argument was published as Appendix I of Bernstein (1958). He was followed
by Fowler (1963), who proved stability against finite perturbations in the way described in §9.2.
Gardner (1963) attributes the first appearance of the stability condition (9.32) to an obscure
1960 report by M. N. Rosenbluth, although the same condition was derived also by Kruskal &
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Figure 41. Gardner’s restacking of the distribution, conserving phase-space volume.

construct a nontrivial fG that satisfies (9.2), A
[
f(t), fG

]
> 0, at every time t since the

beginning of the evolution of f(t) from the initial distribution f(0). This amounts to
adopting a “zero-entropy thermodynamics”, i.e., one that minimises energy.

For any given f(0), define fG to be a monotonically decreasing function of the particle
energy ε(Q) = mv2/2, such that for any η > 0, the volume of the region in the phase
space Q = (r,v) where fG > η is the same as the volume of the phase-space region
where f(0) > η. Then fG is the distribution with the smallest kinetic energy, denoted
here by KG, that can be reached from f0 while preserving phase-space volume:

K (t) > KG. (9.34)

Indeed, while the phase-space volume occupied by any given value of the probability
density is the same for f(0) and for fG, the corresponding energy is always lower for fG

than for f(0) or for any other f that can evolve from it, because in fG, the values of
the probability density are rearranged in such a way as to put the largest of them at the
lowest values of ε(Q), thus minimising the kinetic energy. A vivid analogy is to think
of the evolution of f under the collisionless kinetic equation (1.28) as the evolution of
a mixture of “fluids” of different densities (values of f) advected in a 6D phase-space
Q = (r,v) by a divergence-free flow Q̇ = (ṙ, v̇). The lowest-energy state is the one
in which these fluids are arranged in layers of density decreasing with increasing ε(Q),
the heaviest at the bottom, the lightest at the top (Fig. 41). This rearrangement of the
distribution function is known as “Gardner restacking”.

In view of (9.34), and since A is given by (9.7) with G(f) = 0,

A [f, fG] = K (t)−KG > 0, (9.35)

so (9.2) holds and the bound (9.3) on the available energy follows. When f(0) = fG,
i.e., the equilibrium distribution satisfies (9.32), this equilibrium is stable, q.e.d. For a
general initial distribution f(0), the available energy is

A
[
f(0), fG

]
= K (0)−KG . (9.36)

Finally, note that the condition (9.32) is sufficient for stability, but not necessary, as
we already know from, e.g., Exercise 4.2.

Oberman (1958), more or less in the manner described in §9.4. Clearly, many great minds were
thinking alike.
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For those who like rigour, here’s a formal proof that any minimum-energy distribution must be
a function of energy only (Helander 2017).

The idea is to look for a distribution fG such that the kinetic energy of any distribution
evolving from it cannot increase. So, let us set f(0) = fG and evolve f(t) forward a short
time δt. The collisionless kinetic equation can be written simply as [cf. (1.28)]87

∂f

∂t
+ Q̇ · ∂f

∂Q
= 0 ⇒ f(δt) ≈ fG − δt Q̇ ·

∂fG

∂Q
. (9.37)

The first-order (in δt) kinetic-energy change from fG to f(δt) is then

δK [δQ] = −
∫

dQ ε(Q)δQ · ∂fG

∂Q
, (9.38)

where δQ = δt Q̇. We want to minimise K , so we need δK = 0. This will be achieved for fG

such that δK [δQ] = 0 for any phase-space vector δQ that behaves appropriately (vanishes) at
the boundaries and satisfies (∂/∂Q) ·δQ = 0. The latter condition is imposed because the phase-

space velocity field in (9.37) must be divergence-free: (∂/∂Q) · Q̇ (the system is Hamiltonian).
This last condition can be enforced by means of a Langrange multiplier λ(Q):

δK [δQ]−
∫

dQλ(Q)
∂

∂Q
· δQ = 0 ⇔ ε(Q)

∂fG

∂Q
=

∂λ

∂Q
⇒ ∂ε

∂Q
× ∂fG

∂Q
= 0. (9.39)

Therefore, fG = fG

(
ε(Q)

)
, q.e.d.

9.5.1. Gardner vs. Fowler

In the proof of Gardner’s theorem, I set G(f) = 0. In fact, there was no need to do this
because Gardner restacking preserves phase volume and, therefore, cannot change the∫

dQG(f) part of the available energy. This simple observation enables us to assess the
relative quality of Fowler’s (or any Fowler-like) and Gardner’s methods for estimating
the available energy in a distribution. Let the Gardner-restacked distribution be fG and
imagine having chosen some non-zero G(f) and some target equilibrium f∗. Then, since∫

dQG(f(0)) =
∫

dQG(fG), the available energy (9.13) in f(0) is

A [f(0), f∗] = K (0)−KG + A [fG, f∗] > K (0)−KG = A [f(0), fG], (9.40)

since A [fG, f∗] > 0. Thus, Gardner’s bound on the available energy is always tigher than
Fowler’s or his ilk’s. Intuitively, not increasing the entropy of the distribution gives you
the best estimate of the energy that can be released from it. This result was pointed out
to me by Robbie Ewart (2021), and is, as far as I know, original.

9.5.2. Explicit Equation for Gardner Distribution

Since Gardner restacking is as well as we can do in calculating the available energy,
it is worth thinking about one how might work out Gardner-restacked distributions and
hence calculate the available energy—a fancy way of thinking of this is as of seeking
“ground states” (the states of minimum energy) of Vlasov’s equation.

As we saw in (9.39), any distribution that is a function only of ε(Q) is a minimum-
energy state, but we now must find one that is accessible from a given initial distribution

87The phase-space variables do not have to beQ = (r,v), as, e.g., they are not in such reductions
of kinetic theory as gyrokinetics (see, e.g., the reviews by Howes et al. 2006 and Abel et al.
2013). These more complicated phase spaces usually describe systems in which particle motion
is constrained by some adiabatic invariants (in gyrokinetics, it is the particles’ first adiabatic
invariant—the angular momentum of their Larmor gyration), so, effectively, the dimensionality
of the phase space where particles can freely roam is lower than 6. Everything in this section can
be done (and is done in Helander’s paper) for general phase spaces, where the formula for ε(Q)
might be more complicated than mv2/2.
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f(0) via collisionless evolution, i.e., conserving phase-space volumes. This condition can
be written in the form of the conservation law (9.8) with G(f) = H

(
f(Q)− η

)
, where H

is the Heaviside function, picking out the volume of phase space where f > η:

Γf (η) ≡ 1

V

∫
dQH

(
f(Q)− η

)
= const (9.41)

(normalised for future convenience to the system’s volume V ). A further useful function,
also conserved, is

ρf (η) ≡ 1

V

∫
dQ δ

(
f(Q)− η

)
= −dΓf

dη
. (9.42)

Since ρf (η) is conserved, and since the Gardner distribution fG must be accessible from
the initial distribution f(0), we must have ρfG(η) = ρf(0)(η). Therefore,

ρf(0)(η) =

∫
dε g(ε)δ

(
fG(ε)− η

)
= −g

(
f−1

G (η)
)df−1

G

dη
, (9.43)

where g(ε) is the density of states, i.e.,
∫

dQ = V
∫

dε g(ε). This function is entirely
independent of f(0) or fG: since ε(Q) = mv2/2, it is simply

g(ε) =
25/2π

m3/2
ε1/2. (9.44)

The last step in (9.43) is made possible by the fact that the Gardner function must satisfy
fG = fG(ε(Q)) and ∂fG/∂ε < 0. Finally, (9.43) gives us an explicit equation for fG (due
to Dodin & Fisch 2005):

dfG

dε
= − g(ε)

ρf(0)

(
fG(ε)

) . (9.45)

Helander (2017) prefers the integral version of this equation, which is as close as one can
get to an actual formula for fG:

Γf(0)

(
fG(ε)

)
=

∫ ε

0

dε′g(ε′) ≡ Ω(ε) . (9.46)

9.5.3. Anisotropic Equilibria

Let me give an example of the use of (9.46) for the bi-Maxwellian distribution (9.18). To work
out the Gardner distribution corresponding to it, observe that the volume Γ[f(0), η] of the part
of phase space where f(0) > η is V times the volume of the velocity-space ellipsoid

mv2
⊥

2T⊥
+
mv2
‖

2T‖
= ln

C

η
⇒ Γf(0)(η) =

4π

3

(
2T

m
ln
C

η

)3/2

. (9.47)

Letting η = fG(ε) and, according to (9.46), equating Γf(0)

(
fG(ε)

)
to Ω(ε) = (4π/3)(2ε/m)3/2,

we find

fG(ε) = C exp

(
− ε
T

)
. (9.48)

This is an interesting, if perhaps somewhat rigged, example of a Maxwellian equilibrium having
a special significance even in the absence of collisions. Unsurprisingly, therefore, the upper bound
on the available energy

A
[
f(0), fG

]
= K (0)−KG =

3

2
V n

(
2

3
T⊥ +

1

3
T‖ − T

)
(9.49)
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is exactly the same as (9.20), which I found by Fowler’s method. Obviously, in general, the
Gardner distribution will not coincide with Fowler’s target Maxwellian—and, according to §9.5.1,
will give a better bound.

In Helander (2017, 2020), you will find other examples, e.g., a nice demonstration that
Maxwellian equilibria with spatially dependent density and temperature have available energy.

Exercise 9.3. Gardner distribution for beams. For some conveniently chosen model of
a two-beam distribution, compute the Gardner distribution and calculate the available energy.
You may wish to re-use the model that you chose in Exercise 9.2 and confirm, in line with (9.40),
that the bound on the available energy based on Gardner restacking is tigher than what you
can get from Fowler.

10. Statistical Mechanics of Collisionless Plasma

The core step of the “themodynamical” method of §9 was to find a stable trial
distribution f∗ in some sense related to the initial state f(0). If f(0) = f∗, then stability
was guaranteed; if not, one could estimate how much energy might be releasable if f(0)
were to go unstable—but was there an implication that the system might actually relax
to such a state? For a closed system, the answer is no. Indeed, consider the case of
Gardner’s distribution (§9.5). It is accessible from the intial distribution in the sense that
phase-volume conservation is respected by Gardner restacking. However, it manifestly
has lower energy. In a closed system, this energy can only go into fluctuating fields,
but, being spatially homogeneous, Gardner’s distribution can support no such fields self-
consistently.88

Let me stress that Gardner’s distribution cannot be interpreted as some mean equi-
librium f0, with the fluctuating fields hidden in a δf , because it is obtained under
the requirement of phase-volume conservation, which applies only to the exact total
distribution function f = f0 + δf . As I have noted already, Gardner’s thermodynamics
is zero-entropy thermodynamics, so it makes sense that no separation of f into a coarse-
grained and a fluctuating distribution is allowed.89

The result of §9.4, viz., conservation of the generalised free energy (9.33), suggests
that a state featuring a stable Gardner-like distribution, i.e., a monotonically decreas-
ing f∗(ε), plus small perturbations, is a viable one, but it does not offer a procedure for
calculating f∗ if one starts with f(0) somewhere far away from it. Fowler’s construction
(§9.2) dodges this problem by simply postulating that f∗ is a Maxwellian, which allows
one to use the standard formula for entropy—Gα(fα) in (9.12)—and prove the stability
of a Maxwellian with respect to finite perturbations, but does not explain what is so

88The situation is different if the problem of energy extraction is formulated as it is in Dodin
& Fisch (2005): an initial distribution is put into some external wave field for a while, then the
waves leave the plasma, carrying with them some energy. Then one can imagine the Gardner
state being accessible from the initial state, because there is no requirement that the total energy
in the system be conserved.
89For example, the distribution with a plateau into which an initial bump-on-tail distribution
relaxes quasilinearly (§6.3) is not the Gardner-restacked version of the latter (and neither does
the QL diffusion of the mean distribution f0 conserve phase volume; indeed, besides f0, the
system also has δf that supports a broad spectrum of electric perturbations, which help create
the plateau in the first place). If you are curious, you will find an explicit comparison between
the two in the paper by Kolmes & Fisch (2020), who were interested in what kind of distributions
could be achieved by Gardner restacking vs. by diffusion (the latter broadly interpreted). It turns
out that, by tailoring bespoke external wave fields that extract energy from particle distributions,
it is possible to devise an artificial “diffusive algorithm” that recovers Gardner’s distribution,
but it is not one that a freely relaxing QL plasma actually follows.
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special or inevitable about a Maxwellian in a collisionless plasma (something in some
special cases, nothing in general—see §§10.1.2 and 10.3, respectively).

In order to determine what stable distributions are accessible to a collisionless plasma
starting from a given state f(0), and, therefore, what distribution it will (or may) relax to,
one must do one of two things: either figure out the right entropy function and the right
constraints and maximise the former subject to the latter, or derive an evolution equation
for the mean distribution function f0 directly from the Vlasov–Maxwell equations (i.e.,
derive a “collisionless collision integral”). The first of these approaches is explored in this
section, the second in §11.

10.1. Lynden-Bell Statistics

Is there a way to determine universal, stable collisionless equilibria without regard
to the precise nature of initial conditions, mimicking the way in which Maxwellian,
Fermi–Dirac and Bose–Einstein distributions emerge in statistical mechanics as universal
equilibrium states (see, e.g., Exercise 16.1 of Schekochihin 2019)? Let us work though
a statistical argument proposed originally by Lynden-Bell (1967) in the context of
collisionless relaxation of kinetic systems of mutually gravitating objects (e.g., stars in a
galaxy)—and quickly realised by Kadomtsev & Pogutse (1970) to be equally relevant to
collisionless plasmas (this was one of the few historical occasions when plasma physics
followed in the footsteps of galactic dynamics, rather than vice versa).

Let us start by discretising the phase space into a very large number of micro-cells,
each with phase volume δΓ. Let us assume also (in what is a drastic simplifying step)
that the exact distribution function in each of these micro-cells is equal to either zero or
some constant, the same for all micro-cells:

f(Q) = η or 0, (10.1)

where, like in §9.1, Q = (r,v) is the phase-space variable. This is known as a waterbag
distribution—a constant probability density covering a finite subvolume of the phase
space. Then ∫

dQ f = η δΓN = N, (10.2)

where N is the number of micro-cells with non-zero particle density, N is the total
number of particles, and, naturally, we assume N � N � 1. We are going to think
of our plasma as a statistical-mechanical system of N phase-density elements, which
are allowed, under collisionless evolution, to move around phase space subject to the
usual constraints: conservation of energy and conservation of phase volume. The latter
constraint in this language means that different phase-density elements can never cross
paths to occupy the same micro-cell, i.e., that they obey a Pauli-like exclusion principle.
Thus, they are fermion-like particles, albeit distinguishable by their initial position in
phase space.

Let us now coarse-grain our phase space into macro-cells, each containing M � 1
micro-cells (Fig. 42). Let Ni 6 M be the occupation number of the i-th macro-cell,
i.e., the number in it of micro-cells with non-zero content. Then the coarse-grained
distribution f0 can be discretised in terms of the particle density in the i-th macro-cell:

f0i =
ηNi
M

6 η. (10.3)
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Figure 42. Coarse-graining micro-cells into macro-cells (M = 16).

The total number of ways of setting up a particular such distribution is

W =
N !∏
iNi!

∏
i

Wi, Wi =
M!

(M−Ni)!
. (10.4)

Here the first factor is the number of ways of distributing N phase-density elements
amongst the macro-cells and Wi is the number of ways to distribute Ni distinguishable
elements between the micro-cells in the i-th macro-cell. Assuming that N �M�Ni �
1, we can use Stirling’s formula (lnN ! ≈ N lnN −N ) to find the Boltzmann entropy for
our system:

S = lnW ≈ N (lnN − 1)−M
∑
i

[
Ni
M

ln
Ni
M

+

(
1− Ni
M

)
ln

(
1− Ni
M

)]
= N (lnN − 1)− 1

δΓ

∫
dQ

[
f0

η
ln
f0

η
+

(
1− f0

η

)
ln

(
1− f0

η

)]
, (10.5)

where
∫

dQ = MδΓ
∑
i. This S is to be maximised under the constraints of a fixed

number of particles N and energy K in the distribution. The problem is exactly the
same as for a Fermi gas90 and its solution is the Fermi–Dirac distribution:

f0(Q) =
η

eβ[ε(Q)−µ] + 1
, (10.6)

where ε(Q) = mv2/2 is the particle energy corresponding to the given macro-cell, and β
(inverse “temperature”) and µ (“chemical potential”) are Lagrange multipliers that are
determined by fixing N and K :

N =

∫
dQ f0, K =

∫
dQ εf0. (10.7)

There is an important nuance here that needs discussing. I derived (10.6) subject to
a fixed total kinetic energy K associated with the coarse-grained distribution f0, so I
need to know K in order to fix the parameters of (10.6). Generally speaking, K is not
a conserved quantity because there is energy also in the electric (and magnetic) fields.
For simplicity, I consider a (statistically) homogeneous system and let each phase-space

90The distinguishability of the phase-density elements turns out not to matter: in (10.4), the
factor of 1/Ni! that would appear in Wi for indistinguishable fermions is recovered in the
prefactor that expresses the number of ways of populating the macro-cells. For a tutorial on
Fermi gases, see Schekochihin (2019, §§16–17).
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macro-cell contain the entire position space. Consequently, f0 is independent of position.
In an electrostatic system, f0 then gives rise to no fields, so all of its energy is kinetic
energy.91 Does this mean that our fixed K is, in fact, conserved and so is equal to
the energy of the initial state?—Only if, during the evolution of the plasma towards
equilibrium, either no energy transfer from f0 to electric fluctuations (associated with
δf = f − f0) is allowed, i.e., the initial f0 is stable, or it is not stable, but, in the process
of relaxing to a stable state (e.g., quasilinearly, as in §6), it transfers to fluctuations an
amount of energy that is negligible compared to K .

Note that since the Lynden-Bell distribution (10.6) is a maximiser of an entropy, it
must be stable, by the same argument as Fowler made for a Maxwellian (§9.2). The same
will be true about the more general case considered from §10.2 onwards.

10.1.1. Degenerate Limit: the Ground State

Every physics undergraduate knows what Fermi gas in the limit of β → ∞ does: the
distribution is a Heaviside step function collecting all the probability below the Fermi
energy µ:

f0 = ηH(µ− ε) . (10.8)

Therefore, from (10.7),

N = V

∫ µ

0

dε g(ε)η ⇒ µ =
m

27/3

(
3n

πη

)2/3

≡ εF,
K

N
=

∫ µ
0

dε εg(ε)∫ µ
0

dε g(ε)
=

2

5
εF,

(10.9)
where I used (9.44) for g(ε). This f0 is quite clearly the Gardner function corresponding
to the waterbag distribution with phase-space density η: all phase elements are stacked
at the lowest possible energies subject to the Pauli principle. Therefore, the energy of
this distribution, KG = (2/5)NεF, is the lowest energy achievable at this phase-space
density—in other words, (10.8) is the ground state.

If K > KG, β must be finite and the resulting less degenerate Lynden-Bell dis-
tributions represent “excited” states of the system, corresponding to initial waterbag
distributions that occupy the phase space more sparsely.

10.1.2. Non-Degenerate Limit: the Maxwellian Returns

Just like in the case of Fermi–Dirac statistics, the non-degenerate limit is recovered
when the initial waterbag distribution is asymptotically sparse in phase space—i.e., when
it is sufficiently spread out around the part of the phase space that is accessible subject
to given energy K . Mathematically, this limit is achieved by letting

e−βµ � 1 ⇒ f0 ≈ ηeβµe−βε. (10.10)

Then, from (10.7), after doing the integrals using
∫

dQ = V
∫

dε g(ε) and the density of
states g(ε) given by (9.44), we get

β−1 ≡ T =
2

3

K

N
, ηeβµ =

n

(2πT/m)3/2
. (10.11)

91In this respect, my calculation is different from that of Lynden-Bell (1967), who considers a
self-gravitating system, which cannot be spatially homogeneous, and so f0 does give rise to a
gravitational potential, which then gives each particle a potential energy that must be included
in ε. In a 3D plasma, it is actually possible to prove that such inhomogeneous solutions with f0

that depends only on ε do not exist (Ng & Bhattacharjee 2005).
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(a) Cold beams: vb � ub (b) Warm beams: vb ∼ ub

Figure 43. Waterbag beams and their Lynden-Bell equilibria.

Thus, the non-degenerate, Maxwellian limit (10.10) is

n

(2πT/m)3/2
� η ⇒ f0 =

n

(2πT/m)3/2
e−ε/T . (10.12)

Of course it is not a particular surprise that a Maxwellian distribution emerges from a
statistical mechanics of completely randomised objects with fixed overall energy. Figuring
out in what way the statistical mechanics of a single waterbag is relevant to any real
plasma will take some further work...

10.1.3. Warm and Cold Beams

Let me offer a very simple example of a physically plausible waterbag distribution: a
pair of beams (streams) homogeneous in position space with number density nb, velocities
±ub in some given direction, and constant velocity-space density over a region of width
vb around ±ub, in 3D (a 1D cut of this might look like Fig. 43). This is a waterbag with

η ∼ nb

v3
b

, K ∼ nbV mu
2
b. (10.13)

It is non-degenerate if vb � ub, i.e., if the beams are “cold”—as is obvious from (10.12).
One therefore expects to see a distribution close to a Maxwellian with T ∼ mu2

b at
the end of the relaxation process (Fig. 43a). In contrast, “warm” beams, vb ∼ ub,
should tend to a Fermi–Dirac flat-topped equilibrium with Fermi energy εF ∼ mu2

b

(Fig. 43b). Remarkably, some recent numerical evidence may be showing something like
this happening (Skoutnev et al. 2019).

Exercise 10.1. Lynden-Bell thermodynamics and Lynden-Bell equilibria for beams.
Adapt Fowler’s thermodynamics (§9.2) to accommodate Lynden-Bell’s distribution as f∗ and
investigate the nonlinear stability of a distribution consisting of two square beams (Fig. 43).
Work out and plot (or at least sketch) the parameters of the “target” Lynden-Bell distribution:
T and µ as functions of ub and vb. In the limits vb � ub or T � ub, vb, everything
should be doable analytically (in the latter case, via Sommerfeld expansion; see, e.g., §17.3.3
of Schekochihin 2019). How does the available energy in the initial distribution, liable to be
transferred to the electric fluctuations, compare to K ?
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Figure 44. A close-to-degenerate 3-waterbag Lynden-Bell equilibrium.

10.2. Discrete Multi-Waterbag Statistics

The above construction contained a very restrictive assumption of an initial waterbag dis-
tribution. This restriction is, however, not hard to remove. Let us discretise the values that
the distribution function can take and index them by J , so a general distribution function is
represented as a superposition of waterbags:

f(Q) =
∑
J

fJ(Q), fJ(Q) = ηJ or 0. (10.14)

If there are NJ phase elements with density ηJ , then δΓNJ is the phase-space volume occupied
by the J-th waterbag, i.e., the phase-space volume where f = ηJ . This is conserved by the
collisionless evolution of f . The corresponding number of particles is NJ = ηJδΓNJ . As before,
we may now coarse-grain f over groups (macro-cells) ofM microcells and represent the resulting
f0 in terms of occupation numbers NiJ of the i-th macro-cell by elements of phase density ηJ .
If one generalises straightforwardly the single-waterbag derivation presented in §10.1, it then
turns out that

f0 =
∑
J

ηJpJ(ε), pJ(ε) =
e−βηJ (ε−µJ )

1 +
∑
J′ e
−βηJ′ (ε−µJ′ )

, (10.15)

where µJ and β are determined by

NJ = ηJ

∫
dQ pJ , K =

∫
dQ εf0. (10.16)

Thus, the more general equilibrium distribution is a kind of superposition of many Fermi–
Dirac distributions or, in the non-degenerate limit, of Maxwellians, with effective tempera-
tures 1/βηJ . When degenerate, they are ziggurat-like superpositions of step functions (Fig. 44).
Note that, with a large number of steps, any monotonically decreasing function of ε can be
approximated by such a ziggurat, so any Gardner distribution (§9.5) can be represented as a
Lynden-Bell equilibrium.

Exercise 10.2. Multi-waterbag equilibrium. (a) Derive (10.15), in the way described above
(Lynden-Bell 1967).

(b) Considering the Maxwellian limit, or otherwise, propose a natural way to define the overall
temperature (Lynden-Bell 1967 has an answer to this, which does not seem to me to be the
most natural one).

Exercise 10.3. Lynden-Bell distributions are Gardner distributions. Show that any
Lynden-Bell distribution (10.15) is a Gardner distribition (i.e., ∂f0/∂ε < 0), and so is stable
(this is easy).

Exercise 10.4. Gardner distributions are Lynden-Bell distributions. Consider a Gard-
ner distribution, i.e., a monotonically decreasing function of ε alone. Discretise it to be a
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multi-waterbag distribution (10.14). Show that, under an appropriate coarse-graining, the cor-
responding Lynden-Bell equilibrium (10.15) is the same distribution, i.e., that Lynden-Bell’s
entropy-maximisation procedure does not change Gardner’s distribution. Equivalently, any
Gardner distribution can be represented with arbitrary precision by (10.15) (with β → ∞).
Intuitively, this is obvious, but it does, in fact, take a bit of work to prove. I owe this result to
a conversation with Per Helander (2019) and the MMathPhys dissertation of Andrew Brown
(2021); an advanced version of the relevant calculation (done in the continuous limit; see §10.3)
is described in Appendix A of Ewart et al. (2023).

10.3. Continuous Multi-Waterbag Statistics

It is not hard to generalise all of the above to the case of a continuum of of waterbags
and, therefore, to general distributions. The required formalism is motivated by the
discrete multi-waterbag statistics (§10.2), but can be understood without reference to it.
Let us introduce a new exact and a new coarse-grained (averaged) distribution functions:

P (Q, η) = δ
(
f(Q)− η

)
, P0(v, η) = 〈P (Q, η)〉 , (10.17)

where it is assumed that the coarse-graining average renders the distribution spatially
homogeneous (dependent only on v). These functions measure the (exact and average)
amount of phase volume occupied by the particles whose position and velocity are Q =
(r,v) and whose phase-space density is equal to η.92 The mean phase-space density f0,
finding which is our primary objective, is now recoverable as the first moment of P0,∫

dη ηP (Q, η) = f(Q) ⇒
∫

dη ηP0(v, η) = f0(v), (10.18)

while the zeroth moment is simply fixed by the normalisation of probabilities:∫
dη P (Q, η) =

∫
dη P0(v, η) = 1. (10.19)

The phase-volume conservation is encoded in

1

V

∫
dQP (Q, η) =

∫
dv P0(v, η) = ρ(η) = const. (10.20)

Since this holds for every η, we have an infinite number of conservation laws (the Casimir
invariants mentioned at the end of §9.1). I shall call the function ρ(η), already introduced
in (9.42), the waterbag content of the (exact) distribution—it (and the total energy)
contains all the information that is retained from the initial state by the Lynden-Bell
collisionless-relaxation process.

Technically, the function P (Q, η) lives in an extended 7D phase space (r,v, η), but
of course it is, in fact, limited by (10.20) to a 6D hypersurface within this 7D space.
This formalism, which I shall call hyperkinetics (and which will come back with a
vengeance in §11.7), originates from galactic dynamics and vortex kinetics (for which
it is nicely presented in Chavanis et al. 1996; the review-style paper by Chavanis 2022
has a treatment of this topic that is, in certain respects, quite similar to mine in this
section and in §11, and contains very many historical cross-references between different
fields and lines of thought).

To determine the coarse-grained hyperkinetic distribution statistical-mechanically, it

92P0(v, η) is the continuous version of the waterbag probabilities pJ introduced in (10.15).
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makes sense to maximise the usual Shannon (1948) entropy of P0,93

S = −
∫

dv

∫
dη P0(v, η) lnP0(v, η) , (10.21)

subject to the constraints (10.19), (10.20), and fixed energy

V

∫
dv ε(v)

∫
dη ηP0(v, η) = K . (10.22)

This amounts to maximising unconditionally

S −
∫

dv λ(v)

[∫
dη P0(v, η)− 1

]
− β

[∫
dv ε(v)

∫
dη ηP0(v, η)− K

V

]
+ β

∫
dη ηµ(η)

[∫
dv P0(v, η)− ρ(η)

]
→ max, (10.23)

where λ(v), β, and −βηµ(η) are Lagrange multipliers. The “chemical potential” µ(η) is
indeed the chemical potential as its job is to fix the number of particles in the waterbag η.
The maximisation problem (10.23) yields the usual “grand-canonical” outcome

P0(v, η) =
e−βη[ε(v)−µ(η)]

Z(ε(v))
⇒ f0(v) =

1

Z(ε(v))

∫
dη η e−βη[ε(v)−µ(η)] , (10.24)

where the probability normalisation (10.19) is enforced by the “partition function”

Z(ε(v)) ≡ e1+λ(v) =

∫
dη e−βη[ε(v)−µ(η)], (10.25)

then β is determined by fixing the energy K of the distribution via (10.22), and µ(η) by
fixing its waterbag content, expressed by ρ(η) in (10.20). The function f0 in (10.24) is just
the continuous, multi-waterbag version of the Lynden-Bell equilibrium (10.6) [cf. (10.15)].

10.4. Ewart’s Theory of Collisionless Universality

It is good to have an all-encompassing formalism, but it might appear to give us cause
for some pessimism: via µ(η), everything depends on the waterbag content ρ(η) of the
initial distribution, which is, it seems, a highly non-universal and problem-dependent
thing—so what hope do we have of being able to discern anything universal about the
Lynden-Bell equilibria? It turns out, however, as Ewart et al. (2023) discovered, that
something universal can, in fact, be discerned. Here is how.

Let us recall that, for any initial distribution with a given ρ(η), we can construct, quite
straightforwardly, its Gardner distribution fG—the state with the lowest energy possible
while preserving this ρ(η) (§9.5.2). It is intuitively clear that this fG, if it were the initial
distribution, i.e., if the initial distribution had the energy K = KG, would also be the
relaxed Lynden-Bell equilibrium, so nothing new would happen as a result of collisionless
relaxation. This situation should correspond to the degenerate limit β → ∞ of (10.24).
Recalling the same story for a single waterbag (§10.1.1) makes the analogy obvious, or at
least plausible (the formal proof is in Ewart et al. 2023; cf. Exercise 10.4). The Gardner
distribution to the continuous, multi-waterbag Lynden-Bell statistics (10.24) is thus what
the step distribution (10.8) is to the single-waterbag case.

Imagine now that K > KG. We could think of the resulting Lynden-Bell equilibrium
as the same as would emerge if we took a Gardner distribution fG and added to it,

93This is essentially the same expression as (9.27).
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without breaking phase-volume conservation, K −KG worth of energy. We might then
expect that, if K � KG, the Lynden-Bell statistics will become non-degenerate, which,
by analogy with the single-waterbag case (§10.1.2), should entail

Z(ε) ≈ η0 = const, (10.26)

where η0 is an ε-idependent constant that has dimensions of η but whose value is unim-
portant because the factor eβηµ(η) appears in both the numerator and the denominator of
P0 in (10.24) and thus can be arbitrarily rescaled. Let us assume (10.26), work everything
out on this basis, and then discuss whether this was a reasonable thing to do (in §10.4.3).

Instead of µ(η), I shall use the convenient quantity

F (η) =
1

η0
eβηµ(η), (10.27)

called the fugacity of the distribution (by analogy with statistical mechanics). Then the
non-degenerate limit of (10.24) is

P0(v, η) = F (η) e−βηε(v), f0(v) =

∫
dη ηF (η) e−βηε(v). (10.28)

To determine F (η), we must enforce (10.20), which is easy in this limit: since
∫

dv =∫
dε g(ε), we get

ρ(η) = F (η)

∫
dε g(ε) e−βηε =

AΓ (a+ 1)F (η)

(βη)a+1
, (10.29)

where the density of states was set to be

g(ε) = Aεa, (10.30)

more general than (9.44) (where a = 1/2), but convenient to keep track of constants and
powers of ε (and handy for working out analogous results for, e.g., the 2D case, or a
relativistic plasma).

The explicit expression for F (η) follows immediately from (10.29) and can be inserted
into (10.28) to obtain the particle distribution function:

f0(v) =
βa+1

AΓ (a+ 1)

∫
dη ρ(η)ηa+2e−βηε(v). (10.31)

Now recall that ρ(η) = −dΓf (η)/dη [see (9.42)], use this in (10.31), and integrate by
parts:

f0(v) =
βa+1

AΓ (a+ 1)

∫
dη Γf (η)

d

dη
ηa+2e−βηε(v)

=
1

AΓ (a+ 1)β [ε(v)]
a+2

∫
dxΓf

(
x

βε(v)

)
d

dx
xa+2e−x. (10.32)

Simplifying a bit, this can be recast as the distribution of energies:

N (ε) = g(ε)f0 =
1

Γ (a+ 1)βε2

∫
dxΓf

(
x

βε

)
d

dx
xa+2e−x . (10.33)

Cutting to the chase, it will turn out (in §10.4.1) that, at least at large ε, Γf is a very
weak function of its argument (typically logarithmic), and thus the shape of the energy
distribution is determined by the ε−2 power-tail prefactor, which seems to be a fairly
universal asymptotic. This is great news if true. Before dealing with a number of loose
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ends and nuances, let me remind you that whether it is true hinges on the validity of two
key assumptions:

(i) The phase-density elements of which the distribution consists are independent and
free to sample the entirety of the phase space without fear or prejudice. One way in which
this might not be true would be if our system had further invariants that constrained
its dynamics on the time scales of interest. An example is a magnetised plasma in which
particles conserve adiabatic invariants (cf. Helander 2017, 2020).94

(ii) Phase volume is conserved by the evolution of the exact phase-space density f(Q),
i.e., by f0 + δf . This assumption is very dangerous, as we will see in §12.4.4. In §12.5, I
shall discuss what this danger implies for collisionless relaxation.

I shall now return to the systematic exposition of Ewart’s theory and sort out some
details: why Γf is a weak function of its argument and, consequently, how universal is the
ε−2 tail (§10.4.1); how come the energy distribution N (ε) appears to have a divergent
mean (§10.4.2); whether the non-degenerate approximation (10.26) is justified (§10.4.3); and
what happens when K is not much larger than KG (§10.4.4).

10.4.1. How Universal is the ε−2 Tail?

All the non-universality of our equilibrium, i.e., its dependence on initial conditions, has
been stuffed into the function Γf sitting inside the integral in (10.33). Last time this function
appeared in these Lectures was in §9.5.2, where it was used to deduce an equation for the Gardner
distribution. Using Helander’s version (9.46) of this equation and setting in it ε = f−1

G (η), we get

Γf (η) =

∫ f−1
G (η)

0

dε′g(ε′) =
A

a+ 1

[
f−1

G (η)
]a+1

. (10.34)

Thus, there is a one-to-one correspondence between Γf and fG. If fG(ε) decays faster at large ε
than any power law (equivalently, if it has an infinite number of finite moments), then f−1

G (η)
will grow more weakly with decreasing η than any power law, and so will Γf (η). For example,

if fG(ε) ∼ ηmaxe
−ε/εG , where εG ∼ KG/N , then f−1

G (η) ∼ εG ln(ηmax/η). In (10.33), this is
translated into95

Γf

(
x

βε

)
∼ A

[
εG ln

(
βηmaxε

x

)]a+1

. (10.35)

A weak ε dependence like this will not change in a significant way the dominant ε−2 high-energy
asymptotic in (10.33). What can change it is a power-law tail in the Gardner distribution.

Consider what happens if fG(ε) ∝ ε−a−σ at large ε. Then f−1
G (η) ∝ η−1/(a+σ) at low η, and

(10.33) gives us

N (ε) ∝ ε−2+(a+1)/(a+σ), (10.36)

so the tail becomes “harder”. This appears to be an unlikely situation.

10.4.2. Calculating β and Dealing with Divergences

You might have noticed that our calculation of the Lynden–Bell equilibrium is, in fact,
incomplete because we still need to find β by enforcing the energy constraint (10.22). An attempt
to do so leads to a nasty shock: if N ∝ ε−2 at large ε, the total energy K = V

∫
dε εN (ε)

diverges. There is a formal, and more general, way to see this by taking the energy moment

94Another is galactic dynamics—Lynden-Bell’s original preoccupation—where stars are
approximately tied to the Keplerian ellipses that they follow around the central black hole
(Binney 2018; Fouvry 2021; Hamilton 2022).
95Note that x = βηmaxε is the upper integration limit in (10.33) because Γf (η) = 0 for η > ηmax.
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of (10.31):

K

V
=

∫
dε g(ε)f0 =

βa+1

Γ (a+ 1)

∫
dη ρ(η)ηa+2

∫
dε εa+1e−βηε

=
a+ 1

β

∫ ηmax

ηmin

dη ρ(η) =
a+ 1

β
Γf (ηmin), (10.37)

where, since, self-evidently, Γf (0) = ∞, the only way to avoid a divergence was to introduce a
lower cutoff on the phase-space density, f(Q) > ηmin. Accepting this without discussion for a
moment, we get

β =
a+ 1

K
V Γf (ηmin) . (10.38)

The introduction of ηmin sets the integration limits in (10.33) to x ∈ [βηminε, βηmaxε] (the
upper limit having always been there). The lower limit provides an exponential high-energy
cutoff in N (ε) at

ε &
1

βηmin
∼ K

V Γf (ηmin)ηmin
. (10.39)

It may appear deplorable that we have a theory that requires such invasive surgery, but
this cannot be helped. Note, however, that the dependence of β (and, as we shall see, of all
other relevant quantities) on ηmin is weak (typically logarithmic) if the argument put forward
in §10.4.1 holds up, so perhaps we can live with this need to appeal to a seemingly artificial
quantity. Obviously, we shall want our theory to work in the limit ηmin → 0. It is not hard to
estimate what the absolute lower bound for ηmin is:

ηmin

ηmax
∼ nmin

n
� 1

nλ3
D

, (10.40)

where I assumed that the smallest reasonable value nmin for the particle density in a collisionless
plasma must still be much larger than one particle per Debye sphere. While this gives plenty
of space for making ηmin small, the values of ln(ηmax/ηmin) remain both reasonably finite and
quite insentive to the precise choice of ηmin.96

10.4.3. Validity of Non-degenerate Limit

The expression (10.38), given the presence in it of Γ(ηmin), which explodes (even if logarith-
mically) when ηmin → 0, does little to fill one with confidence that the non-degenerate limit
is really valid: we see that, formally, β → ∞ always! Let us examine then exactly why, and
whether, (10.26) is satisfied.

Recall how the non-degenerate limit worked for the case of a single waterbag. The Fermi–Dirac
distribution (10.6) can be written as

f0 =
ηe−β(ε−µ)

Z(ε)
, Z(ε) = 1 + e−β(ε−µ). (10.41)

The non-degenerate limit (§10.1.2) is obtained when the partition function Z(ε) can be approx-
imated by 1. This constant part of Z(ε) corresponds to the “empty waterbag”—the fact that
a fraction of the phase space contains no particles; in the non-degenerate limit, this fraction is
dominant.

Similarly to (10.41), the more general partition function (10.25) must have the form

Z(ε) = η0 +

∫ ηmax

ηmin

dη e−βη[ε(v)−µ(η)] = η0

[
1 +

∫ ηmax

ηmin

dη F (η) e−βηε
]
, (10.42)

where η0 accounts for the empty waterbag, but its specific value, as I have argued already, is
rescalable from everywhere and so does not matter. Note that (10.42) means that the chemical
potential µ(η) must have such a form that

eβηµ(η) = η0 [δ(η) +H(η − ηmin)F (η)] . (10.43)

96Ewart et al. (2023) argue that the most appropriate choice is ηmin ∼ ∆Γ−1, where ∆Γ is
another kludgy quantity, which will be introduced in §11.2 and discussed physically in §11.8.
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Figure 45. Lynden-Bell equilibria (dashed lines) with core and halo, and their Gardner
distribution (thick line).

Thus, in order to assess the vality of the non-degenerate approximation, one must ask if, with
F (η) given by (10.29), the second term in the square bracket in (10.42) is small compared to
unity for every ε. This is the same integral as the one for f0 in (10.28) but with one less power
of η in the integrand, so it is

βa+1

AΓ (a+ 1)

∫ ηmax

ηmin

dη Γf (η)
d

dη
ηa+1e−βηε � 1. (10.44)

This must be satisfied at every ε, which is indeed guaranteed if it is satisfied at ε = 0:

βa+1

A

∫ ηmax

ηmin

dη ηaΓf (η)� 1 ⇔ K � V

[
1

A

∫ ηmax

ηmin

dη ηaΓf (η)

]1/(a+1)

Γf (ηmin), (10.45)

where I used (10.38) for β. To get a feel for what it takes to satisfy this, let Γf (η) ∼
A [εG ln(ηmax/η)]a+1, as in (10.35). Then

K � V εGηmax

[∫ 1

ηmin/ηmax

dxxa(lnx)a+1

]1/(a+1)

A

(
εG ln

ηmax

ηmin

)a+1

∼ KG

(
ln
ηmax

ηmin

)a+1

,

(10.46)
because, roughly, ηmaxAε

a+1
G = ηmaxg(εG) ∼ n and εGV n ∼ KG. Thus, in order for the non-

degenerate approximation to hold well, the energy of the distribution has to be quite significantly
larger than its minimum allowed (Gardner) value.

10.4.4. Core and Halo

What happens if K > KG, but not large enough to satisfy (10.46)? Like often in non-
asymptotic situations, this cannot be answered analytically, but the Lynden-Bell equilibria can
be found by solving numerically the coupled integro-transcendental equations (10.24) for P0,
(10.20) for µ(η), and (10.22) for β. According to Ewart et al. (2023), who did this (see their
paper for real plots, or just glance at an artist’s impression in Fig. 45), it turns out that if one
adds a small amount of energy to KG, the Gardner distribution will mostly survive but develop
a little ε−2 tail at high energies (analogous to the Fermi–Dirac distribution at low temperature
becoming a slightly eroded step function). If K −KG is increased, the tail will grow bushier and
gradually take over. A general Lynden-Bell equilibrium then conists of a non-universal “core”,
whose shape depends on the Gardner distribution, and a universal “halo” (the tail).

In the non-degenerate limit (10.46), it is not hard to estimate the energy at which the
transition between the halo and the core occurs: in (10.33), at low ε, the Γf factor will start
suppressing the magnitude of N (ε) when

ε ∼ 1

βηmax
∼ K

V Γf (ηmin)ηmax
. (10.47)
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Therefore, the energy content of the core is

Kcore ∼
V Aεa+1

G

β
∼ K

Aεa+1
G

Γf (ηmin)
∼ K

(
ln
ηmax

ηmin

)−(a+1)

� Khalo ∼ K , (10.48)

where I again used the estimate (10.35), with ε given by (10.47). Thus, most of the energy is in
the tail of the distribution (the halo).

11. (Collisionless) Collision Integrals

Just like in the theory of gases, statistical mechanics points us to a maximum-entropy
distribution, but we need kinetic theory to see if such a distribution can be reached
dynamically, and under what assumptions. To address this, I am going to go back to
the QL scheme (§6.1) and use it to derive a kind of “collisionless collision integral”
that evolves the mean distribution function of a collisionless, homogeneous, electrostatic
plasma towards some equilibrium that maximises an appropriate entropy and could
perhaps be argued to be universal. For a single-waterbag initial distribution, I will recover
the Fermi–Dirac distribution (10.6) as a solution of this collision integral. I will then show,
in §11.7, how to generalise this constriction to the case of a continuum of waterbags that
we encountered in §10.3 and recover the general Lynden-Bell equilibria (10.24) as the fixed
points of this hyperkinetic collision integral. Getting there will require some assumptions
about the nonlinear behaviour in phase space—assumptions that are neither obvious nor,
possibly, always correct, and that will therefore be re-examined in §12, upon injection of
some more nonlinear physics.

11.1. General Form of Collision Integrals

So the equilibrium (slow, space- and time-averaged) distribution f0 again evolves
according to (2.11):

∂f0

∂t
= − ∂

∂v
·

(
q

m

∑
k

ik〈ϕ∗kδfk〉

)
= − ∂

∂v
·

(
e

m

∑
k

k Im〈ϕ∗kδfk〉

)
, (11.1)

where the imaginary part was distilled out of the k integral by splitting the latter in
two equal parts and replacing k → −k in one of them [cf. (6.8)]; I have also specialised
to electrons (q = −e) and will assume, for simplicity, that ions play no role apart from
providing a homogeneous neutralising background.

Poisson’s law (2.9) in this case is just

ϕk = −4πe

k2

∫
dv′ δfk(v′), (11.2)

and, therefore, (11.1) turns into

∂f0

∂t
=

∂

∂v
·

[
4πe2

m

∑
k

k

k2

∫
dv′ ImCk(v,v′)

]
, (11.3)

where the right-hand side—the prototypical collision integral—is expressed in terms of
(the imaginary part of) the correlation function

Ck(v,v′) =
〈
δfk(v)δf∗k(v′)

〉
. (11.4)

This establishes an important principle—the evolution of f0 is determined by the second-
order correlator of δf , which, if we want a closed equation, it is now our task to express



156 A. A. Schekochihin

in terms of f0. All derivations of collision integrals (“true” or “collisionless”) are schemes
for doing this, usually requiring some “closure” assumption(s) at some stage.

This is, of course, just a reiteration of the message of §2.3: to know about the
equilibrium, we need to understand the fluctuations—we need a theory of phase-space
turbulence.

11.2. Microgranulation Ansatz

We do not have it, so let us attempt to avoid needing it by instead venturing an
extremely primitive guess at what the correlation function (11.4) might be. Imagine
that we start the evolution of our collisionless system with some initial distribution—
generally speaking, unstable—and let it proceed for a while. Instabilities might flare
up and saturate, particles will stream and phase-mix the distribution, etc., so fairly
quickly the exact f will become stable but extremely chopped up and fine-structured
in phase space.97 The average of this distribution over space and over “fast” times
(meaning frequencies associated with any plasma processes, e.g., ∼ ωpe, and with particle
streaming, ∼ k · v), is f0. The remainder is δf = f − f0. Surely it is then reasonable to
think of this perturbed distribution as thoroughly mixed in phase space and essentially
random?

If it is reasonable, then perhaps we can model δf by a random phase-space density
field g(r,v) (assigned a different letter for reasons about to transpire) whose correlation
function is 〈

g(r,v)g(r′,v′)
〉

= 〈g2〉(v)∆Γ δ(r − r′)δ(v − v′) , (11.5)

where ∆Γ is the phase-space volume representing the “width” of the two delta functions;
note that the one-point average 〈g2〉 is a function only of v because the system is assumed
to be statistically homogeneous in position space. I shall call (11.5) (perhaps a bit
pompously) the microgranulation ansatz. A way to make it almost true by construction
is to redefine our average as coarse-graining over phase-space macro-cells of at least the
volume ∆Γ = ∆r3∆v3, where ∆r and ∆v are, respectively, the position- and velocity-
space correlation scales of g. I said “almost” because the whole scheme depends on it
being possible also to make both ∆r and ∆v sufficiently small:

∆r � V 1/3, ∆v �
(

K

mN

)1/2

∼ vth, (11.6)

where V is the system’s volume and K its total energy. In other words, we are still
assuming that, as a result of phase mixing, g would lose any system-scale correlations
in either position or velocity space. Note that we are also assuming that ∆r and ∆v are
sufficiently large for ∆Γ to contain so many particles that “true” Coulomb collisions are
not a player—I will return later to what this means quantitatively.

If we assume that the correlation function (11.4) of δf is well-modelled by (11.5), viz.,

Ck(v,v′) =
〈
gk(v)g∗k(v′)

〉
=

∫∫
drdr′

V 2
e−ik·(r−r

′)
〈
g(r,v)g(r′,v′)

〉
= 〈g2〉(v)

∆Γ

V
δ(v − v′), (11.7)

a bitter disappointment awaits us: since (11.7) is manifestly real, the right-hand side
of (11.3) is identically zero. This is a particular case of the general fact that, since, by
the property of Fourier transforms of real functions, C∗k(v,v′) = Ck(v′,v), ImCk(v,v′)

97This is the part of the evolution that Lynden-Bell (1967) calls “violent relaxation”.
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contains only the antisymmetric part of the correlation function with respect to the
transformation v ↔ v′. Thus, to get anything non-trivial, we must busy ourselves with
the extraction of this antisymmetric part.

There are two ways in which ImCk(v,v′) can be present. The first is that the
microgranulation ansatz is plain wrong even approximately and the true correlation
function of phase-space turbulence is not symmetric. The second (which is a mild variant
of the first) is that microgranulation ansatz is approximately fine, but there is a correction
to it that gives rise to a non-zero collision integral. The first possibility will be examined
in §12.2, but here and now I will explore the second one, which is, in a certain sense, a
direct generalisation of the standard derivation of “true” collision integrals in the classic,
textbook kinetic theory.

11.3. Quasilinear Collision Integrals

The idea is to treat the fully phase-mixed field g(r,v) described by (11.5) as an initial
condition for δf , then calculate the time evolution of the latter from that initial state
over times long compared to streaming times (k · v t � 1) but short compared to the
times over which f0 changes significantly, and then work out the contribution from that
evolved δf to the evolution of f0. A further approximation is to assume this evolution to
be quasilinear, i.e., to segregate the linear part of the evolution of δf from the nonlinear
part and make simplifying assumptions about the latter—as one does in QLT.

The perturbation δf = f − f0 satisfies (2.12) exactly and its linear part (2.13)
approximately (within the QL approximation), viz.,

∂δfk
∂t

+ ik · v δfk = −i e
m
ϕkk ·

∂f0

∂v
. (11.8)

Given an initial perturbation gk(v), the Laplace-transformed solution of (11.8) is the
same as (3.8) and (3.13), viz.,

δf̂k(p) = −i e
m

ϕ̂k(p)

p+ ik · v
k · ∂f0

∂v
+ ĥk(p), (11.9)

ĥk(p) =
gk(v)

p+ ik · v
, (11.10)

ϕ̂k(p) = − 4πe

k2ε(p,k)

∫
dv ĥk(p), (11.11)

ε(p,k) = 1− i4πe
2

mk2

∫
dv

1

p+ ik · v
k · ∂f0

∂v
. (11.12)

Formally, this is linear theory, but we should keep in mind that if, instead of ĥk(p)
being given by (11.10), we just treated it as an unknown function, then (11.9) could be

interpreted as a decomposition of δf̂ into a linear and nonlinear parts, with the latter
to be determined. The calculations that follow will admit this possibility until the start
of §11.3.1.

The time-dependent solution is recovered from (11.9) and (11.11) via the inverse
Laplace transform (3.14), but I now wish to change the integration variable to p =
−iω + σ:

δfk(t) =

∫ +∞

−∞

dω

2π
e(−iω+σ)tδfkω, ϕk(t) =

∫ +∞

−∞

dω

2π
e(−iω+σ)tϕkω. (11.13)

The integration contour now runs along the real line and the Laplace-transformed
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Figure 46. Change of variable in the inverse Laplace transform (11.13).

functions have been rebranded to look almost like Fourier-transformed ones:

δfkω = δf̂k(−iω + σ) =
e

m

ϕkω
ω − k · v + iσ

k · ∂f0

∂v
+ hkω, (11.14)

hkω = ĥk(−iω + σ) =
igk(v)

ω − k · v + iσ
, (11.15)

ϕkω = ϕ̂k(−iω + σ) = − 4πe

k2εkω

∫
dv hkω, (11.16)

εkω = ε(−iω + σ,k) = 1 +
4πe2

mk2

∫
dv

1

ω − k · v + iσ
k · ∂f0

∂v
. (11.17)

The reason for this rearrangement is that I now want to assume that ϕ̂k(p) and, therefore,

δf̂k(p) have no poles at Re p > 0, i.e., f0 supports no instabilities, so I may let σ → +0,
only needing it in the denominators to tell me how to circumvent the ballistic pole
ω = k · v (Fig. 46).

In the context of collisional relaxation of f0, this assumption is justified as follows.
The initial distribution may well be unstable, but we can always wait for its instabilities
to get excited, saturate and change f0 in such a way as to shut themselves down (e.g.,
quasilinearly, as they did in §6). After that, we have a distribution function that is stable
or, at worst, marginally stable, i.e., εkω might have zeros on the real-ω line and certainly
at Imω = Re p 6 0, but not at Imω = Re p > 0. This assumption means that we should
expect to derive an evolution equation for f0 that conserves its kinetic energy (since we
do not expect new electric fluctuations to be excited). This is a setting that is similar to
what the Lynden-Bell-style calculation in §10 described [see discussion after (10.6)]—and
thus (10.6) should be (and indeed will be) recoverable in this approach, under the right
assumptions.

We are ready to roll. Substituting (11.13) and (11.14) into (11.1), we get98

∂f0

∂t
=

∂

∂v
·
∑
k

k Im

∫∫
dωdω′

(2π)2
e−i(ω−ω

′)t

(
− e2

m2

〈ϕkωϕ∗kω′〉
ω − k · v + iσ

k · ∂f0

∂v
− e

m

〈
hkωϕ

∗
kω′
〉)

.

(11.18)
The first term is the familiar QL diffusion (here written for a general-form ϕ) whereas
the second term turns out to be a kind of drag [like in the Fokker–Planck collision

98A conscientious reader might at this point become worried about what exactly is meant by
averages in (11.18). She will find some succour in §11.2.
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Figure 47. The contours for calculating the double integral (11.26).

integral (1.47)], whose form we shall now elaborate a little further. Using (11.16), we get

− e

m
〈hkω(v)ϕ∗kω′〉 =

4πe2

mk2ε∗kω′

∫
dv′

〈
hkω(v)h∗kω′(v

′)
〉

=
4πe2

mk2εkωε∗kω′

∫
dv′

[
Ckωω′(v,v

′) +
4πe2

mk2

∫
dv′′

Ckωω′(v,v
′)

ω − k · v′′ + iσ
k · ∂f0(v′′)

∂v′′

]
,

(11.19)

where Ckωω′(v,v
′) =

〈
hkω(v)h∗kω′(v

′)
〉

and the last expression was obtained by mul-
tiplying and dividing by εkω. The reason for this seemingly gratuitous manipulation is
two-fold.

First, the first term in (11.19) vanishes after it is plugged into (11.18):

Im

∫∫
dωdω′

(2π)2
e−i(ω−ω

′)tCkωω′(v,v
′)

εkωε∗kω′
= Im

〈
h̃k(v)h̃∗k(v′)

〉
= 0, (11.20)

provided the correlation function of the “dressed” distribution function h̃k =
(1/2π)

∫
dω e−iωthkω/εkω is symmetric with respect to swapping velocities, v ↔ v′. If

hkω is given by (11.15) with the initial condition gk(v) satisfying the microgranulation
ansatz (11.5), this is indeed the case. Thus, here, effectively, is the place where the
symmetric part of the correlation function (11.4) is got rid of and only the non-vanishing
part of the collision integral (11.3) is kept.

Secondly, the first term in (11.18), upon insertion of (11.16), turns into an expression
of a similar form to the second term in (11.19):

− e2

m2

〈ϕkωϕ∗kω′〉
ω − k · v + iσ

k · ∂f0

∂v
= − 16π2e4

m2k4εkωεkω′∗

∫∫
dv′dv′′

Ckωω′(v
′′,v′)

ω − k · v + iσ
k · ∂f0(v)

∂v
.

(11.21)

Putting all this together, we end up with (11.18) in the form that suggests that we
might be on our way towards something like the particle-collision integral (7.37):

∂f0

∂t
=

∂

∂v
·
∫

dv′′
[
D(v,v′′) · ∂f0(v)

∂v
− D(v′′,v) · ∂f0(v′′)

∂v′′

]
, (11.22)

where the “diffusion kernel” is

D(v′′,v) = −16π2e4

m2
Im
∑
k

kk

k4

∫∫
dωdω′

(2π)2

e−i(ω−ω
′)t

εkωε∗kω′

∫
dv′

Ckωω′(v,v
′)

ω − k · v′′ + iσ
. (11.23)

Note that the QL diffusion coefficient similar to the one appearing in (6.7) is then∫
dv′′D(v,v′′).
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11.3.1. Quasilinear Approximation

Note that, except in justifying the vanishing of (11.20), I have not yet actually used
the QL approximation, i.e., the explicit expression (11.15) for hkω in terms of gk. Let me
use it now:

Ckωω′(v,v
′) =

Ck(v,v′)

(ω − k · v + iσ)(ω′ − k · v′ − iσ)
, Ck(v,v′) =

〈
gk(v)g∗k(v′)

〉
, (11.24)

and, therefore,

D(v′′,v) = −16π2e4

m2
Im
∑
k

kk

k4

∫
dv′ Ck(v,v′)Ik(v,v′,v′′), (11.25)

Ik(v,v′,v′′) =

∫∫
dωdω′

(2π)2

e−i(ω−ω
′)t

εkωε∗kω′(ω − k · v + iσ)(ω′ − k · v′ − iσ)(ω − k · v′′ + iσ)
.

(11.26)

The remaining work is now in calculating the double integral (11.26). If εkω has no
poles at real ω (i.e., f0 is a stable distribution), the integral is done by shifting the ω′

integration contour upwards to Imω′ → +∞, but snagging on the pole at ω′ = k · v′,
and the ω contour downwards to Imω → −∞, snagging on the poles at ω = k · v and
ω = k · v′′ (see Fig. 47). The result is

Ik(v,v′,v′′) =
e−ik·(v−v

′)t

εk,k·vε∗k,k·v′

1

k · (v − v′′)

(
1− eik·(v−v

′′)t εk,k·v
εk,k·v′′

)
︸ ︷︷ ︸
→ −iπδ

(
k · (v − v′′)

)
as t→∞

, (11.27)

where the δ-function approximation is obtained in the same way as in (5.40). Thus,
(11.25) becomes

D(v′′,v) =
16π3e4

m2
Re
∑
k

kk

k4
δ
(
k · (v − v′′)

) ∫
dv′

Ck(v,v′)e−ik·(v−v
′)t

εk,k·vε∗k,k·v′
. (11.28)

Note that with the emergence of δ
(
k · (v − v′′)

)
, we have inched another step towards a

result that looks like the particle-collision integral (7.37).

Exercise 11.1. Inclusion of plasma waves. What if εkω does have poles at real ω, or close
by? Try your hand at generalising this theory, from here and onwards to §11.5, to this case, which
describes the evolution of a marginally stable or even weakly unstable f0, and so of a plasma
in communion with a population of waves. You will discover a bridge between the theory being
developed here and the kind of QLT that was presented in §6. You may find some inspiration for
this calculation in the classic paper by Rogister & Oberman (1968) (the sequel to it, Rogister
& Oberman 1969, brings in the WT processes familiar from §7.2, but stops short of wading into
strongly turbulent waters).

11.3.2. Microgranulation Ansatz Re-applied

In order to calculate the diffusion kernel (11.28) and, therefore, the collision inte-
gral (11.22), we yet again need to know the correlation function Ck(v,v′) of g. This is the
moment to bring back, now with non-trivial pay-off, the microgranulation ansatz (11.7).
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The result is that (11.22) becomes

∂f0

∂t
=

16π3e4∆Γ

m2V

∂

∂v
·
∫

dv′′
∑
k

kk

k4

δ
(
k · (v − v′′)

)
|εk,k·v|2

·
[
〈g2〉(v′′)∂f0(v)

∂v
− 〈g2〉(v)

∂f0(v′′)

∂v′′

]
. (11.29)

A reader who followed carefully the discussion and derivation of the quasiparticle-collision
integrals in §§7 and 8.4.2 has realised that the contortions through which I am going here
are an attempt to set up for a collisionless plasma something resembling the WT random-
phase approximation or the usual Boltzmann’s Stosszahlansatz. It is the microgranulation
ansatz that breaks reversibility and is about to give us a “collision” integral with an H-
theorem and a universal solution.

Exercise 11.2. Momentum and energy conservation for “collisionless collision inte-
grals”. Show that the general integral (11.29) conserves the momentum and kinetic energy of
the particle distribution f0.

This is as far as we can go without further closure assumptions: we still need to work
out 〈g2〉 in terms of f0. Let us get on with it.

11.4. Kadomtsev–Pogutse Collision Integral

With the assumptions and the definition of averaging described above, f0 is the same
as f0 in §10 and the macro-cells over which it is coarse-grained are the same randomly
(and statistically independently) filled macro-cells as in the Lynden-Bell statistics (so, in
the language of §10, ∆Γ = MδΓ). Unsurprisingly, the same result is about to pop out.
Indeed, let us, for maximum simplicity, assume that the exact distribution is a single
waterbag (10.1). Then99

〈g2〉 = 〈(f − f0)2〉 = 〈f2〉 − f2
0 = (η − f0)f0, (11.30)

because, for a single-waterbag distribution, 〈f2〉 = 〈ηf〉 = ηf0. With this additional
closure, the “proto-collision integral” (11.29) turns into

∂f0

∂t
=

16π3e4∆Γ

m2V

∂

∂v
·
∫

dv′′
∑
k

kk

k4

δ
(
k · (v − v′′)

)
|εk,k·v|2

·
[(
η − f0(v′′)

)
f0(v′′)

∂f0(v)

∂v
−
(
η − f0(v)

)
f0(v)

∂f0(v′′)

∂v′′

]
.

(11.31)

This is the “collisionless collision integral” of Kadomtsev & Pogutse (1970) (whose
derivation I have more or less followed). It is not hard to show that it has an H-theorem

99It has not escaped my perceptive reader that a potential mathematical illegality is being
perpetrated: is coarse-grain average of a coarse-grain average equal to itself, and is it true that
〈ff0〉 = 〈f2

0 〉 = f2
0 ? In general, no, not when the coarse-graining is done by convolution with

some continuous shape function. However, it is fine if we formally do this as we did in §10, by
grouping fixed discrete micro-cells into fixed discrete macro-cells. Alternatively, we may hope
that the differences between f0 and 〈f0〉 and similar quantities are small enough to be ignored
or, in a cleaner move, resort to an ensemble average over many possible realisations of f and
assume that it will do the coarse-graining job automatically. Note that our time average (2.7)
in fact suffered from the same problem. There too, we could instead have done an ensemble
average and assumed that that would automatically have slow time evolution and no spatial
dependence (in a statistically homogeneous system).
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with the entropy (10.5) and that this entropy is maximised—and the right-hand-side of
(11.31) is annihilated—by the Fermi–Dirac distribution (10.6).

Exercise 11.3. Show this.

Exercise 11.4. Generalise the above calculation to multiple species (electrons and ions).

The procedure that I have followed above to derive the collision integral (11.31) can be used
in many different contexts. For one of the more recent and exotic such applications, see the
derivation by Bar-Or et al. (2021) of quantum kinetic equation for “fuzzy dark matter”. A more
mundane, textbook example is the derivation of the “true” collision integrals for Fermi and Bose
gases described in the appendix of Ewart et al. (2022).

11.5. Lenard–Balescu Collision Integral

Just as in §10, the non-degenerate limit is f0 � η, turning (11.31) into

∂f0

∂t
=

16π3e4η∆Γ

m2V

∂

∂v
·
∫

dv′′
∑
k

kk

k4

δ
(
k · (v − v′′)

)
|εk,k·v|2

·
[
f0(v′′)

∂f0

∂v
− f0(v)

∂f0

∂v′′

]
.

(11.32)
This has a functional form that is identical to the standard Lenard–Balescu collision
integral (Lenard 1960; Balescu 1960) and its solution is, obviously, a Maxwellian.

How is it possible that collisionless and collisional behaviour turn out to be the
same? Mathematically, this is not hard to understand. Let us recall what is meant
by collisions in plasma physics. When a plasma (or, rather, a collection of individual
particles) is described by its Klimontovich distribution function (1.19), the latter satisfies
a “collisionless” Vlasov equation involving the microscopic electromagnetic field—the
Klimontovich equation (1.35). Collisions acquire a specific mathematical meaning when
this equation is averaged (coarse-grained) over the Debye scale,100 leading to the kinetic
equation (1.41), where the collision integral is defined in terms of the correlation function
of the differences between the averaged (“macroscopic”) and the exact (“microscopic”)
fields and distribution. This is basically the same procedure as the one that led to (11.1)
and thence to the “collisionless collision integal” (11.22) and its descendants (11.31)
and (11.32). If we interpret the exact distribution f as the Klimontovich distribution,

f(r,v) =

N∑
i=1

δ(r − ri) δ(v − vi) , (11.33)

then the difference between it and f0 will satisfy the microgranulation ansatz (11.5)
automatically, because the Klimontovich distribution is only non-zero at the exact phase-
space positions (ri,vi) of the particles (assumed initially random), so the correlation
function of f − f0 must needs be a delta function. In this interpretation, ∆Γ is the
effective width of the delta functions associated with individual particles, while η is their
height (so the Klimontovich distribution is a kind of single waterbag). Clearly, they are
related by

η∆Γ = 1, (11.34)

which is all we need to know in (11.32), finally turning it into the Lenard–Balescu
collision integral. It is not surprising that the solution is a Maxwellian because the

100Our friends the galactic dynamicists do not make a distinction between “collisionless” and
“collisional” dynamics because gravity is not shielded, so there is no natural coarse-graining
scale in the form of the Debye length (Binney 2018; Fouvry 2021; Hamilton 2022).
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Klimontovich distribution is extremely non-degenerate: all these delta functions always
occupy a negligible fraction of the available phase space.

11.6. Landau’s Collision Integral

While I am at it, let me show for completeness how the Landau (1936) collision integral
is recovered from the Lenard–Balescu one. If we want to use (11.32) (with η∆Γ = 1) as an
expression for bona fide collisions, i.e., if δf and ϕ are interpreted as fluctuating fields below the
Debye scale, we must restrict the k summation to kλD � 1. In this approximation, |εk,k·v|2 ≈ 1.
The k sum then becomes tractable: denoting v − v′′ = w, we get

1

V

∑
k

kk

k4
δ
(
k·(v−v′′)

)
=

∫
dk

(2π)3

kk

k4
δ(k·w) =

1

w

∫
dk⊥
(2π)3

k⊥k⊥
k4
⊥

=
1

8π2w

(
I− ww

w2

)∫ dk⊥
k⊥

,

(11.35)
where k⊥ = k · (I − ww/w2). The divergent integral is the Coulomb logarithm Λ = ln(λD/d)
if the integration is cut off at the distance of closest approach d [see text after (1.13)] and the
Debye scale λD. Consequently, (11.32) becomes

∂f0

∂t
=

2πe4Λ

m2

∂

∂v
·
∫

dv′′

w

(
I− ww

w2

)
·
[
f0(v′′)

∂f0

∂v
− f0(v)

∂f0

∂v′′

]
. (11.36)

This is the Landau (1936) collision integral [cf. (1.47)]. Note that both it and the Lenard–
Balescu integral (11.32) have the functional form anticipated in (7.37), which is as it should
be—the calculations above are, thus, a way to work out the interaction probability w(p,p′,k).

11.7. Hyperkinetic Collision Integral

It is possible to generalise the Kadomtsev–Pogutse integral more or less straight-
forwardly to general distributions, not limited to a single waterbag or even a discrete
set of them—alongside the more baroque scheme that you will have an opportunity to
explore in Exercise 11.7, this is described in Ewart et al. (2022), but the derivation
for discrete waterbags goes back to Severne & Luwel (1980) (in application to galactic
dynamics). The idea is to construct a collision integral not for f0 but for its hyperkinetic
counterpart P0(v, η) introduced in §10.3. This is a change of attitude with regard to the
distribution function f0(v): it is now treated it as a “fluid” quanity—the mean density
of the “phase fluid” that is fully described by the exact density f(Q)—and so f0(v) is
just the first η moment of the “kinetic” quantity P0(v, η), as per (10.18):

f0 =
〈
f
〉

=

∫
dη ηP0(v, η). (11.37)

Higher-order correlation functions of f are, accordingly, higher η moments of P0(v, η), e.g.,〈
f2
〉

=

∫
dη η2P0(v, η). (11.38)

This is precisely the quantity that we needed in order to obtain closed expressions for the
“collisionless collision integral” (11.29), enabling the step to (11.31) (but only for a single
waterbag so far). Thus, just like in the derivation of fluid dynamics from kinetics, the
closure problem for fluid (now “phase-fluid”) moments is overcome by determining the
kinetic (now hyperkinetic) distribution function over a higher-dimensional phase space.

Progress is possible because it is very easy to derive a closed equation for P (Q, η):
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using Vlasov’s equation for f , we get

∂P

∂t
= δ′(f − η)

∂f

∂t
= −δ′(f − η)

[
−v ·∇f − e

m
(∇ϕ) · ∂f

∂v

]
= −v ·∇P − e

m
(∇ϕ) · ∂P

∂v
. (11.39)

Thus, P just satisfies the usual Vlasov’s equation. Its average P0, which we can assume
to be spatially homogeneous, obeys, therefore,

∂P0

∂t
=

∂

∂v
·
[
− e

m

〈
(∇ϕ)δP

〉]
, (11.40)

where δP = P − P0 and, since δf =
∫

dη ηδP , Poisson’s equation is

−∇2ϕ = 4πe

∫
dv

∫
dη ηδP. (11.41)

Working out the average in the right-hand side of (11.40) is a problem that can be solved
entirely analogously to what has been done above to determine the rate of change of f0,
starting from (11.1). All the steps are analogous, except with f0 → P0, δf → δP , and
wherever a velocity integral occurs, there must now also be an integral with respect to
η, viz.,

∫
dv →

∫
dv
∫

dη η, because all velocity integrals come from Poisson’s law.
The first place where something mildly different happens is the microgranulation

ansatz: assuming, as in §11.2, that different points in the (coarse-grained) phase space
are uncorrelated, we get, instead of (11.5),〈

g(Q, η)g(Q′, η′)
〉

=
〈
g(Q, η)g(Q, η′)

〉
∆Γ δ(Q−Q′). (11.42)

The correlation function in the prefactor can now be worked out as follows:〈
g(Q, η)g(Q, η′)

〉
=
〈[
δ
(
f(Q)− η

)
− P0(v, η)

][
δ
(
f(Q)− η′

)
− P0(v, η′)

]〉
=
〈
δ
(
f(Q)− η

)
δ
(
f(Q)− η′

)〉
− P0(v, η)P0(v, η′)

=
[
δ(η − η′)− P0(v, η′)

]
P0(v, η). (11.43)

This is the generalisation of the single-waterbag formula (11.30). In what follows, we
shall only need the first moment of this expression:∫

dη′ η′
〈
g(Q, η)g(Q, η′)

〉
=
(
η − f0(v)

)
P0(v, η). (11.44)

With this, we are ready to write the hyperkinetic collision integral that generalises the
Kadomtsev–Pogutse integral (11.31) to a continuum of waterbags:
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]
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(11.45)

The last line of the above formula can be slightly simplified, sacrificing symmetry but
eliciting the form of the diffusion and drag terms:[∫

dη′′ η′′2P0(v′′, η′′)− f2
0 (v′′)

]
∂P0(v, η)

∂v
−
[(
η − f0(v)

)∂f0(v′′)

∂v′′

]
P0(v, η). (11.46)

The hyperkinetic collision integral (11.45) has an entropy—as anticipated in §10.3, it
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is (10.21)—and an H-theorem (Exercise 11.6), so it pushes the hyperkinetic distribution
to the unique fixed point given by (10.24) (easily checked to be one by direct substitu-
tion). Thus, one might say that we have done for Lynden-Bell what Boltzmann did for
Maxwell and Gibbs: shown that an equilibrium motivated by thermodynamics/statistical
mechanics is reached dynamically, and how.

Exercise 11.5. Derivation of the hyperkinetic collision integral. (a) By retracing the
steps that led from (11.1) to (11.31), but now keeping track of the η dependences, check that
(11.45) is indeed duly recovered.

(b) Check that the integral (11.45) automatically preserves the properties (10.19) and (10.20),
and that it conserves the total number of particles, their momentum, and energy.

Exercise 11.6. H-theorem for the hyperkinetic collision integral. State it and prove it.

Exercise 11.7. Chavanis–Ewart collision integral. Here I invite you to explore a clever
alternative closure for a multi-waterbag collision integral. It can be traced back to Appendix C
of the paper by Chavanis (2005) on geophysical turbulence; here we shall follow the derivation
of it that was invented by Robbie Ewart in ignorance of that previous work (and published
in Ewart et al. 2022). The applicability or validity of the Chavanis–Ewart integral are as yet
unexplored, so this gives you some food for thought, as well nicely ties up some of the narrative
threads that have lead us here.

(a) Rather than deriving an evolution equation for the hyperkinetic distribution P0(v, η), let
us admit ignorance and adopt the kind of statistical-inference approach that is commonly
used in statistical mechanics to find probability distributions that are guaranteed to reproduce
certain quantities correctly—in this instance, we want P0(v, η) whose first η moment is f0(v), at
every v, as per (11.37). Obviously, P0(v, η) also needs to integrate to unity according to (10.19)
and conserve the waterbag content (10.20). So, by maximising the Shannon entropy of the
distribution P0(v, η) subject to these constraints, show that

P0(v, η) =
1

Z
(
ψ(v)

) F (η)e−ψ(v)η, Z
(
ψ(v)

)
=

∫
dη F (η)e−ψ(v)η, (11.47)

where the function F (η) is determined by the requirement that (10.20) be satisfied at every η
and the function ψ(v) is the solution of the implicit equation

f0(v) = −∂ lnZ

∂ψ
(v). (11.48)

(b) Show further that101

〈g2〉 = 〈f2〉 − f2
0 = −∂f0

∂ψ
. (11.49)

Derive therefore the Chavanis–Ewart collision integral:
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(11.50)
(c) Check that the Kadomtsev–Pogutse integral (11.31) is readily recovered from (11.50) in the
case of a single waterbag. What is ψ(v) in terms of f0(v) in this case?

(d) Prove that the Lynden-Bell equilibria (10.24) are fixed points of (11.50). What are ψ(v) and
F (η) in this case?

101Note that since the left-hand side of this equation is always positive, f0 is always a
monotonically decreasing function of ψ, which is good news from the point of view of solvability
of (11.48).
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(e) Show that the integral (11.50) has the entropy function

S =

∫
dv (ψf0 + lnZ)−

∫
dη ρ(η) lnF (η), (11.51)

which is never decreased by it, and that a stationary solution is achieved if and only if f0 is the
Lynden-Bell equilibrium (10.24).

(f) Observe that the closure underpinning the Chavanis–Ewart collision integral is equivalent
to assuming that a collisionless system will always quickly maximise the entropy (10.21) locally
in phase space (i.e., for each v). The relaxation to the global Lynden-Bell equilibrium then
happens more slowly, according to (11.50). This is somewhat analogous to standard collisional
gases, which relax quickly, at the collision rate, to a local Maxwellian, and then slowly, at the
diffusion rate, to the global one (see, e.g., my lectures on gas kinetics, Schekochihin 2019). If
one could prove that the hyperkinetic collision integral (11.45) does indeed contain within itself
such a two-timescale evolution, that would promote the Chavanis–Ewart integral from a clever
closure scheme to a valid approximation. I do not know how to do this, or whether it is true, so
I give this problem to you as an exercise.

11.8. Where Has This Got Us So Far

What can we conclude from the fact that the Lynden-Bell equilibria can be recovered
from kinetic theory? The obvious observation so far is the correspondence between the
assumptions of Lynden-Bell’s statistical mechanics and those of the kinetic theory à
la Kadomtsev & Pogutse (1974). In order to get the latter, we needed the stability
of f0 [see discussion just before (11.18)], the microgranulation ansatz (11.5), and phase-
volume conservation in the form (10.20). The Lynden-Bell equilibria (10.24) and fixed
energy (Exercise 11.2) followed. In the statistical-mechanical approach, we needed to fix
the energy [see (10.16)] and assume thorough mixing of phase-density elements subject
only to the exclusion principle dictated by phase-volume conservation [see discussion
after (10.2)]. This gave us an entropy to maximise, and hence an equilibrium, whereas
in kinetic theory, the existence of the Lynden-Bell entropy (10.21) was merely a humble
property of the collision integral (Exercise 11.6).

Suspending for a moment all the legitimate doubts about the assumptions that have
gone into this, let us observe that the progress achieved in §11 in comparison with the
statistical-mechanical calculations of §10 is that we can now follow the relaxation of f0

in time, at least after some initial period during which all the instabilities of an initial
state sort themselves out and f0 becomes stable. The rate at which f0 relaxes towards
equilibrium can be read off from (11.31) or (11.45): ignoring any factors of order unity
and using (11.35) to estimate the size of the k sum,102 we get the effective collision
frequency

νeff ∼ νη∆Γ , (11.52)

where ν is the “true” (Coulomb) collision frequency. In the “true” collisional limit, η∆Γ =
1 [see (11.34)], but in the collisionless regime, η∆Γ (the number of particles that fit into
a fully occupied macro-cell whose size is the correlation volume of g) must be large, so
the “collisionless collision frequency” νeff is, generally speaking, much larger than ν. Can
we estimate νeff in terms of some physical (measurable) parameters?

Since we are dealing with collisionless dynamics, initial distribution will matter and
determine η. One good physical example is some collection of spatially homogeneous

102This includes the 1/|εk,k·v|2 factor. For kλD � 1, |εk,k·v| ≈ 1 and the contribution to the k

sum from these wave numbers is ∼ Λ; for kλD � 1, |εk,k·v| ∼ 1/(kλD)2 and the contribution
from these wave numbers is ∼ 1.
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beams, all with the same phase density—then, in terms of the beam number density nb

and width vb, η ∼ nb/v
3
b [see (10.13)]. In the case of multiple waterbags, η in (11.52)

must be replaced by some characteristic value: most obvioulsy, in view of (11.29),

ηeff =
〈g2〉
f0

(11.53)

(the typical deviation of the phase-space density from its mean).

The correlation volume ∆Γ = ∆r3∆v3 is a trickier quantity to make sense of. As the
evolution of a collisionless system proceeds, one might argue that g would get ever more
fine-scaled (“phase-mixed”; cf. §5.3), i.e., that ∆v (and, due to nonlinear coupling of k’s,
also ∆r) would decrease with time.103 Under this scenario, ∆Γ(t) will decrease with time
and so the convergence of f0 towards equilibrium will slow down as time goes on.

It remains an open research topic exactly how to calculate ∆v(t) and ∆r(t), or, indeed,
more generally,

〈
g(r,v)g(r′,v′)

〉
, i.e., whether the microgranulation ansatz (11.5) is at

all valid. A key challenge in this context is to go beyond the QL approximation. As
I intimated in §11.3, one could reinterpret hkω in (11.14) as containing not just the
ballistic evolution (11.15) but also the “nonlinear part” of δfkω. The question is what is
its correlation function Ckωω′(v,v

′), which then goes into the general collision integral
(11.22)—and indeed whether (11.22) is still a valid, i.e., if the correlation function will
have the symmetry required to achieve (11.20) (in §12, I will alight on a scenario in
which this is not the case). You will find some further work on this topic in the classic
papers by Kadomtsev & Pogutse (1971) and Dupree (1972), although I recommend them
with some hesitation: neither is particularly transparent (and both are almost certainly
technically wrong even if suggestive of ways forward), so you might end up with less
clarity rather than more.104 The key contention of these papers is that the correlation
scales ∆r and ∆v will decrease in time much less quickly than you might imagine based
on näıve phase-mixing estimates—because long-time correlated phase-space “clumps”
(or “granulations”) will allegedly form. The “collisionless collision integral” (11.22),
or something resembling it, with an appropriate correlation function Ckωω′(v,v

′) then
represents some effective scattering of particles by these clumps. The status of all this is
rather uncertain: there was a lot of analytical work done in the 1970s and 1980s along
and around these lines, but most of it has remained both incomplete and hypothetical
(as well as, I am sorry to say, quite badly written), due to the difficulty of nonlinear
theory and impossibility at the time of kinetic numerical simulations capable of resolving
anything. The latter impediment to progress is now rapidly being lifted, so now probably
is a good time to revisit the old theories and attempt new ones.

In §12, I will do that, in a quest to find out how wrong the entire approach that I have
followed so far might be.

Exercise 11.8. Fluctuation energy in a Lynden-Bell plasma (Ewart et al. 2022). (a) Use
Poisson’s equation and the microgranulation ansatz to show that, in a 3D plasma that is in
a Lynden-Bell equilibrium (10.24), either single-waterbag or multi-waterbag, the electric-field

103Eventually, ∆r would be limited by ∼ λD and ∆v by collisions, however small they are—see
§5.5—but let us assume for a moment that collisionless dynamics can continue as long as we like,
even though, as I already warned at the end of §9.1, this is likely to be a very bad assumption.
104The textbook by Diamond et al. (2010, Chapter 8) is on an ideological continuum from
Dupree (1972), and, while also not a transparent read (imho), is probably the most up-to-date
exposition of the current status of that line of thinking.



168 A. A. Schekochihin

fluctuation energy is

U ≡ V

8π

∑
k

k2〈|ϕk|2〉 =
4e2∆ΓkmaxV

βm

∫ ∞
0

dv f0(v), (11.54)

where β is the parameter of the Lynden-Bell equilibrium and kmax is some appropriate UV
cutoff, needed to evaluate the wave-number integral (cf. §11.6). In the derivation of (11.54), the
formula (11.49) should prove handy, with ψ = βε, as it is for the Lynden-Bell equilibria.

(b) Show therefore that the ratio of the fluctuation energy to the kinetic energy in the distribu-
tion is

U

K
∼ e2∆Γkmax

βT 2
, (11.55)

where T = mv2
th/2 and vth is the characteristic width of the distribution function f0. The ratio

(11.55) is clearly small in the degenerate limit (β → ∞). In the non-degenerate limit, use the
estimate βη ∼ 1/T (for a single waterbag) to show that

U

K
∼ νeff

ωpe
kmaxλD , (11.56)

where the effective collision frequency νeff is defined by (11.52). How safe, therefore, is the
assumption that U � K ?

12. Plasma Echo, Phase Unmixing, and Phase-Space Turbulence

Since the question of the phase-space, and, in particular, velocity-space, structure of
the perturbed distribution functions has acquired new urgency in §11, especially in what
concerns the nonlinear evolution of fluctuations in plasmas, it is time to revisit phase
mixing, but in the nonlinear regime.

12.1. Plasma Echo

In §5.3, we saw that the perturbed distribution function (5.25) associated with a
Landau-damped electric perturbation contained an undamped ballistic term proportional
to e−ik·vt. As time went on, this term became ever more oscillatory in v and so no longer
contributed to ϕ, but the information contained in it was not destroyed until it hit
collisions. It turns out that this information can be recovered.

Let us think in 1D and imagine sending an electric pulse into a plasma (i.e., setting up
some initial perturbation) at time t1, with wave number k1. It will be Landau damped,
but the undamped ballistic part of the resulting perturbed distribution function will be

δfk1 = a1e
−ik1v(t−t1), (12.1)

where a1 is the contents of the curly bracket in (5.25) and v the component of the
velocity parallel to the direction of the wave vector. Now let us wait for a while and send
in another pulse, with k2 > k1 at t2 > t1. This too will be Landau damped, leaving
behind

δfk2 = a2e
−ik2v(t−t2). (12.2)

In the linear approximation, these are independent solutions, which simply add up. But
if nonlinearity is allowed, they can couple to produce

δfk2−k1 ∝ δfk2δf∗k1 = a∗1a2e
−ik2v(t−t2)+ik1v(t−t1) = a∗1a2e

−i[(k2−k1)t−(k2t2−k1t1)]v. (12.3)
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Figure 48. Two subsequent pulses, then an echo at time (12.4).

Around the time

techo =
k2t2 − k1t1
k2 − k1

, (12.4)

the distribution function (12.3) does not oscillate strongly in v and so can have an
associated electric perturbation ϕk2−k1 ∝

∫
dv δfk2−k1 , which will pop out of nowhere

some time after the second pulse has gone in (e.g., if k2 = 2k1, techo = 2t2 − t1 > t2;
Fig. 48). Physically, what happens is that the second pulse “catches up” with the first
pulse in phase space, couples to it, and effectively reverses the direction of phase mixing,
producing “phase unmixing” and bringing information back into the electric field. This
is called plasma echo and is a strange but real thing: having been derived by Gould et al.
(1967), it was promptly produced in a laboratory by Malmberg et al. (1968).

The original derivation is a nice exercise in perturbation theory, which I will reproduce
in §12.1.1. But this is not a mere curiosity: for nonlinear plasma systems with many
interacting modes (i.e., for plasma turbulence), the implication is that Landau damping
and phase mixing are suppressed at larger spatial scales, or, more precisely, that the
velocity-space (linear) mixing is intertwined with position-space (nonlinear) one, thus
rendering the nonlinear plasma in a certain sense more “fluid-like” than the linear one
is. That in turn may mean that the microgranulation ansatz (11.5) is suspect and the
phase-space correlations are a lot longer than linear, quasilinear, or weakly nonlinear
theories might lead one to believe. This is a research frontier—I will develop this topic
starting from §12.2.

12.1.1. Textbook Derivation of Plasma Echo

Let us consider a situation in which only the electron distribution function is perturbed (i.e.,
frequencies are high) and its perturbation satisfies (2.12), as usual:

∂δfk
∂t

+ ik · vδfk + i
e

m
ϕkk ·

∂f0

∂v
= −i e

m

∑
k′

ϕk′k
′ · ∂δfk−k′

∂v
≡ Nk(v, t), (12.5)

where ϕk now contains both the self-consistent field arising from δfk via Poisson’s equation (2.9)
and an externally applied field χk (cf. Q-13):

ϕk = χk −
4πe

k2

∫
dv δfk. (12.6)

We shall solve an initial-value problem with δfk(t = 0) = 0 and use χk to set up our two pulses:

χ(t, r) = χ1δ(t− t1) cos k1z + χ2δ(t− t2) cos k2z, (12.7)

where z is the axis along which they propagate and t2 > t1 > 0, k2 > k1 (the case of χ2 = 0,
t1 = 0, and Nk = 0 is exactly equivalent to the standard Landau-damping problem solved in §3).
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Figure 49. Integration countours for the integrals in (12.14) and (12.15).

Laplace transforming everything, we get

δf̂k(p) =
1

p+ ik · v

[
−i e
m
ϕ̂k(p)k · ∂f0

∂v
+ N̂k(p)

]
. (12.8)

This is not really a solution, just a rewriting of (12.5), because the Laplace-transformed nonlinear

term N̂k(p) contains δfk:

N̂k(p) = −i e
m

∑
k′

k′ · ∂
∂v

∫ ∞
0

dt e−pt
∫ +i∞+σ′

−i∞+σ′

∫ +i∞+σ′′

−i∞+σ′′

dp′dp′′

(2πi)2
e(p′+p′′)tϕ̂k′(p

′)δf̂k−k′(p
′′)

= i
e

m

∑
k′

k′ · ∂
∂v

∫∫
dp′dp′′

(2πi)2

ϕ̂k′(p
′)δf̂k−k′(p

′′)

p′ + p′′ − p , Re p > σ′ + σ′′, (12.9)

where I have dropped, but will remember, the integration limits. Keeping this expression in
mind, let us combine (12.6) and (12.8):

ϕ̂k(p) =
χ̂k(p)

ε(p,k)
− 4πe

k2ε(p,k)

∫
dv

N̂k(p)

p+ ik · v , (12.10)

where ε(p,k) is the usual dielectric function, most recently written out in (11.12). The first
term in (12.10) is the linear response [cf. (6.59) in Q-7], while the second one is the nonlinear
one. Assuming the latter to be small, we can calculate it perturbatively, i.e., by using the linear

approximation to ϕ̂ and δf̂ in (12.9). Namely,

N̂k(p) =
e2

m2

∑
k′

k′ · ∂
∂v

∫∫
dp′dp′′

(2πi)2

χ̂k′(p
′)χ̂k−k′(p

′′)

ε(p′,k′)ε(p′′,k − k′) [p′′ + i(k − k′) · v] (p′ + p′′ − p)

× (k − k′) · ∂f0

∂v
. (12.11)

This is as far as we can get without inputting specific information about χ̂k(p), which we
shall need in order to do the p′ and p′′ integrals. From (12.7),

χ̂k(p) =
χ1

2
e−pt1 (δk,k1 + δk,−k1) +

χ2

2
e−pt2 (δk,k2 + δk,−k2) . (12.12)

There will be a lot of terms in χ̂k′(p
′)χ̂k−k′(p

′′), but we only want the ones that are proportional
to δk,k2−k1 (it is a tedious, but character-building exercise to confirm that there are no echoes
in the rest of them). They are

χ1χ2

4
δk,k2−k1

(
e−p

′t1−p′′t2δk′,−k1 + e−p
′t2−p′′t1δk′,k2

)
. (12.13)

Putting this into (12.11) and swapping integration variables p′ ↔ p′′ in the second term, we get,
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for k = k2 − k1,

N̂k(p) = −e
2χ1χ2k1k2

4m2

∂

∂vz

∫∫
dp′dp′′

(2πi)2

e−p
′t1−p′′t2

ε(p′,−k1)ε(p′′, k2)(p′ + p′′ − p)

×
(

1

p′′ + ik2vz
+

1

p′ − ik1vz

)
∂f0

∂vz

=
e2χ1χ2k1k2

4m2

∂

∂vz

∫
dp′

2πi

ep
′(t2−t1)−pt2(p+ ikvz)

ε(p′,−k1)ε(p− p′, k2)(p− p′ + ik2vz)(p′ − ik1vz)

∂f0

∂vz

=
e2χ1χ2k1k2

4m2

∂

∂vz

eik1vz(t2−t1)−pt2

ε(ik1vz,−k1)ε(p− ik1vz, k2)

∂f0

∂vz
. (12.14)

In the last two lines, I did the the p′′ and p′ integrals, in that order. The p′′ integral is done
by pushing the integration contour rightwards to Re p′′ → ∞, but circumventing the pole at

p′′ = p − p′ clockwise; only the pole’s contribution survives because e−p
′′t2 → 0 at Re p′′ →

∞ (Fig. 49). The p′ integral is done by pushing the contour leftwards to Re p′ → −∞, but
circumventing the ballistic pole at p′ = ik1vz anticlockwise; again only the pole’s contribution

survives because ep
′(t2−t1) → 0 at Re p′ → −∞ (Fig. 49). The dielectric function is assumed to

have no poles at Re p′ > 0 (i.e., there is only damping, no instabilities) and the Landau-damping
poles it might have at Re p′ < 0 are ignored because they will give rise to damped solutions, not
echoes.

Finally, let us put (12.14) into (12.10), integrate out vx and vy dependence, so f0(v)→ F (vz)
[cf. (3.18)], and inverse Laplace transform, to get, for the echo (with k = k2 − k1),

ϕecho
k (t) = −4πe

k2

∫
dvz

∫
dp

2πi

eptN̂k(p)

ε(p, k)(p+ ikvz)

= −iπe
3χ1χ2k1k2

m2k

∫
dvz

∫
dp

2πi

ep(t−t2)+ik1vz(t2−t1)

ε(p, k)ε(ik1vz,−k1)ε(p− ik1vz, k2)(p+ ikvz)2

∂F

∂vz

= −i(t− t2)
πe3χ1χ2k1k2

m2k

∫
dvz

e−i[k(t−t2)−k1(t2−t1)]vz

ε(−ikvz, k)ε(ik1vz,−k1)ε(−ik2vz, k2)

∂F

∂vz
. (12.15)

In the second line, I integrated by parts with respect to vz, producing a second-order ballistic
pole at p = −ikvz, and in the third line, I profited from this pole by pushing the p-integration
contour leftwards to Re p → −∞, using the fact that ep(t−t2) → 0 there, for t > t2, and thus
being left only with the contribution from the pole, circumnavigated anticlockwise (Fig. 49).
Note that, since the pole is second order, I had to differentiate the expression under the integral
with respect to p to obtain the residue—in doing so, I ignored the derivatives of the dielectric
functions in comparison with the derivative of ep(t−t2), because the latter was large in t − t2.
We see that the exponential in (12.15) that oscillates in vz does not in fact oscillate very much
around precisely the time t = techo given by (12.4)—this is the effect that we were after!

There is a nice, simple answer in the limit of kλDe � 1, when all dielectric functions in
(12.15) can be approximated by unity (and Landau damping is strong). Assuming F (vz) is a
Maxwellian, we get

ϕecho
k (t) ≈ (t− techo)(t− t2)

πe3χ1χ2k1k2

m2
e−k

2v2th(t−techo)2/4. (12.16)

Thus, the echo pulse arises at t = techo, and then phase-mixes away again.

Exercise 12.1. Plasma echo for weakly damped waves. Work out ϕecho
k (t) in the opposite

limit, kλDe � 1, when the Landau-damping rates are exponentially small and the vz integral
in (12.15) can be done by picking up the poles associated with the zeros of the dielectric functions
in the denominator. Show in particular that the echo pulse first grows exponentially at the rate
γk1(k2 − k1)/k1 and then decays at the rate γk2−k1 , where γk is the Landau-damping rate at
the wave number k. You will find the solution in Gould et al. (1967).
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12.2. Phase-Space Turbulence and Stochastic Echo

I shall now show you how perturbations being dragged back from phase space by
nonlinear interactions can be described formally in a fairly transparent fashion. In the
process, we will learn a new way of looking at phase mixing—and unmixing—and gain
some insight into the nature of “phase-space turbulence”.

At the beginning of §11.1, we saw that a crucial role in the “collisionless collision
integrals” was played by the correlation function (11.4) of the perturbed distribution
function, Ck(v,v′) =

〈
δfk(v)δf∗k(v′)

〉
. Here I shall be interested in this function both

with a view of deriving a better “collisionless collision integral” than I managed in §11 and
because it is interesting in itself, as a descriptor of phase-space turbulence. Phase mixing
should manifest itself as Ck(v,v′) developing ever smaller-scale dependence on v − v′,
and phase unmixing the opposite.

Since
∂Ck(v,v′)

∂t
=

〈
δf∗k(v′)

∂δfk(v)

∂t
+ δfk(v)

∂δf∗k(v′)

∂t

〉
, (12.17)

to derive the evolution equation for Ck(v,v′), one must multiply (12.5) by δf∗k(v′) and
add to the resulting equation its complex conjugate with v and v′ swapped:

∂Ck(v,v′)

∂t
+ ik · (v − v′)Ck(v,v′) = −i e

m

[〈
ϕkδf

∗
k(v′)

〉
k · ∂f0

∂v

+
∑
k′

k′ · ∂
∂v

〈
ϕk′δfk−k′(v)δf∗k(v′)

〉]
+ (v ↔ v′)∗

≡ Sk(v,v′) +Nk(v,v′), (12.18)

where Sk(v,v′) is the “source” term containing the second-order correlators and
Nk(v,v′) is the nonlinear term containing the third-order ones.

12.2.1. Hacking the Closure Problem

With third-order correlators appearing in the evolution equation for the second-order
one, we are faced with the usual “closure problem” of nonlinear theory (cf. §8.4.1). In
order to make the points I wish to make, I am going to have to ram through some rather
brutal simplifications. Namely, I will treat ϕk as a known field, i.e., ignore any self-
consistent contribution that δfk makes to it. This can be interpreted as approximating
ϕk ≈ χk and ignoring the second term in the “forced Poisson law” (12.6) [or (6.109)]
or as hoping, non-rigorously, that the effect of correlations between δfk(v) under the
velocity integral in (12.6) and the δf ’s appearing in the right-hand side of (12.18) can
be ignored. Furthermore, I will assume that ϕk(t) is a random and rapidly decorrelating
field—more rapidly than δf evolves either linearly or nonlinearly. This is obviously not
a great assumption unless we are literally imposing a white-noise field onto our system
(as we did in Q-13), but it will have to do if we want some kind of closure: just like with
the random-phase approximation in §8.4.2, the microgranulation ansatz in §11.3.2, or the
Stosszahlansatz in the standard particle-collision theory (Parra 2019a; Kunz 2021), one
needs to break long-term/long-range correlations in some way to get closed equations.

The proposed assumption, known in different contexts (see reviews by Falkovich et al.
2001, Rincon 2019, and §14.2 of these Lectures) as the Kazantsev–Kraichnan model, or
the “short-sudden approximation”, is [cf. (6.62) in Q-7 or (6.110) in Q-13]

e2

m2

〈
ϕk(t)ϕ∗k′(t

′)
〉

= 2Akδk,k′δ(t− t′) , (12.19)



Oxford MMathPhys Lectures: Plasma Kinetics and MHD 173

where Ak is a known function. Here k = |k|, so statistical isotropy is assumed, as is
statistical spatial homogeneity: δk,k′ in (12.19) enforces the latter, viz., the requirement
that 〈ϕ(r, t)ϕ(r′, t′)〉 is a function only of r−r′ (it is a simple exercise to confirm this).

The correlators in the right-hand side of the Ck(v,v′)-evolution equation (12.18) can
now be computed as follows. Let us formally integrate the kinetic equation (12.5) up to
time t:

δfk(t) = −i
∫ t

past

dt′

{
k · v δfk(t′) +

e

m

[
ϕk(t′)k · ∂f0

∂v
+
∑
k′

ϕk′(t
′)k′ · ∂δfk−k

′(t′)

∂v

]}
.

(12.20)
It does not matter from when in the past we integrate, because only a very short period
immediately preceding t will contribute to correlations between δf(t) and ϕ(t). Let us
now substitute (12.20) into the right-hand side of (12.18). Since δf(t) can only depend
on the values of ϕ(t′) in the past, t′ < t, we may split any correlators between δf(t′) and
ϕ(t′) or ϕ(t). Namely:

−i e
m

〈
ϕk(t)δf∗k(t,v′)

〉
=

e

m

∫ t

dt′

{
k · v����

〈
ϕk(t)

〉
���

���〈
δf∗k(t′,v′)

〉
+

e

m

[〈
ϕk(t)ϕ∗k(t′)

〉︸ ︷︷ ︸
use (12.19)

k · ∂f0(v′)

∂v′

+
∑
k′

〈
ϕk(t)ϕ∗k′(t

′)
〉
k′ ·

∂((((
(((〈

δf∗k−k′(t
′,v′)

〉
∂v′

]}

= Akk ·
∂f0(v′)

∂v′
, (12.21)

so the source term in the Ck(v,v′)-evolution equation (12.18) is

Sk(v,v′) = 2Akkk :
∂f0(v)

∂v

∂f0(v′)

∂v′
. (12.22)

In the same vein, to calculate Nk(v,v′), we may construct from (12.5) an evolution
equation for δfk−k′(t,v)δf∗k(t,v′) and formally integrate it:

δfk−k′(t,v)δf∗k(t,v′) = −i
∫ t

dt′

{
e

m

∑
k′′

[
ϕk′′(t

′)k′′ · ∂δfk−k
′−k′′(t

′,v)

∂v
δf∗k(t′,v′)

−ϕ∗k′′(t′)k
′′ ·
∂δf∗k−k′′(t

′,v′)

∂v′
δfk−k′(t

′,v)

]
+ . . .

}
. (12.23)

The terms abbreviated by “. . . ” will not matter because all odd-order correlators of ϕ
vanish when we calculate

− i e
m

〈
ϕk′(t)δfk−k′(t,v)δf∗k(t,v′)

〉
= Ak′

[
k′ · ∂

∂v

〈
δfk(t,v)δf∗k(t,v′)

〉
+ k′ · ∂

∂v′
〈
δf∗k−k′(t,v

′)δfk−k′(t,v)
〉]

= Ak′k
′ ·
[
∂Ck(v,v′)

∂v
+
∂Ck−k′(v,v

′)

∂v′

]
. (12.24)

This has worked out this way because, when the model ϕk correlator (12.19) was used,
k′′ in the first term in (12.23) was set to−k′ and k′′ in the second term to k′. Finally, since
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C∗k(v′,v) = Ck(v,v′), the nonlinear term in the Ck(v,v′)-evolution equation (12.18)
becomes

Nk(v,v′) =
∑
k′

Ak′k
′k′ :

(
2
∂2Ck−k′

∂v∂v′
+
∂2Ck
∂v∂v

+
∂2Ck
∂v′∂v′

)

= D

(
∂

∂v
+

∂

∂v′

)2

Ck + 2
∑
k′

Ak′k
′k′ :

∂2

∂v∂v′
(
Ck−k′ − Ck

)
, (12.25)

where D =
∑
k′ k
′2Ak′/3 is the QL diffusion coefficient (cf. Q-12).

We have paid a heavy price both in dodgy assumptions and in algebra, but the evolution
equation (12.18) for the phase-space correlation function Ck(v,v′) is now closed.

Exercise 12.2. Furutsu–Novikov formula. At least one element of the dodgyness can, in
fact, be removed. The average-splitting scheme that I employed above is, more formally, based
on the following mathematical formula, due to Furutsu (1963) and Novikov (1965). If ϕ(q) is
a Gaussian random field that depends on variable(s) q (which can include time, space, wave
number, vector index, etc.) and F [ϕ] is a functional of ϕ, then their correlation function can be
expressed as a convolution of the second-order correlator of ϕ and the functional derivative of
F with respect to ϕ:

〈
ϕ(q)F [ϕ]

〉
=

∫
dq′
〈
ϕ(q)ϕ(q′)

〉〈 δF [ϕ]

δϕ(q′)

〉
. (12.26)

Convince yourself that the results (12.22) and (12.25) can be derived from (12.20) using this
formula. If you are unsure how to handle functional derivatives, here are three basic rules:

δϕ(q)

δϕ(q′)
= δ(q − q′), δ

δϕ(q)

∫
dq′ϕ(q′)K(q′) = K(q),

δ

δϕ
FG =

δF

δϕ
G+ F

δG

δϕ
. (12.27)

Note also that δF/δϕ(q) = 0 if F does not depend on the value of ϕ at q, e.g., if q is time, F is
some function that only depends on the past history of ϕ (as δf does in the calculation above),
and we are trying to compute a functional derivative of it with respect to ϕ taken at a future
moment.

Exercise 12.3. Two-time correlation function. Consider the two-time correlation function

Ck(t− t′,v,v′) =
〈
δfk(t,v)δf∗k(t′,v′)

〉
, (12.28)

where, without loss of generality, t > t′, and, in a statistical steady state, Ck depends only on the
time delay τ = t− t′, rather than separately on t and t′. Using the same methods, assumptions
and approximations as above, derive the following equation:

∂Ck
∂τ

+ ik · vCk = D
∂2Ck
∂v2

. (12.29)

Solve this equation to show that

Ck(τ,v,v′) =

∫
dv′′

1

(4πDτ)3/2
exp

(
−|v − v

′′|2

4Dτ
− ik · v + v′′

2
τ − Dk2τ3

12

)
Ck(v′′,v′) ,

(12.30)
where Ck is the one-time correlation function (11.4). What is, therefore, the correlation time
of δfk?

Exercise 12.4. Heating rate in forced plasma. Go back to Q-13, where the electrostatic
potential (6.109) was assumed to be the sum of its self-consistent part and an external white
noise (6.110). Use the averaging method presented in this section to prove that the heating
rate in such a plasma will always be given by (6.114), irrespective of the form of Ak. This is
a manifestation of the general fact that systems subject to white-noise forcing receive a fixed,
externally pre-determined amount of power from it, which no internal dynamics are able to
modify because the forcing is entirely unpredictable and the system cannot adopt a defensive
posture—the undergraduate-textbook version of this result is (6.73), for the Langevin problem.
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12.2.2. Phase Mixing and Unmixing

Let us now discuss what the Ck(v,v′)-evolution equation (12.18), with (12.22) for Sk
and (12.25) for Nk, tells us. For a moment, let us ignore Nk and solve the linear equation

∂Ck
∂t

+ ik · (v − v′)Ck = Sk. (12.31)

The solution is

Ck = Sk
1− e−ik·(v−v′)t

ik · (v − v′)
→ Skπδ

(
k · (v − v′)

)
as t→∞, (12.32)

with the δ-function limit derived in the same way as it was in (5.40). This tells us that
linear physics wants to make Ck(v,v′) very fine scaled in phase space, with δf(v) taken
at very close neighbouring values of v becoming decorrelated [cf. the microgranulation
ansatz (11.5)]. This is a manifestation of a familiar phenomenon—phase mixing.

It is then natural to change variables as follows:

(v,v′)→ (u,w), where u =
v + v′

2
, w = v − v′. (12.33)

In these new variables, phase mixing will look like growth of ∂/∂w, whereas the u
dependence of the correlation function will just capture the large-scale, inhomogeneous
structure of the velocity space—basically, f0 having a scale ∼ vth. As a matter of fact,
this scale will tend to increase with time via what is recognisably QL diffusion: for f0,
the version of QLT with an external field was the subject of Q-12, while for Ck, the first
term in (12.25) is obviously just diffusion in u. Thus, let us assume that ∂/∂w � ∂/∂u
and write out (12.18) with (12.22) and (12.25) in this approximation:

∂Ck
∂t

+ ik ·wCk ≈ Sk +D
∂2Ck
∂u2

− 2
∑
k′

Ak′

(
k′ · ∂

∂w

)2 (
Ck−k′ − Ck

)
. (12.34)

Since our objective is to characterise the emergence, or otherwise, of the small-scale
structure in w, let us make another formal step and Fourier transform in this variable:

Ck,s(u) =

∫
dw

(2π)3
Ck(u,w)eis·w. (12.35)

This “mixed-variable” object, containing information both about the large-scale real-
velocity-space inhomogeneity and a Fourier-space representation of the small-scale struc-
ture (in both velocities and positions), is known in quantum mechanics (and in signal
processing) as the Wigner function (it already appeared, in a different context, in §8.5).
It satisfies

∂Ck,s
∂t

+ k · ∂Ck,s
∂s

≈ Sk(u,u)δ(s) +D
∂2Ck,s
∂u2

+ 2
∑
k′

Ak′(k
′ · s)2

(
Ck−k′,s − Ck,s

)
.

(12.36)
A further approximation deployed above is

Sk(v,v′) ≈ Sk(u,u) = 2Ak

[
k · ∂f0(u)

∂u

]2

, (12.37)

becausew is assumed small while Sk only contains large-scale velocity dependence, via f0.
The new equation (12.36) gives us a transparent way to see phase mixing: the second
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term on the left-hand side is just a propagation term in s space, at “velocity” k, while the
source (Sk) term on the right is a “boundary condition” at small s. Perturbations seeded
by this source travel to larger values of s provided k · s > 0—this is phase mixing. In
principle, k ·s < 0 would take perturbations from larger to smaller s—phase unmixing!—
but there are no sources at large s within linear theory. The nonlinear game changer is
the last, mode-coupling term on the right-hand side of (12.36): it can easily couple a
phase-mixing perturbation with (k − k′) · s > 0 to a phase-unmixing one with k · s < 0
and thus send a pulse back to low s. This is a stochastic version of the echo effect:
perturbations chase each other into phase space and can turn around if they couple in
the right way.105

Will they couple in the right way? Even though (12.36) is a closed equation, it is
not so easy to solve, and it is also unknown how well it describes, even qualitatively,
the systems with a self-consistent electric field. We do know some solutions of it, in 1D
and with further simplifying assumptions (Adkins & Schekochihin 2018; Nastac et al.
2024b)—on this basis, the tentative answer is yes, phase unmixing can indeed change
things in an interesting way (the same conclusion emerges from numerical simulations:
see Nastac et al. 2024a). I will show the simplest of these solutions in §12.4 and use it as
a vehicle for explaining how phase-space turbulence works.

Exercise 12.5. Multispecies phase-space turbulence. Generalise the above developments
to the case of multiple species, i.e., derive closed evolution equations for

Ckαα′(v,v
′) =

〈
δfkα(t,v)δf∗kα′(t,v

′)
〉
, (12.38)

Ckαα′(t− t′,v,v′) =
〈
δfkα(t,v)δf∗kα′(t

′,v′)
〉
, t > t′. (12.39)

What is the new version of the (u,w) variables?

The equation that you will have derived for Ckαα′(τ) is identical to (12.29) and is solved in the
same way. The equation for the one-time function Ckαα′ has not been properly analysed, so it
is not known what interesting effects might lurk there, if any. If you investigate, you might find
something new.

12.3. f -strophy Budget and Constant Flux

Before solving (12.36), however, I would like to make a crucial observation: the Wigner
function Ck,s(u) is evidently the spectral density of a quadratic integral quantity that is
conserved except by the source term. This conserved quantity is

∑
k

∫
ds

∫
duCk,s(u) =

∑
k

∫
duCk(u,w = 0) =

1

V

∫∫
drdv

〈
δf(v, r)2

〉
≡ δH ,

(12.40)

105In Schekochihin et al. (2016) and Adkins & Schekochihin (2018), you will find two versions of
this argument set up in terms of Hermite, rather than Fourier, transforms, which are, of course,
equivalent at large Hermite order and large s (see Q-8 for a quick tutorial). In the Hermite
formalism, there exists a neat decomposition of the distribution function into phase-mixing
and phase-unmixing parts, with the nonlinear term represented as their coupling, but I now
nevertheless prefer the Fourier language because it does not shackle one to a Maxwellian f0.
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the total variance of the “kinetic scalar”, which I shall call, for the love of coining a new
term, f -strophy,106 and which satisfies

dδH

dt
=
∑
k

∫
duSk(u,u) =

∑
k

2Ak

∫
du

[
k · ∂f0(u)

∂u

]2

≡ ε. (12.41)

I shall return to the physical meaning and role of this invariant in §12.5, but for now let
us just see what its conservation implies for us.

The most obvious thing that it implies is that, since δH has a positive-definite source
but no sink, (12.36) cannot have a steady-state solution. In fact, of course it can, but
only if we do what is now manifestly the right thing and restore collisions, to provide the
necessary sink.

Why is it legitimate to do that? In §5.5, my mantra was that, however infrequent
particle collisions were, phase mixing in a linear system would always (and fairly quickly)
produce sufficiently small velocity-space scales in order for collisions to switch on,
thermalise perturbations, and make the system irreversible. We are going to see that
in the nonlinear, echoing/phase-unmixing regime, this happens in an even more efficient
way. The easiest way to model the effect of collisions is to add to (12.36) an extra
damping term proportional to −2νs2, where ν is the collision frequency, to reflect the
fact that the collision operator is a velocity-space diffusion operator and so, in the crudest
approximation, it should look like ν∂2δf/∂v2:

∂Ck,s
∂t

= all terms from (12.36)− 2νs2Ck,s. (12.42)

Then (12.41) turns into an f -strophy budget equation:

dδH

dt
= ε−D , D = 2ν

∑
k

∫
ds s2

∫
duCk,s(u). (12.43)

The steady state, as usual, will involve a balance between injection and dissipation, and
the latter, despite being collisional, will be independent of the collision rate, however
small the latter is, D = ε. The rest of the terms in (12.36) must then provide the means
by which the system gets the f -strophy, injected at large scales, to flow to small scales
in velocity (large s), so it can be dissipated efficiently.

This is yet another turbulent-cascade problem, involving, inevitably, a constant flux
(cf. §§7.4, 8.4.6, and 15.4). This is actually quite straightforward to see. Let us consider
(12.36) at values of s that are small enough for collisions not to be important, integrate
over u and k and demand a steady state:

∂

∂s
· Γ s = εδ(s), Γ s ≡

∑
k

k

∫
duCk,s(u). (12.44)

This is an equation for a flux in s space, Γ s. If we integrate it further over all but one
(does not matter which one) components of s, the solution is a constant:

Γsi = sgn(si)
ε

2
, (12.45)

an outward flow of f -strophy. I could, of course, have integrated (12.44) over angles

106Knorr (1977) and Servidio et al. (2017) call a similar quantity “enstrophy” (by analogy with
the second invariant, additional to energy, in 2D hydrodynamics), Diamond et al. (2010) call it
“phaseostrophy”, and for Nastac et al. (2024b), it is “δC2” (the perturbed part of the 2nd-order
Casimir moment of f), but I cannot resist a new name. Note that it is not the same thing as
the entropic part of the free energy (5.19) or its Kruskal–Oberman generalisation (9.33).
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instead and found a constant radial flux out towards large s, Γs = ε (there is an obvious
analogy with the Gauss law for the electric field of a point charge).

This result is, obviously, exactly the same in the linear regime: all effects of nonlinearity
have been integrated out. This does not mean, however, that nonlinearity, echoes, phase
unmixing, etc., are unimportant to the structure, and nature, of the phase-space cascade.
Let us now consider the promised simple 1D case to see how it all plays out.

12.4. Adkins–Nastac Theory of Phase-Space Cascade in 1D

To turn (12.36) into something solvable, we make three further simplifications:

(i) restrict everything to 1D;

(ii) ignore the u-space diffusion term on the grounds that ∂/∂u� s, or just integrate
out the u dependence;

(iii) assume that the spectrum of the electric perturbations, k′2Ak′ (and, therefore,
also the source Sk), is concentrated at larger scales than Ck,s, i.e., k′ � k (in the context
of passive-scalar advection, this is known as the Batchelor 1959 regime).

The last of these allows us to approximate

Ck−k′,s − Ck,s ≈ −k′
∂Ck,s
∂k

+
k′2

2

∂2Ck,s
∂k2

, (12.46)

i.e., the coupling between k’s now happens in small local steps, diffusively, rather than
in finite leaps. The first term in (12.46) vanishes under the k′ integration in (12.36), and
one arrives at the following rather cute equation:

∂Ck,s
∂t

+ k
∂Ck,s
∂s

= Skδ(s) + γs2 ∂
2Ck,s
∂k2

− 2νs2Ck,s , γ =
∑
k′

k′4Ak′ , (12.47)

where I have kept the collisional bolt-on introduced in (12.42).
What this equation does is quite easy to see qualitatively. The source at low s and k

(low k because of the Batchelor assumption) and the collisional sink at large s are
responsible for the injection and dissipation of f -strophy, as discussed in §12.3. I shall
discuss the collisional cutoff in §12.4.3, but first let us consider what happens at such s
and k that neither the source nor the collisions play a role.

This is an “inertial range”, through which a constant flux of f -strophy, mandated
by (12.45), must somehow be set up. There are two competing effects there: phase
(un)mixing, i.e., propagation in s at velocity k, and mode coupling, which in the
Batchelor regime takes the form of k-space diffusion, with diffusivity γs2. At lower s,
phase (un)mixing dominates, but at higher s, the wave-number diffusion takes over. This
change of behaviour takes place when the characteristic time scales associated with the
two processes become equal:

k

s
∼ γs2

k2
⇒ s ∼ k

γ1/3
≡ secho(k) . (12.48)

At s� secho but away from s = 0, (12.47) reduces to

∂Ck,s
∂s

= 0 ⇒ Ck,s = f(k), (12.49)

a flat s spectrum with an as yet not obvious k dependence.
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Figure 50. Schematic of the circulation in phase space: phase mixing, k-space diffusion, phase
unmixing, etc.

Exercise 12.6. This is just the linear phase-mixing spectrum. Show that it is equivalent to the
Hermite spectrum (6.81) derived in Q-8.

At s� secho, (12.47) reduces to

∂2Ck,s
∂k2

= 0 ⇒ Ck,s = g(s), (12.50)

a flat k spectrum with a non-obvious s dependence—the result of wave-number diffusion
taking over. This diffusion can take perturbations from positive to negative k, or vice
versa, and thus allow them to go from phase mixing to phase unmixing.

The dynamics that gives rise to these stationary spectra can be schematically described
as follows (Fig. 50). Suppose a perturbation is launched at k > 0 and low s. Phase mixing
will move it “vertically” in the (k, s) plane to s ∼ secho. Then diffusion will spread it
“horizontally” from k > 0 to k < 0 until it reaches s ∼ −secho ∼ −k/γ1/3 (which is
positive at negative k). There, phase unmixing will take over and push the perturbation
to lower s, towards s = 0, and then to larger negative s, until it reaches s ∼ secho, again
becomes subject to diffusion, spreads back to positive k, reaches s ∼ −secho, and is again
phase-unmixed towards s = 0. The cycle is complete.

In fact, it is, of course, not quite a cycle but an outward unwinding spiral—a property of
Adkins’ exact solution spotted by Nastac et al. (2024b), and indeed inevitable because of
the requirement for a constant f -strophy flux to be pushed through phase space towards
larger s. Let us derive that exact solution (skip to §12.4.2 if you want to stick to a purely
twiddle-algebra narrative).

12.4.1. Self-Similar Phase-Space Spectrum

We look for a self-similar solution of

k
∂Ck,s
∂s

= γs2 ∂
2Ck,s
∂k2

(12.51)

in the form

Ck,s =
1

|s|α Φ(ξ), ξ =
k

γ1/3s
. (12.52)
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Figure 51. Sketch of the contour lines of the solution (12.56).

We can fix α by noticing that (12.51) implies

∂

∂s

∫ +∞

−∞
dk kCk,s = 0,

∫ +∞

−∞
dk kCk,s = γ2/3|s|2−αsgn(s)

∫ +∞

−∞
dξ ξΦ(ξ) ⇒ α = 2.

(12.53)
Note that this condition is the 1D version of the constant-flux requirement (12.44) at s > 0.
Substituting (12.52) with α = 2 into (12.51), we get

Φ′′ = −ξ2Φ′ − 2ξΦ = −(ξ2Φ)′ ⇒ Φ′ + ξ2Φ = c1 = const. (12.54)

Integrating once again, we get

Φ(ξ) = e−ξ
3/3

(
c1

∫ ξ

−∞
dξ′eξ

′3/3 + c2

)
= c1

∫ ∞
0

dz e−z

|ξ3 − 3z|2/3
. (12.55)

The second expression was obtained by setting the integration constant c2 = 0 to prevent blow-
up at ξ → −∞ and by changing the integration variable to z = (ξ3 − ξ′3)/3. Finally, putting
this back into (12.52), we get

Ck,s = C0

∫ ∞
0

dz e−z

|k3 − 3γs3z|2/3
→


C0

k2
, s� k

(3γ)1/3
≡ secho,

C0Γ (1/3)(3γ)−2/3

s2
, s� k

(3γ)1/3
≡ secho,

(12.56)

where C0 = c1γ
2/3. This solution is sketched in Fig. 51. Asymptotically, it is just the solution

anticipated in (12.49) and (12.50), but we now also know how the “phase-space spectrum” scales
with k and s in all relevant limits (we shall recover these scalings from a more hand-waving, but
also more easily generalisable, argument in §12.4.2).

It is not hard to show that the solution (12.56) carries a constant flux, i.e., that it can be
made to satisfy (12.45). Indeed, using (12.53) and (12.55), we get

2π

L
sgn(s)Γs = sgn(s)

∫ +∞

−∞
dk kCk,s = γ2/3

∫ +∞

−∞
dξ ξΦ(ξ) = C0

∫ ∞
0

dz e−z
∫ +∞

−∞

dxx

|x3 − 1|2/3

= C0

∫ +∞

−∞

dy

y|1− y3|2/3
= C0

∫ ∞
0

dy

(
1

y|1− y3|2/3
− 1

y|1 + y3|2/3

)
≈ 1.81C0,

(12.57)

via three changes of integration variable x = ξ/(3z)1/3, y = 1/x, and then y → −y in the
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negative half of the integration interval. Therefore, from (12.45),

C0 ≈
2π

L
0.28 ε . (12.58)

12.4.2. Critically Balanced Phase-Space Cascade

If we assume constant flux, we can recover the asymptotics (12.56) of the phase-
space spectrum at both small s/large k and small k/large s from a “twiddle” argument
reminiscent of the theories of turbulent cascades in media where linear and nonlinear
physics coexist, e.g., MHD (Schekochihin 2022), rotating and stratified fluids (Nazarenko
& Schekochihin 2011), or gyrokinetic plasmas (Schekochihin et al. 2009). The specific
argument that I outline below was proposed by Nastac et al. (2024b).

Let us associate with each value of s a velocity scale w = 1/s, and call δfw the typical
size of the increment of the distribution function between two velocity points separated
by w. Mathematically, one might think of δf2

w as the structure function of the perturbed
phase-space density, understood to be averaged over the position space:

δf2
w ∼

〈
|δf(x, v)− δf(x, v + w)|2

〉
∼
∫ ∞
s=1/w

ds′
∑
k

Ck,s′ . (12.59)

Physically, δf2
w is “the amount of f -strophy at scale w”. Since this is transferred to

smaller w with a constant flux ε, we have

δf2
w

τw
∼ ε, τw ∼

s

k
, (12.60)

where τw is the transfer rate, which is just the linear-mixing rate. But linear-mixing rate
corresponding to which wave number k? Here we bring in an assumption that the relevant
k can be found by assuming that the linear- and nonlinear-mixing rates are comparable,
i.e., that this k satisfies (12.48):

k ∼ γ1/3s ≡ kecho(s). (12.61)

This is the phase-space analog of the famous critical-balance conjecture, which, as a
prescription to equate linear-propagation and nonlinear-advection time scales at each
spatial scale, originates in the theory of MHD turbulence and has been increasingly
widely used elsewhere (see references given at the beginning of this section). Here, the
simple justification for it is that, according to (12.50), Ck,s is independent of k up to kecho

and, assuming it decays with k sufficiently quickly above kecho,
∑
k Ck,s is dominated

by k ∼ kecho at any given s, and so is (12.59) (assuming Ck,s decays quickly enough
with s). In words, qualitatively, we assume that the f -strophy transfer is dominated by
the region of phase space where linear and nonlinear mixing compete as equals. With
this assumption, (12.60) gives us107

τw ∼ γ−1/3 ⇒ δf2
w ∼ εγ−1/3 = const. (12.62)

107This is, in fact, almost obvious: in the Batchelor approximation, the “kinetic passive scalar”
δf is mixed by an external, single-spatial-scale electric field, and there is a single assosiated time
scale, γ−1/3. The spatial version of the scaling (12.62), which you will derive in Exercise 12.7,
is a close analogue of the Batchelor (1959) k−1 spectrum of a passive scalar field. I have gone
through the argument featuring critical balance primarily for pedagogical reasons, hoping to
impart a “deeper understanding” of how this comes about in a kinetic system.
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Figure 52. Same as the upper half-plane of Fig. 50 but with collisions.

On the other hand, if we assume that g(s) ∝ s−a in‘(12.50) and f(k) ∝ k−b in (12.49), i.e.,

Ck,s ∝
{
s−a, k � γ1/3s,
k−b, k � γ1/3s,

(12.63)

then, assuming b > 1, ∑
k

Ck,s ∝ s−a+1 ⇒ δf2
w ∝ s−a+2. (12.64)

Comparing this with (12.62) immediately implies a = 2. We have recovered the second
asymptotic in (12.56).

To recover the first asymptotic in (12.56), notice that, in the Batchelor approximation,
the term in (12.47) associated with the f -strophy flow through k space has assumed an
explicit divergence form, and so, in steady state and away from the collisional scales,
integrating (12.47) gives us a constant flux through k space:

− γ ∂
2

∂k2

∫
ds s2Ck,s = Sk ≈ ε

2π

L
δ(k) ⇒ Γk ≡ −

L

2π
γ
∂

∂k

∫
ds s2Ck,s = sgn(k)

ε

2
,

(12.65)
where I have put all the “source power” at the origin in k space. Note that this is different
from a linear plasma, where no f -strophy exchange between different k’s is possible. The
scaling argument that led us from (12.59) to a = 2 can now be cloned but for spatial
scales ` = 1/k instead of velocity scales w = 1/s. The outcome is b = 2, just as it must
be, according to (12.56).

Exercise 12.7. Construct this argument and get this result.

Exercise 12.8. Confirm explicitly that, for the spectrum (12.56) with C0 given by (12.58), the
k-flux is what (12.65) says it is.

12.4.3. Collisional Cutoff

The constant f -strophy flux through phase space has the collisional cutoff as its
destination. Let us now work out where this cutoff is.

The stationary (∂/∂t = 0) solution of (12.47) in the linear (γ = 0) approximation is

Ck,s = f(k) e−(s/sν)3 , sν(k) =

(
3k

2ν

)1/3

, (12.66)
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reflecting the fact, obvious from comparing time scales (k/s vs. νs2), that collisions
become competitive with phase mixing when s & sν . If perturbations that phase mix,
moving “vertically” in the (k, s) plane, hit sν before the echo threshold secho, they will
get dissipated and lose their chance to diffuse to negative k’s and phase unmix (Fig. 52).
These are the perturbations with

sν(k) ∼
(
k

ν

)1/3

. secho(k) ∼ k

γ1/3
⇔ k &

(γ
ν

)1/2

≡ kν . (12.67)

Another way to present this argument is just to say that the f -strophy cascade (§12.4.2)
is terminated at the scale where the collision rate becomes comparable to the cascade
rate, which, by the critical-balance conjecture, is the same as both the linear- and the
nonlinear-mixing rates:

k

s
∼ γs2

k2
∼ νs2 ⇒ kν ∼

(γ
ν

)1/2

, sν(kν) ∼ γ1/6

ν1/2
. (12.68)

Thus, there is a k-space cutoff kν , a kind of “Kolmogorov scale” for kinetic plasmas,
beyond which the nonlinearity does not matter and perturbations just “Landau-damp”
as they would in a linear system (kν is amplitude-dependent, via γ, so in a linearised
system, kν → 0).

12.4.4. Efficiency of Phase Mixing

Coming soon: see Nastac et al. (2024b).

12.5. Back to Collisionless Relaxation

Let me now re-embed this incipient theory of phase-space turbulence into the wider
framework of collisionless relaxation. Recall, yet again, that f0 satisfies (2.11), or (11.1),
where δfk satisfies (2.12), or (12.5), and ϕk is given by the “forced Poisson law” (12.6).
The inclusion of an external potential in the Poisson law gave me licence, in §12.2.1,
to ignore the self-consistent part of the electric field and instead approximate it with
a prescribed stochastic field (12.19). In §§12.5.2 and 12.5.3, I will discuss how good an
approximation this is under what cirtcumstances, but first let me ask simple-mindedly
what happens to f0 if indeed the electric field imposed externally.

12.5.1. Case of External Electric Field: Irreversibility of Stochastic Heating

Physically, this corresponds to considering a minority species of particles being buffeted
by electricity created by conditions in a surrounding plasma—if you have done Q-12 and
worked out the QLT of stochastic acceleration, you know that this will lead to these
particles being gradually heated. Here we need only the zero-correlation-time version of
that calculation, which can also be arrived at by direct application of the already-derived
closure (12.21) (after replacing k→ −k), viz., from (11.1),

∂f0

∂t
= D

∂2f0

∂v2
, D =

1

3

∑
k

k2Ak, (12.69)

where 3 is the number of spatial dimensions (replace with 1 to connect to the 1D problems
treated in §12.4 or Q-13). Solving this equation and finding that the kinetic energy of the
distribution grows as K = K (t = 0) + Dt is not a challenge, and here I am interested
in a different consequence of it.

Since the exact f satisfies the collisionless Vlasov equation, it has an infinite number
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Figure 53. Velocity-space spectra Ck,s in the linear regime with a collisional cutoff, k & kν
[see (12.66)] and in the nonlinear regime, k � kν [see (12.56)].

of Casimir invariants (9.8). Amongst them is the quantity whose part associated with δf
I introduced in §12.3 as “f -strophy”:

dH

dt
= 0, H ≡ 1

V

∫
dQ f2 =

∫
dv f2

0 +
1

V

∫∫
drdv δf2 ≡H0 + δH . (12.70)

The part of this invariant that is associated with f0 is manifestly decreased by the heating
process: from (12.69),

dH0

dt
= −2D

∫
dv

∣∣∣∣∂f0

∂v

∣∣∣∣2 = −ε, (12.71)

where ε is the same f -strophy flux that was defined in (12.40) and figured as the source
of δH in the f -strophy budget (12.43). I shall now call the whole of H “f -strophy”
and recognise from these considerations that it plays the role of (minus) entropy in the
problem at hand: a collisionless Casimir invariant that is decreased by the heating of f0,
transferred into δf , and then, via a phase-space cascade (§12.4), eventually drained by
collisions, however infrequent. The cascade thus turns out to be the means by which
irreversibility of heating is sealed.

There is not much more to say about it if the electric field is purely external.

12.5.2. Case of Forced Self-Consistent Electric Field

To be continued. . .

12.5.3. Case of Decaying Self-Consistent Electric Field
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PART III

Magnetohydrodynamics

13. MHD Equations

Like hydrodynamics from gas kinetics, MHD can be derived systematically from the
Vlasov–Maxwell–Landau equations for a plasma in the limit of large collisionality + a
number of additional assumptions (see, e.g., Goedbloed & Poedts 2004; Parra 2019a;
Kunz 2021). Here I will adopt a purely fluid approach—partly to make this Part III of
the Lectures self-consistent and partly because there is a certain beauty in it: we need
to know relatively little about the properties of the constituent substance in order to
spin out a very sophisticated and complete theory about the way in which it flows. This
approach is also more generally applicable because the substance that we will be dealing
with need not be gaseous, like plasma—you may also think of liquid metals, various
conducting solutions, etc. For plasmas, I shall re-derive all this from kinetic theory in
Part IV.

So, let us declare an interest in the flow of a conducting fluid and attempt to be guided
in our description of it by the very basic things: conservation laws of mass, momentum
and energy plus Maxwell’s equations for the electric and magnetic fields. This will prove
sufficient for most of our purposes. So we shall consider a fluid characterised by the
following quantities:

ρ—mass density,

u—flow velocity,

p—pressure,

σ—charge density,

j—current density,

E—electric field,

B—magnetic field.

Our immediate objective is to find a set of closed equations that would allow us to
determine all of these quantities as functions of time and space within the fluid.

13.1. Conservation of Mass

This is the most standard of all arguments in fluid dynamics (Fig. 54):

d

dt

∫
V

dr ρ︸ ︷︷ ︸
mass inside a

volume of
fluid

= −
∫
∂V

(ρu) · dS︸ ︷︷ ︸
mass flux

in/out

= −
∫
V

dr∇ · (ρu). (13.1)

As this equation holds for any V , however small, it can be converted into a differential
relation

∂ρ

∂t
+ ∇ · (ρu) = 0 . (13.2)

This is the continuity equation.
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Figure 54. Stuff flowing in and out of a volume V enclosed by surface ∂V .

13.2. Conservation of Momentum

A similar approach:

d

dt

∫
V

dr ρu︸ ︷︷ ︸
momentum

inside a
volume of

fluid

= −
∫
∂V

(ρuu)︸ ︷︷ ︸
Reynolds

stress

· dS

︸ ︷︷ ︸
momentum flux

through boundary
(fluid flow carrying
its own momentum)

−
∫
∂V

p dS︸ ︷︷ ︸
pressure on
boundary

(momentum
flux due to

internal
motion)

−
∫
∂V

Π · dS︸ ︷︷ ︸
viscous stress

+

∫
V

dr F︸ ︷︷ ︸
all other

forces (E&M
will come in

here)

=

∫
V

dr [−∇ · (ρuu)−∇p−∇ ·Π + F ] . (13.3)

In differential form, this becomes

∂

∂t
ρu︸ ︷︷ ︸

= ρ
∂u

∂t
+ u

∂ρ

∂t

= ρ
∂u

∂t
−���

��u∇ · (ρu)

= −∇ · (ρuu)︸ ︷︷ ︸
−ρu ·∇u
−���

��u∇ · (ρu)

−∇p−∇ ·Π + F , (13.4)

and so, finally,

ρ

(
∂u

∂t
+ u ·∇u

)
︸ ︷︷ ︸

≡ du

dt
convective
derivative

= −∇p−∇ ·Π + F . (13.5)

This is the momentum equation.

One part of this equation does have to be calculated from some knowledge of the microscopic
properties of the constituent fluid or gas—the viscous stress. For a gas, it is done in kinetic
theory (e.g., Lifshitz & Pitaevskii 1981; Dellar 2015; Schekochihin 2019, §6.8):

Π = −ρν
[
∇u+ (∇u)T − 2

3
∇ · u I

]
, (13.6)

where ν is the kinematic (Newtonian) viscosity.
In a magnetised plasma (i.e., such that its collision frequency � Larmor frequency of the

gyrating charges), the viscous stress is much more complicated and anisotropic with respect to
the direction of the magnetic field: because of their Larmor motion, charged particles diffuse
differently across and along the field. This gives rise to the so-called Braginskii (1965) stress
(see §21.2.4 onwards, or texts by Helander & Sigmar 2005; Parra 2019a; Kunz 2021).
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In what follows (within this part of the Lectures, Part III), we will never require the explicit
form of Π.

13.3. Electromagnetic Fields and Forces

The fact that the fluid is conducting means that it can have distributed charges (σ)
and currents (j) and so the electric (E) and magnetic (B) fields will exert body forces
on the fluid. Indeed, for one particle of charge q, the Lorentz force is

fL = q

(
E +

v ×B
c

)
, (13.7)

and if we sum this over all particles (or, to be precise, average over their distribution and
sum over species), we will get

F = σE +
j ×B
c

. (13.8)

This body force (force density) goes into (13.5) and so we must know E, B, σ and j in
order to compute the fluid flow u.

Clearly it is a good idea to bring in Maxwell’s equations:

∇ ·E = 4πσ (Gauss), (13.9)

∇ ·B = 0, (13.10)

∂B

∂t
= −c∇×E (Faraday), (13.11)

∇×B =
4π

c
j +

1

c

∂E

∂t
(Ampère–Maxwell). (13.12)

To these, we append Ohm’s law in its simplest form: The electric field in the frame of a
fluid element moving with velocity u is

E′ = E +
u×B
c

= ηj, (13.13)

where E is the electric field in the laboratory frame and η is the Ohmic resistivity.

Normally, the resistivity, like viscosity, has to be computed from kinetic theory (see, e.g.,
Helander & Sigmar 2005; Parra 2019a; Kunz 2021) or tabulated by assidiuous experimentalists.
In a magnetised plasma, the simple form (13.13) of Ohm’s law is only valid at spatial scales
longer than the Larmor radii and time scales longer than the Larmor periods of the particles
(see, e.g., Goedbloed & Poedts 2004; Parra 2019b).

Equations (13.9–13.13) can be reduced somewhat if we assume (quite reasonably for
most applications) that our fluid flow is non-relativistic. Let us stipulate that all fields
evolve on time scales ∼ τ , have spatial scales ∼ ` and that the flow velocity is

u ∼ `

τ
� c. (13.14)

Then, from Ohm’s law (13.13),

E ∼ u

c
B � B, (13.15)

so electric fields are small compared to magnetic fields.
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In Ampère–Maxwell’s law (13.12),∣∣∣∣1c ∂E∂t
∣∣∣∣

|∇×B| ∼

1

c

1

τ

u

c
B

1

`
B

∼ u2

c2
� 1, (13.16)

so the displacement current is negligible (note that at this point we have ordered out
light waves; see Q-2 in Kinetic Theory). This allows us to revert to the pre-Maxwell form
of Ampère’s law:

j =
c

4π
∇×B . (13.17)

Thus, the current is no longer an independent field, there is a one-to-one correspon-
dence j ↔ B.

Finally, comparing the electric and magnetic parts of the Lorentz force (13.8), and
using Gauss’s law (13.9) to estimate σ ∼ E/`, we get

|σE|∣∣∣∣1c j ×B
∣∣∣∣ ∼

1

`
E2

1

c

c

`
B2
∼ E2

B2
∼ u2

c2
� 1. (13.18)

Thus, the MHD body force is

F =
j ×B
c

=
(∇×B)×B

4π
. (13.19)

This goes into (13.5) and we note with relief that σ, j and E have all fallen out of the
momentum equation—we only need to know B.

13.4. Maxwell Stress and Magnetic Forces

Let us take a break from formal derivations to consider what (13.19) teaches us about
the sort of new dynamics that our fluid will experience as a result of being conducting.
To see this, it is useful to play with the expression (13.19) in a few different ways.

By simple vector algebra,

F =
B ·∇B

4π︸ ︷︷ ︸
“magnetic
tension”

− ∇B2

8π︸ ︷︷ ︸
“magnetic
pressure”

= −∇ ·
(
B2

8π
I− BB

4π

)
︸ ︷︷ ︸

“Maxwell
stress”

, (13.20)

where the last expression was obtained with the aid of ∇ ·B = 0. Thus, the action of
the Lorentz force in a conducting fluid amounts to a new form of stress. Mathematically,
this “Maxwell stress” is somewhat similar to the kind of stress that would arise from a
suspension in the fluid of elongated molecules—e.g., polymer chains, or other kinds of
“balls on springs” (see, e.g., Dellar 2017; the analogy can be made rigorous: see Ogilvie
& Proctor 2003). Thus, we expect that the magnetic field threading the fluid will impart
to it a degree of “elasticity” (you will have an opportunity of a practical engagement
with this analogy in Exercise 15.4).

Exactly what this means dynamically becomes obvious if we rewrite the magnetic
tension and pressure forces in (13.20) in the following way. Let b = B/B be the unit
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(a) Curvature force (b) Magnetic pressure

Figure 55. Magnetic forces.

vector in the direction of B (the unit tangent to the field line). Then

B ·∇B = Bb ·∇(Bb) = B2b ·∇b+ bb ·∇B2

2
(13.21)

and, putting this back into (13.20), we get

F =
B2

4π
b ·∇b︸ ︷︷ ︸

“curvature
force”

− (I− bb) ·∇︸ ︷︷ ︸
≡∇⊥

B2

8π︸ ︷︷ ︸
magnetic

pressure force

. (13.22)

Thus, we learn that the Lorentz force consists of two distinct parts (Fig. 55):

• curvature force, so called because b ·∇b is the vector curvature of the magnetic field
line—the implication being that field lines, if bent, will want to straighten up;
• magnetic pressure, whose presence implies that field lines will resist compression or

rarefication (the field wants to be uniform in strength).

Note that both forces act perpendicularly to B, as they must, since magnetic field never
exerts a force along itself on a charged particle [see (13.7)].

So this is the effect of the field on the fluid. What is the effect of the fluid on the field?

13.5. Evolution of Magnetic Field

Returning to deriving MHD equations, we use Ohm’s law (13.13) to express E in terms
of u, B and j in the right-hand side of Faraday’s law (13.11). We then use Ampere’s law
(13.17) to express j in terms of B. The result is

∂B

∂t
= ∇×

(
u×B − c2η

4π
∇×B

)
. (13.23)

After using also ∇ ·B = 0 to get ∇× (∇×B) = −∇2B and renaming c2η/4π → η, the
magnetic diffusivity, we arrive at the magnetic induction equation (due to Hertz):

∂B

∂t
= ∇× (u×B)︸ ︷︷ ︸

advection

+ η∇2B︸ ︷︷ ︸
diffusion

. (13.24)

Note that if ∇ ·B = 0 is satisfied initially, any solution of (13.24) will remain divergence-
free at all times.
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13.6. Magnetic Reynolds Number

The relative importance of the diffusion term (it is obvious what this does) and the
advection term (to be discussed in the next few sections) in (13.24) is measured by a
dimensionless number:

|∇× (u×B)|
|η∇2B|

∼

u

`
B

η

`2
B

=
u`

η
≡ Rm, (13.25)

called the magnetic Reynolds number. In nature, it can take a very broad range of values:

liquid metals in idustrial contexts (metallurgy): Rm ∼ 10−3 . . . 10−1,
planet interiors: Rm ∼ 100 . . . 300,

solar convective zone: Rm ∼ 106 . . . 109,
interstellar medium (“warm” phase): Rm ∼ 1018,

intergalactic medium (cores of galaxy clusters): Rm ∼ 1029,
laboratory “dynamo” experiments: Rm ∼ 1 . . . 103.

Generally speaking, when flow velocities are large/distances are large/resistivities are
low, Rm� 1 and it makes sense to consider “ideal MHD,” i.e., the limit η → 0. In fact,
η often needs to be brought back in to deal with instances of large ∇B, which arise
naturally from solutions of ideal MHD equations (see §14.1, Q-5, §18 and Parra 2019a),
but let us consider the ideal case for now to understand what the advective part of the
induction equation does to B.

13.7. Lundquist Theorem

The ideal (η = 0) version of the induction equation (13.24),

∂B

∂t
= ∇× (u×B), (13.26)

implies that fluid elements that lie on a field line initially will remain on this field line,
i.e., “the magnetic field moves with the flow.”

Proof. Unpacking the double vector product in (13.26),

∂B

∂t
= −u ·∇B +B ·∇u−B∇ · u+ u���∇ ·B , (13.27)

or, using the notation for the “convective derivative” [see (13.5)],

dB

dt
≡
(
∂

∂t
+ u ·∇

)
B = B ·∇u−B∇ · u. (13.28)

The continuity equation (13.2) can be rewritten in a somewhat similar-looking form

dρ

dt
≡
(
∂

∂t
+ u ·∇

)
ρ = −ρ∇ · u ⇒ ∇ · u = −1

ρ

dρ

dt
. (13.29)

The last expression is now used for ∇ · u in (13.28):

dB

dt
= B ·∇u+

B

ρ

dρ

dt
. (13.30)

Multiplying this equation by 1/ρ and noting that

1

ρ

dB

dt
− B
ρ2

dρ

dt
=

d

dt

B

ρ
, (13.31)



Oxford MMathPhys Lectures: Plasma Kinetics and MHD 191

Figure 56. Pressure-balanced perturbations.

we arrive at

d

dt

B

ρ
=
B

ρ
·∇u . (13.32)

Let us compare the evolution of the vector B/ρ with the evolution of an infinitesimal La-
grangian separation vector in a moving fluid: the convective derivative is the Lagrangian
time derivative, so

d

dt
δr(t) = u(r + δr)− u(r) ≈ δr ·∇u. (13.33)

Thus, δr and B/ρ satisfy the same equation. This means that if two fluid elements are
initially on the same field line,

δr = const
B

ρ
, (13.34)

then they will stay on the same field line, q.e.d.108

This means that in MHD, the fluid flow will be entraining the magnetic-field lines with
it—and, as we saw in §13.4, the field lines will react back on the fluid:
—when the fluid tries to bend the field, the field will want to spring back,
—when the fluid tries to compress or rarefy the field, the field will resist as if it possessed
(perpendicular) pressure.

This is the sense in which MHD fluid is “elastic”: it is threaded by magnetic-field lines,
which move with it and act as elastic bands.

13.8. Flux Freezing

There is an essentially equivalent formulation of the result of §13.7 that highlights
the fact that the ideal induction equation (13.26) is a conservation law—conservation of
magnetic flux.

The magnetic flux through a surface S (Fig. 57a) is, by definition,

Φ =

∫
S

B · dS (13.35)

(dS ≡ n̂dS, where n̂ is a unit normal pointing out of the surface). The flux Φ depends on
the loop ∂S, but not on the choice of the surface spanning it. Indeed, if we consider two

108Lundquist theorem opens the door to a Lagrangian description of MHD fluid that contains
some mathematical and physical delights: I will pick up this thread in §13.13.
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(a) (b)

Figure 57. Magnetic flux through a loop ∂S (a) is independent of the surface spanning the
loop (b).

Figure 58. A loop moving with the fluid.

surfaces, S1 and S2, spanning the same loop ∂S (Fig. 57b) and define Φ1,2 =
∫
S1,2

B ·dS,

then the flux out of the volume V enclosed by S1 ∪ S2 = ∂V is

Φ2 − Φ1 =

∫
∂V

B · dS =

∫
V

dr∇ ·B = 0, q.e.d. (13.36)

Alfvén’s Theorem. Flux through any loop moving with the fluid is conserved.

Proof. Let S(t) be a surface spanning the loop at time t. If the loop moves with the
fluid (Fig. 58), at the slightly later time t+ dt it is spanned (for example) by the surface

S(t+ dt) = S(t) ∪ ribbon traced by the loop
as it moves over time dt.

(13.37)

Then the flux at time t is

Φ(t) =

∫
S(t)

B(t) · dS (13.38)
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Figure 59. Flux tube.

and at the later time,

Φ(t+ dt) =

∫
S(t+dt)

B(t+ dt) · dS

=

∫
S(t)

B(t+ dt) · dS︸ ︷︷ ︸
=

∫
S(t)

B(t) · dS︸ ︷︷ ︸
= Φ(t)

+ dt

∫
S(t)

∂B

∂t
·dS

+

∫
ribbon

B(t+ dt) · dS︸︷︷︸
= udt×dl︸ ︷︷ ︸

= dt

∫
∂S(t)

B(t) · (u× dl)

= −dt

∫
∂S(t)

(u×B) · dl

= −dt

∫
S(t)

[∇× (u×B)] · dS.

(13.39)

Therefore,

dΦ

dt
=
Φ(t+ dt)− Φ(t)

dt
=

∫
S(t)

[
∂B

∂t
−∇× (u×B)

]
︸ ︷︷ ︸

ideal induction
equation (13.26)

·dS = 0, q.e.d. (13.40)

This result means that field lines are frozen into the flow. Indeed, consider a flux tube
enclosing a field line (Fig. 59). As the tube deforms, the field line stays inside it because
fluxes through the ends and sides of the tube cannot change.

Note that Ohmic diffusion breaks flux freezing, as is obvious from (13.40) if in the
integrand one uses the induction equation (13.24) keeping the resistive term.

13.9. Amplification of Magnetic Field by Fluid Flow

An interesting physical consequence of these results is that flows of conducting fluid can
amplify magnetic fields. For example, consider a flow that stretches an initial cylindrical
tube of length l1 and cross section S1 into a long thin spaghetto of length l2 and cross
section S2 (Fig. 60). By conservation of flux,

B1S1 = B2S2. (13.41)

By conservation of mass,

ρ1l1S1 = ρ2l2S2. (13.42)
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Figure 60. Amplification of magnetic field by stretching.

Therefore,

B2

ρ2l2
=

B1

ρ1l1
⇒ B2

B1
=
ρ2l2
ρ1l1

. (13.43)

In an incompressible fluid, ρ2 = ρ1, and the field is amplified by a factor l2/l1. In a
compressible fluid, the field can also be amplified by compression.

Going back to the induction equation in the form (13.27),

∂B

∂t
+ u ·∇B︸ ︷︷ ︸

advection

= B ·∇u︸ ︷︷ ︸
stretching

− B∇ · u︸ ︷︷ ︸
compression

, (13.44)

the three terms in it are responsible for, in order, advection of the field by the flow (i.e.,
the flow carrying the field around with it), “stretching” (amplification) of the field by
velocity gradients that make fluid elements longer and, finally, compression or rarefication
of the field by convergent or divergent flows (unless ∇·u = 0, as it is in an incompressible
fluid).

Hence arises the famous problem of MHD dynamo: are there fluid flows that lead to
sustained amplification of the magnetic fields? The answer is yes—but the flow must be
3D (the absence of dynamo action in 2D is a theorem, the simplest version of which is
due to Zeldovich 1956; see Q-4). Magnetic fields of planets, stars, galaxies, etc. are all
believed to owe their origin and persistence to this effect. This topic requires (and merits)
a more detailed treatment (see reading suggestions below), but for now let us flag two
important aspects:

• resistivity, however small, turns out to be impossible to neglect because large
gradients of B appear as the field is advected by the flow (see §14.1);
• the amplification of the field is checked by the Lorentz force once the field is strong

enough that it can act back on the flow, viz., when their energy densities become
comparable:

B2

8π
∼ ρu2

2
. (13.45)

If you wish to educate yourself on the topic of MHD dynamos (as everyone should), a classic
(and mostly timeless) text is Moffatt (1978). The new classic is the review by Rincon (2019),
which I recommend strongly. In these Lectures, some elements of dynamo theory are introduced
in §14.
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13.10. Conservation of Energy

Let us summarise the equations that we have derived so far, namely (13.2), (13.5) and
(13.24), expressing conservation of

mass
∂ρ

∂t
+ ∇ · (ρu) = 0, (13.46)

momentum ρ

(
∂u

∂t
+ u ·∇u

)
= −∇p−∇ ·Π +

(∇×B)×B
4π

= −∇ ·
[(
p+

B2

8π

)
I− BB

4π
+Π

]
︸ ︷︷ ︸

total stress

, (13.47)

and flux
∂B

∂t
= ∇× (u×B) + η∇2B. (13.48)

To complete the system, we need an equation for p, which has to come from the one
conservation law that we have not yet utilised: conservation of energy.

The total energy density is

ε =
ρu2

2︸︷︷︸
kinetic

+
p

γ − 1︸ ︷︷ ︸
internal

+
�
��E
2

8π︸︷︷︸
electric

+
B2

8π︸︷︷︸
magnetic

, (13.49)

where the electric energy can (and, for consistency with §13.3, must) be neglected because
E2/B2 ∼ u2/c2 � 1. We follow the same logic as we did in §§13.1 and 13.2:

d

dt

∫
V

dr ε︸ ︷︷ ︸
energy inside
a volume of

fluid

= −
∫
∂V

(
ρu2

2
+

p

γ − 1

)
u · dS︸ ︷︷ ︸

fluid flow carrying its
kinetic and internal energy

through boundary

−
∫
∂V

[(p I +Π) · u] · dS︸ ︷︷ ︸
work done on boundary
by pressure and viscous

stress

−
∫
∂V

q · dS︸ ︷︷ ︸
heat flux

−
∫
∂V

c

4π
(E ×B) · dS︸ ︷︷ ︸

Poynting flux

. (13.50)

Like the viscous stress Π, the heat flux q must be calculated kinetically (in a plasma) or
tabulated (in an arbitrary complicated substance). In a gas, q = −κ∇T , but it is more
complicated in a magnetised plasma (see §21.3 and Braginskii 1965; Helander & Sigmar
2005; Parra 2019a; Kunz 2021).

Note that the magnetic energy and the work done by the Lorentz force are not included
in the first two terms on the right-hand side of (13.50) because all of that must already
be correctly acounted for by the Poynting flux. Indeed, since cE = −u ×B + η∇ ×B
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[this is (13.13), with η renamed as in (13.24)], we have

∫
∂V

c

4π
(E ×B) · dS =

∫
∂V

B2

8π
u · dS︸ ︷︷ ︸

magnetic energy
flow

+

∫
∂V

[(
B2

8π
I− BB

4π

)
· u
]
· dS︸ ︷︷ ︸

work done by Maxwell stress

+

∫
∂V

η
(∇×B)×B

4π
· dS︸ ︷︷ ︸

resistive slippage accounting
for field not being precisely

frozen into flow

. (13.51)

After application of Gauss’s theorem and shrinking of the volume V to infinitesimality,
we get the differential form of (13.50):

∂

∂t

(
ρu2

2
+

p

γ − 1
+
B2

8π

)
=−∇ ·

[
ρu2

2
u+

γ

γ − 1
pu+Π · u+ q

+
B2I−BB

4π
· u+ η

(∇×B)×B
4π

]
. (13.52)

It remains to separate the evolution equation for p by using the fact that we know the
equations for ρ, u and B and so can deduce the rates of change of the kinetic and
magnetic energies.

13.10.1. Kinetic Energy

Using (13.46) and (13.47),

∂

∂t

ρu2

2
=
u2

2

∂ρ

∂t
+ ρu · ∂u

∂t

= −u
2

2
∇ · (ρu)− ρu ·∇u2

2
− u ·

{
∇ ·

[(
p+

B2

8π

)
I− BB

4π
+Π

]}
= −∇ ·

[
�
�
�ρu2

2
u +��pu +

��
���

���
�(

B2

8π
I− BB

4π

)
· u +���Π · u

]

+ p∇ · u︸ ︷︷ ︸
compressional

work

+

(
B2

8π
I− BB

4π

)
: ∇u︸ ︷︷ ︸

energy exchange
with magnetic field

+ Π : ∇u︸ ︷︷ ︸
viscous

dissipation

. (13.53)

The flux terms (energy flows and work by stresses on boundaries) that have been crossed
out cancel with corresponding terms in (13.52) once (13.53) is subtracted from it.
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13.10.2. Magnetic Energy

Using the induction equation (13.48),

∂

∂t

B2

8π
=
B

4π
·
[
−u ·∇B +B ·∇u−B∇ · u+ η∇2B

]
= −∇ ·

[
�
�
�B2

8π
u +

���
���

��
η

(∇×B)×B
4π

]
−
(
B2

8π
I− BB

4π

)
: ∇u︸ ︷︷ ︸

energy exchange
with velocity field

− η
|∇×B|2

4π︸ ︷︷ ︸
Ohmic

dissipation

.

(13.54)

Again, the crossed out flux terms will cancel with corresponding terms in (13.52). The
metamorphosis of the resistive term into a flux term and an Ohmic dissipation term is a
piece of vector algebra best checked by expanding the divergence of the flux term. Finally,
the u-to-B energy exchange term (penultimate on the right-hand side) corresponds
precisely to the B-to-u exchange term in (13.53) and cancels with it if we add (13.53)
and (13.54).

13.10.3. Thermal Energy

Subtracting (13.53) and (13.54) from (13.52), consummating the promised cancella-
tions, and mopping up the remaining ∇ · (pu) and p∇ · u terms, we end up with the
desired evolution equation for the thermal (internal) energy:

d

dt

p

γ − 1︸ ︷︷ ︸
advection of

internal
energy

= −∇ · q︸ ︷︷ ︸
heat flux

− γ

γ − 1
p∇ · u︸ ︷︷ ︸

compressional
heating

− Π : ∇u︸ ︷︷ ︸
viscous
heating

+ η
|∇×B|2

4π︸ ︷︷ ︸
Ohmic
heating

. (13.55)

A further rearrangement and the use of the continuity equation (13.46) to express ∇·u =
−d ln ρ/dt turn (13.55) into

d

dt
ln

p

ργ
=
γ − 1

p

(
−∇ · q −Π : ∇u+ η

|∇×B|2

4π

)
. (13.56)

This form of the thermal-energy equation has very clear physical content: the left-hand
side represents advection of the entropy of the MHD fluid by the flow—each fluid element
behaves adiabatically, except for the sundry non-adiabatic effects on the right-hand side.
The latter are the heat flux in/out of the fluid element and the dissipative (viscous
and resistive) heating, leading to entropy production. Note that the form of the viscous
stress Π ensures that the viscous heating is always positive [see, e.g., (13.6)]. In these
Lectures, I will, for the most part, focus on ideal MHD and so use the adiabatic version
of (13.56), with the right-hand side set to zero.
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Let me reiterate the equations of ideal MHD, now complete:

∂ρ

∂t
+ ∇ · (ρu) = 0, (13.57)

ρ

(
∂u

∂t
+ u ·∇u

)
= −∇p+

(∇×B)×B
4π

, (13.58)

∂B

∂t
= ∇× (u×B) , (13.59)(

∂

∂t
+ u ·∇

)
p

ργ
= 0. (13.60)

In what follows, we shall study various solutions and symptotic regimes of these rather
nice equations.

Exercise 13.1. MHD with self-gravity. Consider an MHD system subject to gravity with
acceleration g = −∇Φ, where the gravitational potential Φ satisfies Poisson’s equation

∇2Φ = 4πGρ, (13.61)

andG is the gravitational constant. There will then be an additional body force in the momentum
equation (13.5), equal to ρg. Show that, like the magnetic force (13.20), the gravitational force
can be written as a divergence of a stress tensor:

ρg = ∇ ·
(

g2

8πG
I− gg

4πG

)
. (13.62)

Show also that the total energy of this system is conserved:

d

dt

∫
dr

(
ρu2

2
+

p

γ − 1
+
B2

8π
+
ρΦ

2

)
= 0, (13.63)

where the integration is over the entire system, surface integrals over its boundary are assumed
to vanish and

EG ≡
∫

dr
ρΦ

2
= −

∫
dr

g2

8πG
< 0 (13.64)

is the gravitational energy of the system.

13.11. Beyond MHD Approximation

In the context of plasma physics, the ideal MHD equations (13.57–13.60) are a collisional
approximation: the key place where that comes in is the isotropy of pressure. A more general
situation is one where pressure is a tensor, P, with ∇p in (13.58) replaced by ∇ ·P. To calculate
P, one then needs the kinetic equation or some appropriate closure approximation (or model). In
the presence of a magnetic field that is strong enough to make the ion Larmor frequency much
greater than the collision rate, the pressure tensor on scales that are longer than the Larmor
radius becomes diagonal with respect to the local direction of B:

P = p⊥(I− bb) + p‖bb. (13.65)

A particularly popular and well-known closure model for calculating the pependicular and
parallel pressures is the so-called double-adiabatic, or CGL equations (after the orginal authors
Chew et al. 1956):

d

dt

p⊥
ρB

= 0,
d

dt

p‖B
2

ρ3
= 0. (13.66)

These equations, which replace the adiabatic law (13.60), express the property of particles on
Larmor orbits in magnetic field to conserve certain adiabatic invariants of motion.

Plasma dynamics become very different (and often quite counterintuitive) in this and similar
pressure-anisotropic approximations than for regular ideal MHD (e.g., it is difficult to amplify,
or, generally, change the magnetic field’s strength in such a plasma: see Helander et al. 2016
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and Squire et al. 2019; the latter paper gave the effect a sexy name, magneto-immutability). I
shall come back to this topic in Exercise 15.8 and from §21.2.1 (where the CGL equations will
be derived) onwards.

A feature that makes this foray beyond MHD particularly difficult is that pressure anisotropies
in certain types of plasmas can trigger small-scale instabilities—the simplest of these is the
firehose instability, which will make a cameo appearance in Exercise 15.9, to be treated properly
in §19.8, followed by its friend the mirror instability (§21.1. These break the fluid approximation
and leave us without a good mean-field theory for the description of macroscopic motions in
such environments. What to do about that is a subject of a rich vein of current research in
plasma astrophysics, for which you will be well prepared by the part of these Lectures where
MHD and kinetic theory join hands (Part IV).

Another important route away from MHD is one that leads to “two-fluid” approximations
of plasma dynamics. These deal with the question of what happens at scales where different
species (ions and electrons) cannot be considered to move together (the most popular such
models are Hall MHD and Electron MHD ; you will meet the latter in Q-7). This too is a result
(and manifestation) of various plasma microphysics (e.g., Larmor motion) kicking in because
collisions are not large enough to suppress them—I will return to the subject in Part IV of these
Lectures (§24).

13.12. Virial Theorem

If you have done Exercise 13.1, you are ready for the following rather nice, exact result that
follows directly from MHD equations and helps one decide whether an MHD system can “self-
confine”, i.e., whether a blob of plasma (or, more generally, a conducting fluid) can exist without
blowing itself apart.

Consider an MHD system whose volume is V . Its moment of inertia is

I =
1

2

∫
dr ρr2. (13.67)

Let us see how it evolves with time: using the continuity equation (13.2), we get

dI

dt
=

1

2

∫
dr r2 ∂ρ

∂t
= −1

2

∫
dr r2∇ · (ρu) =

∫
dr ρu · r, (13.68)

after integration by parts and assuming u ⊥ ∂V (no in/outflows). Let us take another time
derivative of this, this time using the momentum equation in the form (13.4),

∂

∂t
ρu = −∇ · T, (13.69)

where the total stress tensor

T = ρuu+ pI +Π +
B2

8π
I− BB

4π
−
(

g2

8πG
I− gg

4πG

)
(13.70)

includes the Maxwell stress (13.20) and the gravitational stress (13.62). This gives us

d2I

dt2
= −

∫
dr (∇ ·T) · r = −

∫
dr [∇ · (T · r)− T : ∇r] = −

∫
dS ·T · r+

∫
dr trT. (13.71)

Therefore, in steady state, the stresses on the boundary satisfy∫
dS · T · r =

∫
dr trT = 2Ekin + 3(γ − 1)Eth + Emag + EG , (13.72)

where Ekin, Eth, Emag and EG are the total kinetic, thermal, magnetic and gravitational energies
of the system—the four terms in (13.63); note that trΠ = 0 (any trace is part of p). In the
absence of gravity, the weighted sum of energies in (13.72) is strictly positive and so it is not
possible to have zero stress on the boundary of the system—the system cannot be self-confined.
With gravity, since the gravitational energy (13.64) is negative, the right-hand side of (13.72) can
be–and, in a steady, self-confined state, is—zero, telling us gravity can confine MHD systems,
e.g., stars. The total energy in this case is, as you might have guessed, negative:

E = Ekin + Eth + Emag + EG = −Ekin − (3γ − 4)Eth < 0. (13.73)
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Figure 61. Lagrangian dispalcement of an infinitesimal fluid element.

A perhaps unexpected corollary of this is that if a star radiates and, therefore, loses energy,
then Eth must increase (assuming Ekin � Eth, i.e., subsonic motions inside)—i.e., “as a star
cools, it heats up”.

13.13. Lagrangian MHD

There is a Lagrangian formulation of ideal MHD, due to Newcomb (1962, a classic and elegant
paper, which I recommend for your reading pleasure). This is both mathematically attractive
and sheds some physical light.

Let us label each fluid element’s position at t = 0 by the Lagrangian coordinate r0. Then the
Eulerian coordinate r at any given time t is the position of the same fluid element at that time:

r(t, r0) = r0 + ξ(t, r0), (13.74)

where ξ is the displacement. Formally, we shall treat (13.74) as just a coordinate transformation,
which can also be inverted: given the Eulerian coordinate r of a fluid element at time t,
the Lagrangian coordinate r0(t, r) is where this fluid element was at t = 0. The coordinate
transformation is determined by the history of the fluid flow:

∂r(t, r0)

∂t
=
∂ξ(t, r0)

∂t
= u(t, r(t, r0)) ≡ uL(t, r0). (13.75)

I shall use the subscript “L” to designate Lagrangian fields, i.e., MHD fields as functions of the
Lagrangian coordinate and time.

Let us learn how to transform derivatives between Eulerian and Lagrangian variables:

∂

∂r0i
=

∂rj
∂r0i

∂

∂rj
=

(
δji +

∂ξj
∂r0i

)
∂

∂rj
, or ∇0 = (∇0r) ·∇ = (I + ∇0ξ) ·∇, (13.76)

∂

∂tL
≡
(
∂

∂t

)
r0

=

(
∂

∂t

)
r

+

(
∂ri
∂t

)
r0

∂

∂ri
=

∂

∂t
+ u ·∇ =

d

dt
. (13.77)

Thus, the Lagrangian time derivative is the convective derivative—you knew that! We are now
ready to convert the MHD equations (13.57–13.60) to the Lagrangian frame.

13.13.1. Density

The continuity equation is an expression of conservation of mass (§13.1). Let us write that
for an infinitesimal volume element moving with the fluid:

ρ0(r0)dr0 = ρL(t, r0)dr, (13.78)

where ρ0 and dr0 are the density and the volume of the fluid element at t = 0, and ρL and dr
are its density and volume at time t (Fig. 61). So we need to know how volumes change under
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the coordinate transformation (13.74), i.e., we need the Jacobian of the strain matrix ∂ri/∂r0j :

dr = J(t, r0)dr0, where J = |det∇0r| =
1

6
εijkεlmn

∂ri
∂r0l

∂rj
∂r0m

∂rk
∂r0n

. (13.79)

The continuity equation in the Lagrangian frame is, therefore,

ρL(t, r0) =
ρ0(r0)

J(t, r0)
. (13.80)

13.13.2. Pressure

The result (13.80), together with (13.77), makes it really easy to work out the Lagrangian
pressure. Indeed, the adiabatic law (13.60) implies that the entropy density of Lagrangian fluid
elements never changes:

∂

∂t

pL

ργL
=

d

dt

p

ργ
= 0 ⇒ pL

ργL
=
p0

ργ0
. (13.81)

Using (13.80), we get

pL(t, r0) =
p0(r0)

Jγ(t, r0)
. (13.82)

13.13.3. Magnetic Field

To work out the magnetic field, consider the induction equation in the form (13.32). In
Lagrangian variables,

∂

∂t

BL

ρL
=
BL

ρL
·∇u =

BL

ρL
· (∇r0) ·∇0uL =

BL

ρL
· (∇r0) ·∇0

∂r

∂t
. (13.83)

The solution to this that satisfies BL/ρL = B0/ρ0 at t = 0 is

BL

ρL
=
B0

ρ0
·∇0r. (13.84)

Indeed:

∂

∂t

BL

ρL
=
B0

ρ0
·∇0

∂r

∂t
=
BL

ρL
· (∇0r)−1 ·∇0

∂r

∂t
=
BL

ρL
· (∇r0) ·∇0

∂r

∂t
, q.e.d. (13.85)

Thus, the magnetic field in the Lagragian frame satisfies (13.84), or, using (13.80),

BL(t, r0) =
B0(r0) ·∇0r(t, r0)

J(t, r0)
. (13.86)

This solution is really just a restatement of the Lundquist theorem: (13.84) says that B/ρ
transforms in the same way as a vector connecting two infinitesimally close material points in
the fluid [see (13.33)].

13.13.4. Fluid Flow

Finally, let us deal with the momentum equation (13.58), which in this context is the equation
that actually defines the Lagrangian variable transformation (13.74). Using the decomposition
(13.20) of the Lorentz force into magnetic pressure and tension, and substituting for ρ, p and
B from (13.80), (13.82) and (13.86), respectively, we get, noting that (∇0r) ·∇ = ∇0,

ρ0

J

∂2r

∂t2
= −(∇0r)−1 ·∇0

(
p0

Jγ
+
|B0 ·∇0r|2

8πJ2

)
+

1

4π

B0

J
·∇0

B0

J
·∇0r . (13.87)

Coupled with the initial condition r(0) = r0 and the formula (13.79) for J , this equation
determines the trajectory r(t, r0) of each fluid element and hence its Lagrangian displacement
ξ = r− r0, its velocity uL = ∂ξ/∂t, and the associated density, pressure and magnetic field via
(13.80), (13.82) and (13.86). It is not a particularly pretty equation—the price we have paid for
being able to integrate explicitly all the other MHD equations.
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Figure 62. Effect of stretching/shearing/compression on magnetic field: “folded” field with
small-scale direction reversals.

Exercise 13.2. Energy in Lagragian MHD. Show that the total energy of a volume of
MHD fluid in Lagragian variables is

E =

∫
dr0

[
1

2
ρ0

(
∂r

∂t

)2

+
p0J

−(γ−1)

γ − 1
+
|B0 ·∇0r|2

8πJ

]
. (13.88)

Exercise 13.3. Action principle for Lagrangian MHD. Show that (13.87) can be derived
from an action principle, δS = 0, with

S =

∫ t

0

dt

∫
dr0 L (r, ṙ), (13.89)

where the Lagrangian density is

L (r, ṙ) =
ρ0|ṙ|2

2
− p0J

−(γ−1)

γ − 1
− |B0 ·∇0r|2

8πJ
(13.90)

(cf. Kulsrud 2005, §4.7).

The Lagrangian formalism, besides shedding conceptual light, turns out to give one some
useful analytical tools, e.g., for the treatment of explosive MHD instabilities (Pfirsch & Sudan
1993; Cowley & Artun 1997).

An obvious problem with using this approach to describe the MHD fluid over any significant
intervals of time is that it only works for ideal MHD. Even if we restrict ourselves to nice flows
that do not have small scales and are thus immune to viscosity, (13.86) tells us that magnetic
field can quickly develop small scales and thus access resistivity. An example of how that could
happen starting with a fairly generic magnetic configuration is in Q-5. An even simpler example
is an application of a simple, linear stretching/shearing/compressing transformation (which can
be achieved by an arbitrarily large-scale flow) to a curved field line, producing a “folded” field
with direction reversals on ever smaller scales (Fig. 62). It is clear that resistivity must kick in,
at which point the Lagrangian solution (13.86) can no longer be used. I shall offer two examples
(§§13.14 and 14.1) of how one might deal with such a situation mathematically and in the
process get an idea of what happens physically.

13.14. Eyink’s Stochastic Lundquist Theorem

Coming soon. . .

14. Small-Scale Dynamo
One day, I shall add here a general introduction to small-scale dynamo. For now, you

will find a (somewhat outdated) review in my handwritten 2007 Les Houches lectures
available here: http://www-thphys.physics.ox.ac.uk/people/AlexanderSchekochihin/
notes/leshouches07.pdf. A very short printed review is Schekochihin & Cowley (2007,

http://www-thphys.physics.ox.ac.uk/people/AlexanderSchekochihin/notes/leshouches07.pdf
http://www-thphys.physics.ox.ac.uk/people/AlexanderSchekochihin/notes/leshouches07.pdf
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§3). One of the calculations from these notes is reproduced in §14.1. An up-to-date treatment
focussing on the nonlinear stages of the dynamo and on the yet-unresolved issues is Schekochihin
(2022, §13).

14.1. Zeldovich’s Dynamo in a Linear Flow

Let us consider the evolution of magnetic field in a linear flow, i.e.,

u(t, r) = A(t) · r, (14.1)

where A(t) is some matrix that may be a function of time, but not of space. The key simplification
that comes with this assumption (admittedly at a heavy price!) is that the strain matrix ∇0r
is independent of position: indeed, it is the solution of

∂

∂t
∇0r = ∇0uL = (∇0r) · AT (t), ∇0r(t = 0) = I. (14.2)

Let us further assume, for simplicity, that the flow is incompressible (∇ · u = trA = 0). Then
ρ = ρ0 = const and so J = 1.

14.1.1. “Lagrangian” Solution of Induction Equation with Resistivity

The (Lagrangian) magnetic field satisfies the induction equation with resistivity:

∂BL

∂t
= BL ·∇u︸ ︷︷ ︸

= A ·BL

+ η∇2BL, (14.3)

where the gradients in the right-hand side are still Eulerian. Now let us seek a solution of this
equation in the form

BL(t, r0) = B̂(t)eik(t)·r(t,r0). (14.4)

At t = 0, this is simply a single-Fourier-mode initial field: B0(r0) = B̂0e
ik0·r0 , where k0 = k(0)

and B̂0 = B̂(0). Let us see if such functions B̂(t) and k(t) can be found that (14.4) works.
Substituting (14.4) into (14.3), one gets

∂B̂

∂t
+ i

(
∂k

∂t
· r + k · ∂r

∂t

)
B̂ = A · B̂ − ηk2(t)B̂. (14.5)

Since ṙ = u = A · r, the second term on the left-hand side is annihilated if

∂k

∂t
= −k · A ⇒ k(t) = (∇r0)(t) · k0. (14.6)

The last expression follows from (14.2) if one works out the time derivative of ∇r0 by differen-
tiating (∇r0) · (∇0r) = I. We are left with

∂B̂

∂t
= A · B̂ − ηk2(t)B̂ ⇒ B̂(t) = B̂0 · (∇0r)(t) exp

[
−η
∫ t

0

dt′k2(t′)

]
. (14.7)

The solution has been obtained by eliminating the resistive term via an integrating factor and
taking care of the rest by using (14.2). The Lagrangian solution (13.86) has re-emerged as a
prefactor, now attenuated by resistive decay.

Since the induction equation is linear in B, any linear combination of solutions of the form
(14.4) is also a solution. Therefore, we can accommodate any initial field B0: it will evolve
according to

BL(t, r0) =
∑
k0

B̂(t,k0)eik(t,k0)·r(t,r0)

=
∑
k0

B̂0(k0) · (∇0r)(t) exp

[
ik(t,k0) · r(t, r0)− η

∫ t

0

dt′k2(t′,k0)

]
, (14.8)

where B̂0(k0) is the Fourier coefficient of the initial field B0(r0) =
∑
k0
B̂(k0)eik0·r0 and

k(t,k0) satisfies (14.6).
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14.1.2. Is There Dynamo?

An interesting question now is whether the energy of the solution (14.8) grows with time—is
the velocity field (14.1) a dynamo? It is not hard to prove a version of the Parseval theorem:
the volume average of the magnetic energy is

〈B2〉(t) ≡
∫

dr

V
|B(t, r)|2 =

∑
k0

|B̂(t,k0)|2. (14.9)

Exercise 14.1. Prove (14.9).

Using (14.7),

|B̂(t,k0)|2 = B̂0(k0) · g(t) · B̂∗0(k0) exp

[
−2η

∫ t

0

dt′k0 · g−1(t′) · k0

]
, (14.10)

where g is the (covariant) metric tensor associated with the Largangian transformation of
variables:

gij =
∂rk
∂r0i

∂rk
∂r0j

, (g−1)ij =
∂r0i

∂rk

∂r0j

∂rk
. (14.11)

These matrices can (in principle) be calculated via (14.2) for any given A(t).
It is possible to do this with a degree of generality, but a lot of formalism is needed along the

way. I will instead opt for an extremely simple case:

A =

 λ1 0
λ2

0 λ3

 ⇒ g =

 e2λ1t 0
e2λ2t

0 e2λ3t

 , (14.12)

where λ1 > λ2 > 0 > λ3 are constants and λ1 + λ2 + λ3 = 0 (incompressibility). These three
rates are rates of stretching and compression by the flow. Ignoring exponentially small terms,
we get

|B̂(t,k0)|2 ≈ |B̂01|2 exp

[
2λ1t− η

(
k2

01

λ1
+
k2

02

λ2
+
k2

03

|λ3|
e2|λ3|t

)]
. (14.13)

This says that for most k0, the corresponding modes will decay superexponentially (after initial
transient growth at the “ideal” rate 2λ1). At any given time t � λ−1

1 , the domain in the k0

space that will dominate the integral (14.9) is one containing modes for which the resistivity
has not yet managed to cut the initial growth rate:

η

(
k2

01

λ1
+
k2

02

λ2
+
k2

03

|λ3|
e2|λ3|t

)
. const. (14.14)

This is the interior of an ellipsoid whose volume is ∝ e−|λ3|t. Within this volume, |B̂(t,k0)|2 ∼
|B̂01|2e2λ1t. Therefore, the integral (14.9) is, roughly,

〈B2〉(t) ∝ e(2λ1−|λ3|)t = e(λ1−λ2)t , (14.15)

because λ3 = −λ1 − λ2. Since λ1 > λ2, the conclusion is that magnetic energy will grow, albeit
thanks to an ever shrinking subset of initial modes.

This calculation is due to Zeldovich et al. (1984) (but was cleverly anticipated 20 years
previously in a one-page note by Moffatt & Saffman 1964). The physical interpretation of it was
some time in coming—let me explain it the way I understand it (Schekochihin et al. 2004).

14.1.3. Folded Fields

The three rates λ1, λ2 and λ3 represent the flow’s action along the three (Lyapunov) directions
locally associated with it: stretching at the rate λ1 along the first direction (ê1), compression at
the rate |λ3| along the third (ê3) and something along the second, “null” direction (ê2)—it can
indeed be null (λ2 = 0), but it can also be sretching or compression at a smaller rate than the
other two. It follows from (14.7) and (14.6) that the magnetic field will align with the stretching
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Figure 63. A “winning” fold in Zeldovich-type dynamo.

direction whereas is wave vector will align with the compression direction, both exponentially
fast:

B ∼ B01ê1e
λ1t, k ∼ k03ê3e

|λ3|t. (14.16)

The latter alignment is what makes most modes decay superexponentially—in physical terms,
this is the tendency, illustrated by Fig. 62, for the fields to become folded and reverse direction
at ever smaller scales. The only modes that survive are those for which the initial wave vector
k0 was nearly perpendicular to ê3, with its permitted angular deviation from 90o decaying

∼ e−|λ3|t. Since ∇ ·B = 0, k0 · B̂0 = 0 must be satisfied for the initial field. Thus, the modes

that get amplified most are ones for which B̂0 ‖ ê1 and k0 ‖ ê2. Such a “winning” fold is
sketched in Fig. 63.

Exercise 14.2. What happens, mathematically and physically, if (a) λ2 = 0, (b) λ2 < 0?

Exercise 14.3. Work through an analogous argument in 2D and show that magnetic field
always decays (no 2D dynamo; cf. Q-4). Does this make sense physically?

14.1.4. Further Reading

Considering that the above calculation was done for a preposterously simplistic flow, is it
at all useful in understanding real dynamos? It turns out to be surprisingly so. One does see
folded fields in generic fluctuation dynamos when they are driven by smooth velocity fields,
even random ones (Schekochihin et al. 2004; Rincon 2019). Locally such fields can be viewed
as linear (14.1), but perhaps not constant time. This is OK as the above construction can be
generalised to time-dependent fields. Indeed, since the matrix g(t) is symmetric, it can at any
time be diagonalised by an appropriate rotation:

g(t) = RT(t) ·

 eΛ1(t) 0

eΛ2(t)

0 eΛ3(t)

 · R(t), (14.17)

where the quantities Λi(t)/2t are known as the finite-time Lyapunov exponents (FTLEs). It is
possible to prove (Goldhirsch et al. 1987) that R(t) converges to a constant matrix (ê1 ê2 ê3)
(Lyapunov basis) exponentially fast in time and that (more slowly) Λi(t)/2t → λi (Lyapunov
exponents).

When the flow is random, the FTLEs are random functions and then one can prove that
(14.15) survives in the form

〈B2〉(t) ∝ e[Λ1(t)−Λ2(t)]/2, (14.18)
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where the overline means averaging over the distribution of the Λi’s. This distribution is usually
quite hard to claculate for any real flow, so it has only been done for a few very special examples.

If you are intrigued by this line of inquiry, you might find further enlightenment in Zeldovich
et al. (1984) and then, e.g., in Ott (1998) and Chertkov et al. (1999).

14.2. Kazantsev Spectrum of Dynamo-Generated Field

Coming soon. In the meanwhile, you may read about this topic in my hand-written notes
available here: http://www-thphys.physics.ox.ac.uk/people/AlexanderSchekochihin/
notes/PartIIIMHD/LecturesL05/sec23_Spectrum.pdf.

15. MHD in a Straight Magnetic Field

Equations (13.57–13.60) have a very simple static, uniform equilibrium solution:

ρ0 = const, p0 = const, u0 = 0, B0 = B0ẑ = const. (15.1)

We will turn to more nontrivial equilibria in due course, but first we shall study this one
carefully—because it is very generic in the sense that many other, more complicated,
equilibria locally look just like this.

15.1. MHD Waves

If you have an equilibrium solution of any set of equations, your first reflex ought to
be to perturb it and see what happens: the system might support waves, instabilities,
possibly interesting nonlinear behaviour of small perturbations (e.g., §§6–8).

So we now seek solutions to the MHD equations (13.57–13.60) in the form of

ρ = ρ0 + δρ, p = p0 + δp, u =
∂ξ

∂t
, B = B0ẑ + δB, (15.2)

where we have introduced the fluid displacement field ξ (cf. §13.13).109 To start with,
we consider all perturbations to be infinitesimal and so linearise the MHD equations

109Thinking in terms of displacements makes sense in MHD but not so much in (homogeneous)
hydrodynamics because in the latter case, just displacing a fluid element produces no back
reaction, whereas in MHD, since magnetic fields are frozen into the fluid and are elastic,
displacing fluid elements causes magnetic restoring forces to switch on. In other words, an
(ideal) MHD fluid “remembers” the state from which it has been displaced, whereas neutral
(Newtonian) fluids only “know” about velocities at which they flow.

http://www-thphys.physics.ox.ac.uk/people/AlexanderSchekochihin/notes/PartIIIMHD/LecturesL05/sec23_Spectrum.pdf
http://www-thphys.physics.ox.ac.uk/people/AlexanderSchekochihin/notes/PartIIIMHD/LecturesL05/sec23_Spectrum.pdf
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(a) Perpendicular perturbations, (b) Parallel perturbations,
δb = δB⊥/B0 δB‖ = δB

Figure 64. Magnetic perturbations.

(13.57–13.60) as follows.(
∂

∂t
+ u ·∇

)
ρ = −ρ∇ · u ⇒ ∂δρ

∂t
= −ρ0∇ ·

∂ξ

∂t

⇒ δρ

ρ0
= −∇ · ξ , (15.3)(

∂

∂t
+ u ·∇

)
p

ργ
= 0 ⇒ ∂

∂t

δp

p0
= γ

∂

∂t

δρ

ρ0

⇒ δp

p0
= −γ∇ · ξ , (15.4)(

∂

∂t
+ u ·∇

)
B = B ·∇u−B∇ · u ⇒ ∂δB

∂t
= B0∇‖

∂ξ

∂t
− ẑB0∇ ·

∂ξ

∂t

⇒ δB

B0
= ∇‖ξ − ẑ∇ · ξ = ∇‖ξ⊥ − ẑ∇⊥ · ξ⊥

⇒ δB⊥
B0

= ∇‖ξ⊥ ,
δB‖

B0
= −∇⊥ · ξ⊥ ,

(15.5)

where ‖ and ⊥ denote projections onto the direction (z) of B0 and onto the plane (x, y)
perpendicular to it, respectively. Equations (15.5) tell us that parallel displacements
produce no perturbation of the magnetic field—obviously not, because the magnetic
field is carried with the fluid flow and nothing will happen if you displace a straight
uniform field parallel to itself.

The physics of magnetic-field perturbations becomes clearer if we observe that

δB

B0
=
δ(Bb)

B0
= δb+ ẑ

δB

B0
. (15.6)

The perturbed field-direction vector δb must be perpendicular to ẑ (otherwise the field
direction is unperturbed; formally this is shown by perturbing the equation b2 = 1).
Therefore, the perpendicular and parallel perturbations of the magnetic field are the
perturbations of its direction and strength, respectively (Fig. 64):

δB⊥
B0

= δb,
δB‖

B0
=
δB

B0
. (15.7)



208 A. A. Schekochihin

Figure 65. Coordinate system for the treatment of MHD waves.

Finally, linearising (13.58) gives us

ρ

(
∂u

∂t
+ u ·∇u

)
︸ ︷︷ ︸

= ρ0
∂2ξ

∂t2

= −∇p︸ ︷︷ ︸
= −∇δp

= γp0∇∇ · ξ,
from (15.4)

−∇B2

8π︸ ︷︷ ︸
= −B

2
0

4π
∇ δB

B0

+
B ·∇B

4π︸ ︷︷ ︸
=
B2

0

4π
∇‖
(
δb+ ẑ

δB

B0

)
.

︸ ︷︷ ︸
=
B2

0

4π

(
−∇⊥

δB

B0
+∇‖δb

)
=
B2

0

4π

(
∇⊥∇⊥ · ξ⊥ +∇2

‖ξ⊥
)
,

from (15.7) and (15.5)

(15.8)

Assembling all this, we get

∂2ξ

∂t2
= c2s∇∇ · ξ + v2

A

(
∇⊥∇⊥ · ξ⊥ +∇2

‖ξ⊥
)
, (15.9)

where two special velocities have emerged:

cs =

√
γp0

ρ0
, vA =

B0√
4πρ0

, (15.10)

the sound speed and the Alfvén speed, respectively. The former is familiar from fluid
dynamics, while the latter is another speed, arising in MHD, at which perturbations can
travel. We shall see momentarily how this happens.

Exercise 15.1. Derive (15.3–15.5) and (15.9) directly from Lagrangian MHD equations (13.80),
(13.82), (13.86) and (13.87). A useful starting point is that, for an infinitesimal displacement,
J = 1 + ∇0 · ξ [follows from (13.79)].

Let us seek wave-like solutions of (15.9), ξ ∝ exp(−iωt+ik ·r). For such perturbations,

ω2ξ = c2skk · ξ + v2
A

(
k⊥k⊥ · ξ⊥ + k2

‖ξ⊥
)
. (15.11)

Without loss of generality, let k = (k⊥, 0, k‖) (i.e., by definition, x is the direction of k⊥;
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Figure 66. Hannes Olof Gösta Alfvén (1908-1995), Swedish electrical engineer and plasma
physicist. He was the father of MHD, distrusted religion, computers and Big Bang theory, and
got a Nobel Prize “for fundamental work and discoveries in magnetohydrodynamics with fruitful
applications in different parts of plasma physics” (1970). In this picture, he is receiving it from
King Gustaf VI Adolf of Sweden.

see Fig. 65). Then (15.11) becomes

ω2ξx = c2sk⊥(k⊥ξx + k‖ξ‖) + v2
Ak

2ξx, (15.12)

ω2ξy = v2
Ak

2
‖ξy, (15.13)

ω2ξ‖ = c2sk‖(k⊥ξx + k‖ξ‖). (15.14)

The perturbations of the rest of the fields are

δρ

ρ0
= −ik · ξ = −i(k⊥ξx + k‖ξ‖), (15.15)

δp

p0
= γ

δρ

ρ0
, (15.16)

δb = ik‖ξ⊥ = ik‖

 ξx
ξy
0

 , (15.17)

δB

B0
= −ik⊥ξx. (15.18)

15.1.1. Alfvén Waves

We start by spotting, instantly, that (15.13) decouples from the rest of the system.
Therefore, ξ = (0, ξy, 0) is an eigenvector, with two associated eigenvalues

ω = ±k‖vA , (15.19)

representing Alfvén waves propagating parallel and antiparallel to B0. An Alfvénic
perturbation is (Fig. 67a)

ξ = ξyŷ, δρ = 0, δp = 0, δB = 0, δb = ik‖ξyŷ, (15.20)

i.e., it is incompressible and only involves magnetic field lines behaving as elastic strings,
springing back against perturbing motions, due to the restoring curvature force. Note
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(a) (b) k⊥ 6= 0

Figure 67. Alfvén waves.

(a) cs > vA (“high β”) (b) cs < vA (“low β”)

Figure 68. Friedricks diagram: radius ω/k, angle cos θ = k‖/k.

that these waves can have k⊥ 6= 0 even though their dispersion relation (15.19) does not
depend on k⊥ (Fig. 67b).

15.1.2. Magnetosonic Waves

Equations (15.12) and (15.14) form a closed 2D system:

ω2

(
ξx
ξ‖

)
=

(
c2sk

2
⊥ + v2

Ak
2 c2sk‖k⊥

c2sk‖k⊥ c2sk
2
‖

)
·
(
ξx
ξ‖

)
. (15.21)

The resulting dispersion relation is

ω4 − k2(c2s + v2
A)ω2 + c2sv

2
Ak

2k2
‖ = 0. (15.22)

This has four solutions:

ω2 =
1

2
k2

[
c2s + v2

A ±
√

(c2s + v2
A)2 − 4c2sv

2
A cos2 θ

]
, cos2 θ =

k2
‖

k2
. (15.23)

The two “+” solutions are the “fast magnetosonic waves” and the two “−” ones are the
“slow magnetosonic waves”.

Since both sound and Alfvén speeds are involved, it is obvious that the key parameter
demarcating different physical regimes will be their ratio, or, conventionally, the ratio of
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(a) Parallel propagation, k⊥ = 0 (b) Perpendicular propagation, k‖ = 0

Figure 69. Sound waves.

the thermal to magnetic energies in the MHD medium, known as the plasma beta:

β =
p0

B2
0/8π

=
2

γ

c2s
v2

A

. (15.24)

The magnetosonic waves can be conveniently summarised by the so-called Friedricks
diagram, a graph of (15.23) in polar coordinates where the radius is the phase speed ω/k
and the angle is θ, the direction of propagation with respect to B0 (Fig. 68).

Clearly, magnetosonic waves contain perturbations of both the magnetic field and of
the “hydrodynamic” quantities ρ, p, u, but working them all out for the case of general
oblique propagation (θ ∼ 1) is a bit messy. The physics of what is going on is best
understood via a few particular cases.

15.1.3. Parallel Propagation

Consider k⊥ = 0 (θ = 0). Then (ξx, 0, 0) and (0, 0, ξ‖) are eigenvectors of the matrix

in (15.21) and the two corresponding waves are

• another Alfvén wave, this time with perturbation in the x direction (which, however,
is not physically different from the y direction when k⊥ = 0):

ω2ξx = k2
‖v

2
Aξx ⇒ ω = ±k‖vA , (15.25)

ξ = ξxx̂, δρ = 0, δp = 0, δB = 0, δb = ik‖ξxx̂ (15.26)

(at high β, this is the slow wave, at low β, this is the fast wave);

• the parallel-propagating sound wave (Fig. 69a):

ω2ξ‖ = k2
‖c

2
s ξ‖ ⇒ ω = ±k‖cs , (15.27)

ξ = ξ‖ẑ,
δρ

ρ0
= −ik‖ξ‖,

δp

p0
= γ

δρ

ρ0
, δB = 0, δb = 0 (15.28)

(at high β, this is the fast wave, at low β, this is the slow wave); the magnetic field does
not participate here at all.

Note that this wave is hydrodynamically very similar to the ion-acoustic wave in unmagnetised
plasma (cf. Exercise 3.6), but its ability to propagate undamped does hinge on the validity of the
fluid approximation, i.e., on the plasma being collisional (except at high β and finite amplitudes,
when it can “create” its own “collisionality”—see Kunz et al. 2020).
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15.1.4. Perpendicular Propagation

Now consider k‖ = 0 (θ = 90o). Then (ξx, 0, 0) is again an eigenvector of the matrix

in (15.21).110 The resulting fast magnetosonic wave is again a sound wave, but because
it is perpendicular-propagating, both thermal and magnetic pressures get involved, the
perturbations are compressions/rarefactions in both the fluid and the field, and the speed
at which they travel is a combination of the sound and Alfvén speeds (with the latter
now representing the magnetic pressure response):

ω2ξx = k2
⊥(c2s + v2

A)ξx ⇒ ω = ±k⊥
√
c2s + v2

A , (15.29)

ξ = ξxx̂,
δρ

ρ0
= −ik⊥ξx,

δp

p0
= γ

δρ

ρ0
,

δB

B0
= −ik⊥ξx, δb = 0. (15.30)

Note that the thermal and magnetic compressions are in phase and there is no bending
of the magnetic field (Fig. 69b).

15.1.5. Anisotropic Perturbations: k‖ � k⊥

Taking k‖ = 0 in §15.1.4 was perhaps a little radical as we lost all waves apart from
the fast one. As we are about to see, a lot of babies were thrown out with this particular
bathwater.

So let us consider MHD waves in the limit k‖ � k⊥ . This turns out to be an extremely

relevant regime, because, in a strong magnetic field, realistically excitable perturbations,
both linear and nonlinear, tend to be highly elongated in the direction of the field. Going
back to (15.23) and enforcing this limit, we get

ω2 =
1

2
k2(c2s + v2

A)

1±

√
1−

4c2sv
2
A

(c2s + v2
A)2

k2
‖

k2


≈ 1

2
k2(c2s + v2

A)

[
1± 1∓ 2c2sv

2
A

(c2s + v2
A)2

k2
‖

k2

]
. (15.31)

The upper sign gives the familiar fast wave

ω = ±k
√
c2s + v2

A . (15.32)

This is just the magnetically enhanced sound wave that was considered in §15.1.4. The
small corrections to it due to k‖/k are not particularly interesting.

The lower sign in (15.31) gives the slow wave

ω = ±k‖
csvA√
c2s + v2

A

, (15.33)

110As is (0, 0, ξ‖), but with ω = 0; we will deal with this mode in §15.3.4.
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which is more interesting. Let us find the corresponding eigenvector: from (15.14),

(ω2 − k2
‖c

2
s )︸ ︷︷ ︸

= −k2
‖

c4s
c2s + v2

A

,

from (15.33)

ξ‖ = k‖k⊥c
2
s ξx. (15.34)

Therefore, the displacements are mostly parallel:

ξx
ξ‖

= −
k‖

k⊥

c2s
c2s + v2

A

� 1 . (15.35)

Using this equation together with (15.15–15.18), we find that the perturbations in the
remaining fields are

δρ

ρ0
= −i(k⊥ξx + k‖ξ‖) = −i v2

A

c2s + v2
A

k‖ξ‖, (15.36)

δp

p0
= γ

δρ

ρ0
, (15.37)

δb = ik‖ξxx̂ = −i
k‖

k⊥

c2s
c2s + v2

A

k‖ξ‖x̂→ 0, (15.38)

δB

B0
= −ik⊥ξx = i

c2s
c2s + v2

A

k‖ξ‖. (15.39)

Thus, to lowest order in k‖/k⊥, this wave involves no bending of the magnetic field,
but has a pressure/density perturbation and a magnetic-field-strength perturbation—the
latter in counter-phase to the former (Fig. 70). To be precise, the slow-wave perturbations
are pressure balanced:

δ

(
p+

B2

8π

)
= p0

δp

p0
+
B2

0

4π

δB

B0
= ρ0

(
c2s
δρ

ρ0
+ v2

A

δB

B0

)
= 0. (15.40)

The same is, of course, already obvious from the momentum equation (15.8), where, in
the limit k‖ � k⊥ and ω � kcs (“incompressible” perturbations; see §15.2), the dominant
balance is

∇⊥
(
p+

B2

8π

)
= 0. (15.41)

Finally, the Alfvén waves in the limit of anisotropic propagation are just the same
as ever (§15.1.1)—they are unaffected by k⊥, while being perfectly capable of having
perpendicular variation (Fig. 67b).

15.1.6. High-β Limit: cs � vA

Another limit in which high-frequency acoustic response (fast waves) and low-
frequency, pressure-balanced Alfvénic response (slow and Alfvén waves) are separated
is β � 1 ⇔ cs � vA.111 In this limit, the approxmate expression (15.31) for the
magnetosonic frequencies is still valid, but because vA/cs, rather than k‖/k, is small.

111This limit is astrophysically very interesting because magnetic fields locally produced by
plasma motions in various astrophysical environments (e.g., interstellar and intergalactic media)
can only be as strong energetically as the motions that make them [see (13.45)] and so, the latter
being subsonic, vA ∼ u� cs.
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Figure 70. Slow wave in the anistropic limit k‖ � k⊥: pressure balanced, ξx � ξ‖.

Figure 71. Slow wave in the high-β limit: pressure balanced, ξx ∼ ξ‖.

The rest of the calculations in §15.1.5 are also valid, with the following simplifications
arising from vA being negligible compared to cs.

The upper sign in (15.31) again gives us the fast wave, which, this time, is a pure sound
wave:

ω = ±kcs . (15.42)

This is natural because, at high β, the magnetic pressure is negligible compared to
thermal pressure and sound can propagate oblivious of the magnetic field.

The lower sign in (15.31) yields the slow wave: (15.33) is still valid and becomes, for
vA � cs,

ω = ±k‖vA . (15.43)

Because the slow wave’s dispersion relation in this limit looks exactly like the dispersion
relation (15.19) of an Alfvén wave, it is called the pseudo-Alfvén wave. The similarity
is deceptive as the nature of the perturbation (the eigenvector) is completely different.
Substituting ω2 = k2

‖v
2
A into (15.14), we find

k⊥ξx + k‖ξ‖ =
v2

A

c2s
k‖ξ‖ � k‖ξ‖. (15.44)

This just says that, to lowest order in 1/β, ∇ · ξ = 0, i.e., the perturbations are
incompressible. In contrast to the anisotropic case (15.35), the perpendicular and parallel
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(a) Fast waves. (b) Slow waves.

Figure 72. General oblique magnetosonic waves.

displacements are now comparable (assuming, in general, k‖ ∼ k⊥):

ξx
ξ‖

= −
k‖

k⊥
. (15.45)

Also in contrast to the anisotropic case, the density and pressure perturbations are now
vanishingly small, but the field can be bent as well as compressed:

δρ

ρ0
= −i(k⊥ξx + k‖ξ‖) = −i v

2
A

c2s
k‖ξ‖ → 0, (15.46)

δp

p0
= γ

δρ

ρ0
→ 0, (15.47)

δb = ik‖ξxx̂ = −i
k‖

k⊥
k‖ξ‖x̂, (15.48)

δB

B0
= −ik⊥ξx = ik‖ξ‖. (15.49)

The δB and δb perturbations are in counter-phase, as are ξ‖ and ξx (Fig. 71). It is easy
to check that pressure balance (15.40) is again maintained by these perturbations.

In the more general case of oblique propagation (k‖ ∼ k⊥) and finite beta (β ∼ 1),
the fast and slow magnetosonic waves generally have comparable frequencies and contain
perturbations of all relevant fields, with the fast waves tending to have the perturbations
of the thermal and magnetic pressure in phase and slow waves in counter-phase (Fig. 72).

15.2. Subsonic Ordering

Enough linear theory! We shall now occupy ourselves with the behaviour of finite
(although still small) perturbations of a straight-field equilibrium. While we abandon
linearisation (i.e., the neglect of nonlinear terms), much of what the linear theory has
taught us about the basic responses of an MHD fluid remains true and useful. In
particular, the linear relations between the perturbation amplitudes of various fields
provide us with a guidance as to the relative size of finite perturbations of these fields.
This makes sense if, while allowing the nonlinearities back in, we do not assume the
linear physics to be completely negligible, i.e., if we allow the linear and nonlinear time
scales to compete (§15.2.3). We shall see that solutions for which this is the case satisfy
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self-consistent equations, so can be expected to be realisable (and, as we know from
experimental, observational and numerical evidence, are realised).

I shall start by constructing nonlinear equations that describe the incompressible limit,
i.e., fields and motions that are subsonic: both their phase speeds and flow velocities will
be assumed small compared to the speed of sound:

ω/k√
c2s + v2

A

� 1, Ma ≡ u√
c2s + v2

A

� 1. (15.50)

In this limit, we expect all fast-wave-like perturbations to disappear (in a similar way to
the sound waves disappearing in the incompressible Navier–Stokes hydrodynamics) and
for the MHD dynamics to contain only Alfvénic and slow-wave-like perturbations. We
saw in §§15.1.5 and 15.1.6 that, linearly, fast and slow waves are well separated either in
the limit of k‖/k⊥ � 1 or in the limit of β � 1. Indeed, comparing the Alfvén frequency
(15.19) and slow-wave frequency (15.33) to the sound (fast-wave) frequency (15.32),
we get

ωAlfvén

ωfast
∼

k‖vA

k
√
c2s + v2

A

∼
k‖

k

1√
1 + β

,
ωslow

ωfast
∼

k‖csvA

k(c2s + v2
A)
∼
k‖

k

√
β

1 + β
, (15.51)

both of which are small in either of the two limits, satisfying the first of the condi-
tions (15.50).

The second condition (15.50) involves the “magnetic Mach number” Ma (generalised
to compare the flow velocity to the speed of sound in a magnetised fluid), which measures
the size of the perturbations themselves—in the linear theory, this was arbitrarily small,
but now we will need to relate it to our other small parameter(s), k‖/k or 1/β. This
means that we would like to construct an asymptotic ordering in which there will be
some prescription as to how small, or otherwise, various (fractional) perturbations and
small parameters are—not by themselves, i.e., compared to 1, but compared to each
other (compared to 1, the small parameters can all formally be taken to be as small as
we desire).

The general strategy for ordering perturbations with respect to each other will be to
use the linear relations obtained in the two incompressible limits (k‖/k � 1 or β � 1).
If we do not specifically expect one perturbation to be larger or smaller than another on
some physical grounds (like the properties of the linear response), we must order them
the same; this does not stop us later from constructing subsidiary expansions in which
they might be different. For example, MHD equations themselves were an expansion in
a number of small parameters, in particular u/c [see (13.14)]. However, at the time of
deriving them, I did not want to rule out sonic or supersonic motions and so, effectively,
I ordered Ma ∼ 1, k‖/k ∼ 1 and β ∼ 1, as far as the u/c expansion was concerned, i.e.,
Ma, k‖/k, 1/β � u/c. Now we are constructing a subsidiary expansion in these other
parameters, keeping in mind that they are allowed to be small but not as small as the
small parameter already used in the derivation of the MHD equations.112

112In principle, you should always feel a little paranoid about the question of whether such
“nested” asymptotic expansions commute, i.e., whether it matters in which order they are done.
They usually do commute, but this is not guaranteed and you ought to check if you want to be
sure. Another formally justified mathematical worry is whether asymptotic solutions of exact
equations are the same as exact solutions of asymptotic equations. This will lead you on a
journey to the world of proofs of existence and uniqueness—where I wish you an enjoyable stay.
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15.2.1. Ordering of Alfvénic Perturbations

Since the Alfvénic perturbations decouple completely from the rest (§15.1.1), linear
theory does not give us a way to relate uy to u‖, so we shall exercise the no-prejudice
principle stated above and assume

uy ∼ u‖, (15.52)

i.e., the Mach numbers for the Alfvénic and slow-wave-like motions are comparable. We
can, however, relate uy to δb, via the curvature-force response (15.20):

|δb| ∼ k‖ξy ∼
k‖uy

ω
∼ uy
vA
∼ Ma

√
1 + β. (15.53)

15.2.2. Ordering of Slow-Wave-Like Perturbations

For slow-wave-like perturbations, in either the anisotropic or the high-β limit, from
(15.14) and (15.33),

∇ · u ∼ ω(k⊥ξx + k‖ξ‖) ∼
ω2

k‖c2s
ωξ‖ ∼

v2
A

c2s + v2
A

k‖u‖ ∼
k‖u‖

1 + β
. (15.54)

Thus, the divergence of the flow velocity is small (the dynamics are incompressible) in
all three of our (potentially) small parameters:

∇ · u
k
√
c2s + v2

A

∼
k‖

k

1

1 + β
Ma. (15.55)

From this, we can immediately obtain an ordering for the density and pressure pertur-
bations: using (15.3), (15.4), (15.33) and (15.54) [cf. (15.36) and (15.46)],

δρ

ρ0
∼ δp

p0
∼∇ · ξ ∼ ∇ · u

ω
∼ Ma√

β
. (15.56)

The magnetic-field-strength (magnetic-pressure) perturbation is, using (15.39)
and (15.33) [cf. (15.49)],

δB

B0
∼ k⊥ξx ∼

c2s
c2s + v2

A

k‖u‖

ω
∼
√
βMa, (15.57)

or, perhaps more straightforwardly, from pressure balance (15.40) and using (15.56),

δB

B0
= −β

2

δp

p0
∼
√
βMa. (15.58)

Finally, in a similar fashion, using (15.17) and (15.57) [cf. (15.38) and (15.48)], we find

|δb| ∼ k‖ξx ∼
k‖

k⊥

√
βMa (15.59)

for slow-wave-like perturbations. Note that in all interesting limits this is superceded by
the Alfvénic ordering (15.53).

15.2.3. Ordering of Time Scales

Let us recall that our motivation for using linear relations between perturbations to
determine their relative sizes in a nonlinear regime was that linear response will lose
its exclusive sway but remain non-negligible. In formal terms, this means that we must
order the linear and nonlinear time scales to be comparable.113 The nonlinearities in

113In the theory of MHD turbulence, this principle, applied at each scale, is known as the critical
balance (see §15.4).
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MHD equations are advective, i.e., they are of the form u ·∇(stuff) and similar, so the
rate of nonlinear interaction is ∼ ku (in the case of anisotropic perturbations, ∼ k⊥u⊥).
Ordering this to be comparable to the frequencies of the Alfvén and slow waves [see
(15.51)] gives us

ωAlfvén ∼ ku ⇒ Ma ∼
k‖

k

1√
1 + β

, (15.60)

ωslow ∼ ku ⇒ Ma ∼
k‖

k

√
β

1 + β
. (15.61)

Note that the first of these relations supersedes the second in all interesting limits.

15.2.4. Summary of Subsonic Ordering

Thus, the ordering of the time scales determines the size of the perturbations
via (15.60). Using this restriction on Ma, we may summarise our subsonic ordering as
follows114

Ma ≡ u√
c2s + v2

A

∼ |δb|√
1 + β

∼ 1√
β

δB

B
∼
√
β
δρ

ρ0
∼
√
β
δp

p0
∼
k‖

k

1√
1 + β

� 1 (15.62)

and ω ∼ ku. The ordering can be achieved either in the limit of k‖/k � 1 or 1/β � 1,
or both. Note that if one of these parameters is small, the other can be order unity or
even large (as long as it is not larger than the inverse of the small one).

The case of anisotropic perturbations and arbitrary β applies in a broad range of
plasmas, from magnetically confined fusion ones (tokamaks, stellarators) to space (e.g.,
the solar corona or the solar wind). We shall consider the implications of this ordering
in §15.3.

The case of high β applies, e.g., to high-energy galactic and extragalactic plasmas.
It is the direct generalisation to MHD of incompressible Navier–Stokes hydrodynamics,
i.e., in this case, all one needs to do is solve MHD equations assuming ρ = const and
∇ · u = 0. We shall consider this case now.

15.2.5. Incompressible MHD Equations

Assuming β � 1, our ordering becomes

u

cs
∼ ω

kcs
∼ 1√

β
∼ Ma, |δb| ∼ δB

B0
∼
√
βMa ∼ 1,

δρ

ρ0
∼ δp

p0
∼ Ma√

β
∼ Ma2 .

(15.63)
Thus, the density and pressure perturbations are minuscule, while magnetic perturbations
are order unity—magnetic fields are relatively easy to bend (i.e., subsonic motions can
tangle the field substantially in this regime). Because of this, it will not make sense to
split B into B0 and δB explicitly, we will treat the magnetic field as a single field, with
no need for a strong mean component.

Let us examine the MHD equations (13.57–13.60) under the ordering (15.63).
Since ω ∼ ku, the convective derivative d/dt = ∂/∂t + u ·∇ survives intact in all

equations, allowing the advective nonlinearity to enter.

114Note that it is not absolutely necessary to work out the detailed linear theory of a set of
equations in order to be able to construct such orderings: it is often enough to know roughly
where you are going and simply balance terms representing the physics that you wish to keep
(or expect to have to keep). An example of this approach is given in §15.2.8.
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The continuity equation (13.57) simply reiterates our earlier statement that the velocity
field is divergenceless to lowest order:

∇ · u = −1

ρ

dρ

dt
∼ ω δρ

ρ0
∼ Ma3kcs → 0. (15.64)

The momentum equation (13.58) becomes(
1 +
�
��
δρ

ρ0

)(
∂u

∂t
+ u ·∇u

)
= −∇

(
c2s
γ

δp

p0
+

B2

8πρ0

)
︸ ︷︷ ︸

≡ p̃

+
B ·∇B

4πρ0
. (15.65)

The density perturbation in the left-hand side is ∼ Ma2 and so negligible compared to
unity. The remaining terms in this equation are all the same order (∼ Ma2kc2s ) and so
they must all be kept. The total “pressure” p̃ is determined by enforcing ∇ · u = 0 [see
(15.64)]. Namely, our equations are

∂u

∂t
+ u ·∇u = −∇p̃+B ·∇B , (15.66)

where

∇2p̃ = −∇∇ : (uu−BB) (15.67)

and the magnetic field has been rescaled to velocity units, B/
√

4πρ0 → B.
In the induction equation, best written in the form (13.27), all terms are the same

order ∼ kuB ∼ Ma kcsB except the one containing ∇ · u, which is ∼ Ma3kcsB and so
must be neglected. We are left with

∂B

∂t
+ u ·∇B = B ·∇u . (15.68)

Finally, the internal-energy equation (13.60), which, keeping only the lowest-order
terms, becomes (

∂

∂t
+ u ·∇

)(
δp

p0
− γ δρ

ρ0

)
= 0, (15.69)

can be used to find δρ/ρ0, once δp/p0 = γ(p̃ − B2/2)/c2s is calculated from the solution
of (15.66–15.68). Note that δρ/ρ0 is merely a spectator quantity, not required to solve
(15.66–15.68), which form a closed set.

Equations (15.66–15.68) are the equations of incompressible MHD (let us call it
iMHD). Note that while they have been obtained in the limit of β � 1, all β dependence
has disappeared from them—basically, they describe subsonic dynamics on top of an
infinite heat bath. This is how it should be: formally, in any good asymptotic theory,
it must be possible to make the small parameter artbitrarily small without changing
anything in the equations.

Exercise 15.2. Show that iMHD conserves the sum of kinetic and magnetic energies,

d

dt

∫
dr

(
u2

2
+
B2

2

)
= 0. (15.70)

Exercise 15.3. Check that you can obtain the right waves, viz., Alfvén (§15.1.1) and pseudo-
Alfvén (§15.1.6), directly from iMHD.
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Exercise 15.4. Magnetoelastic waves.115 (a) Show that the iMHD equations can be rewrit-
ten as the following closed set describing the evolution of the velocity field u and the Maxwell
tensor Mij = BiBj :

∂ui
∂t

+ uj
∂ui
∂rj

= − ∂p̃
∂ri

+
∂Mij

∂rj
, (15.71)

∂Mij

∂t
+ un

∂Mij

∂rn
= Mnj

∂ui
∂rn

+Min
∂uj
∂rn

(15.72)

(summation over repeated indices is implied).

(b) Imagine that there is no mean magnetic field, the MHD medium is static, and it is filled with

chaotically tangled magnetic fields that are constant in time. Denote their Maxwell tensor M
(0)
ij .

Assume that these fields have a characteristic scale that is no larger than ` and are statistically
isotropic, so if we introduce an average (denoted by angle brackets) over scales of order `, then

〈M (0)
ij 〉 = v2

Aδij , (15.73)

where (obviously) v2
A = 〈B2〉/3 = const. This is clearly a static (ui = 0) equilibrium solution of

(15.71) and (15.72). Consider infinitesimal perturbations δui and δMij around this equilibrium
and assume that they vary in space on scales much longer than `, viz.,

〈ui〉 = 0 + δui � vA, 〈Mij〉 = 〈M (0)
ij 〉+ δMij , δMij � v2

A. (15.74)

Ignore any possible perturbations of ui and Mij on scales ` or smaller. Show that δui and
δMij will describe propagating waves, derive their dispersion relation and also the relationship
between δMij and the displacement vector ξi associated with δui = ∂ξi/∂t. These are called
magnetoelastic waves. Think about their physical nature, their similarities with, or differences
from, Alfvén waves.

As I already intimated in §13.4, the iMHD equations written in the form of (15.71) and (15.72)
are mathematically similar to the equations describing certain kinds of polymer-laden fluids. The
intrinsic “elasticity” of the Maxwell stress leads to a kind of isotropic Alfvénic response that gives
rise to the magnetoelastic waves. Note, however, that a significant difference between polymer
chains and magnetic fields is that the latter have a sign, so there is a distinction between parallel
and antiparallel fields, while polymers do not have that. Consequently, the analogy between MHD
and polymer fluids becomes very imperfect if dissipation of Mij is included: for polymers, there
is a relaxation term in (15.72) of the form −(Mij − v2

Aδij)/τ , describing the polymers’ desire to
curl up due to entropic forces; whereas in MHD, the resistive term η(Bi∇2Bj+Bj∇2Bi) (§13.5)
cannot be converted into anything that depends only on Mij—indeed, it would, e.g., heavily
damp antiparralel fields that reverse direction on small scales, an effect invisible to Mij , where
the field’s sign cancels out.

15.2.6. Elsasser MHD

The iMHD equations possess a remarkable symmetry. Let us introduce Elsasser (1950)
fields

Z± = u±B (15.75)

and rewrite (15.66) and (15.68) as evolution equations for Z±: after trivial algebra,

∂Z±

∂t
+Z∓ ·∇Z± = −∇p̃ (15.76)

115This is based on the 2019 exam question. You will find a much more sophisticated version
of this calculation in Hosking et al. (2020), where you will learn how to deal with situations
in which the dodgy assumption that perturbations of ui and Mij on scales ` can be ignored is
actually wrong, and also when this assumption is OK.
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and, since ∇ ·Z± = 0,

∇2p̃ = −∇∇ : Z+Z−. (15.77)

Thus, one can think of iMHD as representing the evolution of two incompressible “velocity
fields” advecting each other.

Let us restore the separation of the magnetic field into its mean and perturbed parts,
B = B0 + δB = vAẑ + δB (recall that B is in velocity units). Then

Z± = ±vAẑ + δZ± (15.78)

and (15.76) becomes

∂δZ±

∂t
∓ vA∇‖δZ± + δZ∓ ·∇δZ± = −∇p̃ . (15.79)

Thus, δZ± are finite, counter-propagating (at the Alfvén speed vA) perturbations—and
they interact nonlinearly only with each other, not with themselves. If we let, say, δZ− =
0⇔ u = δB, then δZ+ satisfies

∂δZ+

∂t
− vA∇‖δZ+ = 0, (15.80)

and similarly for δZ− (propagting at −vA) if δZ+ = 0. Therefore,

δZ± = f(r ± vAtẑ), δZ∓ = 0, (15.81)

where f is an arbitrary function, are exact nonlinear solutions of iMHD. They are called
Elsasser states. Physically, they are isolated Alfvén-wave packets that propagate along
the guide field and never interact (because they all travel at the same speed and so can
never catch up with or overtake one another). In order to have any interesting nonlinear
dynamics, the system must have counter-propagating Alfvén-wave packets (see §15.4).

15.2.7. Cross-Helicity

Equations (15.76) manifestly support two conservation laws:

d

dt

∫
dr
|Z±|2

2
= 0, (15.82)

i.e., the energy of each Elsasser field is individually conserved. This can be reformulated
as conservation of the total energy,

d

dt

∫
dr

1

2

(
|Z+|2

2
+
|Z−|2

2

)
=

d

dt

∫
dr

(
u2

2
+
B2

2

)
= 0, (15.83)

and of a new quantity, known as the cross-helicity:

d

dt

∫
dr

1

2

(
|Z+|2

2
− |Z

−|2

2

)
=

d

dt

∫
dr u ·B = 0 . (15.84)

In the Elsasser formulation, the cross-helicity is a measure of energy imbalace between
the two Elssasser fields116—this is observed, for example, in the solar wind, where there
is significantly more energy in the Alfvénic fluctuations propagating away from the Sun
than towards it (see, e.g., Wicks et al. 2013).

116Cross-helicity can also be interpreted as a topological invariant, counting the linkages between
flux tubes and vortex tubes analogously to what magnetic helicity does for the flux tubes alone
(see §16.2).
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Exercise 15.5. To see why we needed incompressibility to get this new conservation law, work
out the time evolution equation for

∫
dr u ·B from the general (compressible) MHD equations

and hence the condition under which the cross-helicity is conserved.

15.2.8. Stratified MHD

It is quite instructive to consider a very simple example of non-uniform MHD equilibrium:
the case of a stratified atmosphere. Let us introduce gravity into MHD equations, viz., the
momentum equation (13.58) becomes

ρ
du

dt
= −∇

(
p+

B2

8π

)
+
B ·∇B

4π
− ρgẑ (15.85)

(uniform gravitational acceleration pointing downward, against the z direction). We wish to
consider a static equilibrium inhomogeneous in the z direction and threaded by a uniform
magnetic field (which may be zero):

ρ0 = ρ0(z), p0 = p0(z), u0 = 0, B0 = B0b0 = const, (15.86)

where b0 is at some general angle to ẑ and p0(z) and ρ0(z) are constrained by the vertical force
balance:

dp0

dz
= −ρ0g ⇒ g = −p0

ρ0

d ln p0

dz
=
c2s
γ

1

Hp
, (15.87)

where it has been opportune to define the pressure scale height Hp. We shall now seek time-
dependent solutions of the MHD equations for which

ρ = ρ0(z) + δρ,
δρ

ρ0
� 1, p = p0(z) + δp,

δp

p0
� 1, (15.88)

and the spatial variation of all pertubations occurs on scales that are small compared to the
pressure scale height Hp or the analogously defined density scale height Hρ = −(d ln ρ0/dz)

−1

(for ordering purposes, we denote them both H):

kH � 1 . (15.89)

After the equilibrium pressure balance is subtracted from (15.85), this equation becomes,
under any ordering in which δρ� ρ0,

ρ0
du

dt
= −∇

(
δp+

B2

8π

)
+
B ·∇B

4π
− δρgẑ . (15.90)

The last term is the buoyancy (Archimedes) force. In order for this new feature to give rise to
any nontrivial new physics, it must be ordered comparable to all the other terms in the equation:
using (15.87) to express g ∼ p0/ρ0H, we find

δρg ∼ kδp ⇒ δρ

ρ0
∼ kH δp

p0
� δp

p0
, (15.91)

δρg ∼ kB2

4π
⇒ δρ

ρ0
∼ kH

β
� 1 ⇒ β � kH � 1. (15.92)

So we learn that the density perturbations must now be much larger than the pressure pertur-
bations, but, in order for the former to remain small and for the magnetic field to be in the
game, β must be high (it is in anticipation of this that we did not split B into B0 and δB,
expecting them to be of the same order).

Let us now expand the internal-energy equation (13.60) in small density and pressure pertur-
bations. Denoting s = p/ργ = s0(z) + δs (entropy density) and introducing the entropy scale
height

1

Hs
≡ d ln s0

dz
= − 1

Hp
+

γ

Hρ
(15.93)
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(assumed positive), we find117

d

dt

δs

s0
= − uz

Hs
,

δs

s0
=
δp

p0
− γ δρ

ρ0
≈ −γ δρ

ρ0
. (15.94)

The last, approximate, expression follows from the smallness of pressure perturbations [see
(15.91)]. This then gives us

d

dt

δρ

ρ0
=

uz
γHs

. (15.95)

But, on the other hand, the continuity equation (13.57) is

d

dt

δρ

ρ0
= −∇ · u+

uz
Hρ

⇒ ∇ · u = uz

(
1

Hρ
− 1

γHs

)
=

uz
γHp

⇒ ∇ · u
ku

∼ 1

kH
� 1.

(15.96)
Thus, the dynamics are incompressible again and the role of the continuity equation is to tell
us that we must find δp from the momentum equation (15.90) by enforcing ∇ · u = 0 to lowest
order. The difference with iMHD (§15.2.5) is that δρ/ρ now participates in the dynamics via the
buoyancy force and must be found self-consistently from (15.95).

Finally, we rewrite our newly found simplified system of equations for a stratified, high-β
atmosphere, in the following neat way:

∂u

∂t
+ u ·∇u = −∇p̃+B ·∇B + aẑ, (15.97)

∇2p̃ = −∇∇ : (uu−BB) +
∂a

∂z
, (15.98)

∂a

∂t
+ u ·∇a = −N2uz, N =

cs

γ
√
HsHp

, (15.99)

∂B

∂t
+ u ·∇B = B ·∇u, (15.100)

where we have rescaled B/
√

4πρ0 → B and denoted the Archimedes acceleration

a = − δρ
ρ0
g = − δρ

ρ0

c2s
γHp

, (15.101)

a quantity also known as the buoyancy of the fluid. We shall call (15.97–15.100) the equations
of stratified MHD (SMHD).

A new frequency N , known as the Brunt–Väisälä frequency, has appeared in our equations.118

In order for all the linear and nonlinear time scales that are present in our equations to coexist
legitimately within our ordering, we must demand that the Alfvén, Brunt–Väisälä and nonlinear
time scales all be comparable:

kvA ∼ N ∼ ku ⇒ 1√
β
∼ 1

kH
∼ Ma . (15.102)

This gives us a relative ordering between all the small parameters that have appeared so far,
including the new one, 1/kH. Using (15.95) and recalling (15.91), let us summarise the ordering
of the perturbations:

u

cs
∼ δρ

ρ0
∼ Ma,

δp

p0
∼ Ma2, |δb| ∼ δB

B0
∼ 1. (15.103)

The difference with the iMHD high-β ordering (15.63) is that the density perturbations have
now been promoted to dynamical relevance, thankfully without jeopardising incompressibility

117We are able to take equilibrium quantities in and out of spatial derivatives because kH � 1
and the perturbations are small.
118N is real because we assumed Hs > 0 (a “stably stratified atmosphere”), otherwise
the atmosphere becomes convectively unstable—this happens when the equilibrium entropy
decreases upwards (cf. §17.3, Q-10 and Q-6c).
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(i.e., still ordering out the sonic perturbations). The ordering (15.103) can be thought of as a
generalisation to MHD of the Boussinesq approximation in hydrodynamics.

Further investigations of the SMHD equations are undertaken in Q-6.

15.3. Reduced MHD

We now turn to the anisotropic ordering, k‖/k � 1 (while β ∼ 1, in general), for which
we studied the linear theory in §15.1.5. Specialising to this case from our general ordering
(15.62), we have

Ma ∼ u⊥
cs
∼
u‖

cs
∼ |δb| ∼ δB

B0
∼ δρ

ρ0
∼ δp

p0
∼ ω

k⊥cs
∼
k‖

k⊥
� 1 . (15.104)

Starting again with the continuity equation (13.57), dividing through by ρ0 and
ordering all terms, we get(

∂

∂t︸︷︷︸
Ma

+u⊥ ·∇⊥︸ ︷︷ ︸
Ma

+
�
�
��

u‖ · ∇‖︸ ︷︷ ︸
Ma2

)
δρ

ρ0︸︷︷︸
Ma︸ ︷︷ ︸

Ma2

= −
(

1 +
�
��
δρ

ρ0︸︷︷︸
Ma

)(
∇⊥ · u⊥︸ ︷︷ ︸

Ma

+∇‖u‖︸ ︷︷ ︸
Ma2

)
︸ ︷︷ ︸

Ma

. (15.105)

Thus, to lowest order, the perpendicular velocity field is 2D-incompressible:

O(Ma) : ∇⊥ · u⊥ = 0 . (15.106)

In the next order (which we will need in §15.3.2),

O(Ma2) : (∇ · u)2 = −
(
∂

∂t
+ u⊥ ·∇⊥

)
δρ

ρ0
= − d

dt

δρ

ρ0
, (15.107)

where, to leading order, the convective derivative now involves only perpendicular ad-
vection.

Equation (15.106) implies that u⊥ can be written in terms of a stream function:

u⊥ = ẑ ×∇⊥Φ . (15.108)

Similarly, for the magnetic field, we have

0 = ∇ ·B = ∇⊥ · δB⊥︸ ︷︷ ︸
Ma

+���
�∇‖δB‖︸ ︷︷ ︸

Ma2

≈∇⊥ · δB⊥, (15.109)

so δB⊥ is also 2D-solenoidal and can be written in terms of a flux function:

δB⊥√
4πρ0

= ẑ ×∇⊥Ψ . (15.110)

Note that Ψ = −A‖/
√

4πρ0, the parallel component of the vector potential.
Thus, Alfvénically polarised perturbations, u⊥ and δB⊥ (see §15.1.1), can be described

by two scalar functions, Φ and Ψ . Let us work out the evolution equations for them.

15.3.1. Alfvénic Perturbations

We start with the induction equation, again most useful in the form (13.27). Dividing
through by B0, we have

d

dt

δB

B0
= b ·∇u− b∇ · u. (15.111)
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Throwing out the obviously subdominant δb contribution in the last term on the right-
hand side (i.e., approximating b ≈ ẑ in that term), then taking the perpendicular part
of the remaining equation, we get

d

dt

δB⊥
B0

= b ·∇u⊥. (15.112)

As we saw above, the convective derivative is with respect to the perpendicular velocity
only and, in view of the stream-function representation (15.108) of the latter, for any
function f , we have, to leading order,

df

dt
=
∂f

∂t
+ u⊥ ·∇⊥f =

∂f

∂t
+ ẑ · (∇⊥Φ×∇⊥f) =

∂f

∂t
+ {Φ, f}, (15.113)

where the “Poisson bracket” is

{Φ, f} =
∂Φ

∂x

∂f

∂y
− ∂Φ

∂y

∂f

∂x
. (15.114)

Similarly, to leading order,

b ·∇f =
∂f

∂z
+ δb ·∇⊥f =

∂f

∂z
+

1

vA
ẑ · (∇⊥Ψ ×∇⊥f) =

∂f

∂z
+

1

vA
{Ψ, f}. (15.115)

Finally, using (15.113) and (15.115) in (15.112) and expressing δB⊥ in terms of Ψ [see
(15.110)] and u⊥ in terms of Φ [see (15.108)], it is a straightforward exercise to show,
after “uncurling” (15.112), that

∂Ψ

∂t
+ {Φ, Ψ} = vA

∂Φ

∂z
. (15.116)

Turning now to the momentum equation (13.58), taking its perpendicular part and
dividing through by ρ ≈ ρ0, we get

du⊥
dt︸ ︷︷ ︸
Ma2

=
1

ρ0

[
−∇⊥

(
p+

B2

8π

)
+
B ·∇δB⊥

4π

]
= −∇⊥

(
c2s
γ

δp

p0
+ v2

A

δB

B0

)
︸ ︷︷ ︸

Ma

+ v2
Ab ·∇

δB⊥
B0︸ ︷︷ ︸

Ma2

.

(15.117)
To lowest order,

O(Ma) : ∇⊥
(
c2s
γ

δp

p0
+ v2

A

δB

B0

)
= 0 ⇒ δp

p0
= −γ v

2
A

c2s

δB

B0
. (15.118)

This is a statement of pressure balance, which is physically what has been expected [see
(15.41)] and which will be useful in §15.3.2. In the next order, (15.117) contains the
perpendicular gradient of the second-order contribution to the total pressure. To avoid
having to calculate it, we take the curl of (15.117) and thus obtain

O(Ma2) : ∇⊥ ×
du⊥
dt

= v2
A∇⊥ ×

(
b ·∇δB⊥

B0

)
. (15.119)

Finally, using again (15.108), (15.110), (15.113) and (15.115) in (15.119), some slightly
tedious algebra leads us to

∂

∂t
∇2
⊥Φ+ {Φ,∇2

⊥Φ} = vA
∂

∂z
∇2
⊥Ψ + {Ψ,∇2

⊥Ψ} . (15.120)
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Note that ∇2
⊥Φ is the vorticity of the flow u⊥ and so the above equation is the MHD

generalisation of the 2D Euler equation.
To summarise the equations (15.120) and (15.116) in their most compact form, we

have

d

dt
∇2
⊥Φ = vAb ·∇∇2

⊥Ψ, (15.121)

dΨ

dt
= vA

∂Φ

∂z
, (15.122)

where the convective time derivative d/dt and the parallel spatial derivative b·∇ are given
by (15.113) and (15.115), respectively. Beautifully, these nonlinear equations describing
Alfvénic perturbations have decoupled completely from everything else: we do not need
to know δρ, δp, u‖ or δB in order to solve for u⊥ and δB⊥. Alfvénic dynamics are self-
contained.

Equations (15.121) and (15.122) are called the Equations of Reduced MHD (RMHD).
They were originally derived in the context of tokamak plasmas (Kadomtsev & Pogutse
1974; Strauss 1976) and are extremely popular as a simple paradigm for MHD is a strong
guide field—not just in tokamaks, but also in space.119

15.3.2. Compressive Perturbations

What about the rest of our fields—in the linear language, the slow-wave-like pertur-
bations (§15.1.5)? While we do not need them to compute the Alfvénic perturbations,
we might still wish to know them for their own sake.

Returning to the induction equation (15.111) and taking its z component, we get

d

dt

δB‖

B0
= b ·∇u‖ −∇ · u ⇒ d

dt

(
δB

B0
− δρ

ρ0

)
= b ·∇u‖ , (15.123)

where all terms are O(Ma2), δB‖ ≈ δB to leading order and we used (15.107) to express
∇ ·u. The derivatives d/dt and b ·∇ contain the nonlinearities involving Φ and Ψ , which
we already know from (15.121) and (15.122).

To find an equation for u‖, we take the z component of the momentum equation
(13.58):

du‖

dt︸︷︷︸
Ma2

=
1

ρ0

[
−
���

���
�∂

∂z

(
p+

B2

8π

)
︸ ︷︷ ︸

Ma3

+
B ·∇δB‖

4π︸ ︷︷ ︸
Ma2

]
⇒

du‖

dt
= v2

Ab ·∇
δB

B0
. (15.124)

The parallel pressure gradient is O(Ma3) because there is pressure balance (15.118) to
lowest order.

Finally, let us bring in the energy equation (13.60), as yet unused. To leading order,
it is

d

dt

δs

s0
=

d

dt

(
δp

p0
− γ δρ

ρ0

)
= 0 ⇒ d

dt

(
δρ

ρ0
+
v2

A

c2s

δB

B0

)
= 0 , (15.125)

where, to obtain the final version of the equation, we substituted (15.118) for δp/p0.

119In the latter context, they are used most prominently as a description of Alfvénic turbulence
at small scales (see §15.4), for which the RMHD equations can be shown to be the correct
description even if the plasma is collisionless and in general requires kinetic treatment
(Schekochihin et al. 2009; Kunz et al. 2015, 2018).
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Equations (15.123–15.125) are a complete set of equations for δB, u‖ and δρ, given Φ
and Ψ . These equations are linear in the Lagrangian frame associated with the Alfvénic
perturbations, provided the parallel distances are measured along perturbed field lines.
Physically, they tell us that slow waves propagate along perturbed field lines and are
passively (i.e., without acting back) advected by the perpendicular Alfvénic flows.

In what follows, when we refer to RMHD, we will mean all five equations (15.121–
15.122) and (15.123–15.125).

Exercise 15.6. Check that the linear relationships between various perturbations in a slow
wave derived in §15.1.5 are manifest in (15.123–15.125).

Exercise 15.7. Show that RMHD equations possess the following exact symmetry: ∀ ε and a,
one can simultaneously scale all perturbation amplitudes by ε, perpendicular distances by a,
parallel distances and times by a/ε. This means that parallel and perpendicular distances in
RMHD are effectively measured in different units. It also means that the small parameter Ma
in RMHD can be made arbitrarily small, without any change in the form of the equations, so
RMHD is a bona fide asymptotic theory (see remark at the end of §15.2.5).

Exercise 15.8. RMHD and waves in double-adiabatic plasmas.120 (a) Recall that in
plasmas where collisions are not sufficiently strong to isotropise pressure with respect to the
local magnetic-field direction, the scalar pressure is replaced by the diagonal tensor (13.65).
Consider a static equilibrium with a constant, uniform magnetic field B0 = B0ẑ, density ρ0,
and perpendicular and parallel pressures p⊥0 = p‖0 = p0. Start from the usual MHD equations,
but with −∇p replaced with −∇ · P, and adopt the RMHD ordering. Show that the reduced
equations for the Alfvénic perturbations are unaffected by the introduction of the anisotropic
pressure, and that the compressive perturbations still satisfy (15.123), but (15.124) is replaced by

ρ0
du‖
dt

= −b ·∇δp‖. (15.126)

Instead of (15.125), work out the reduced version of the CGL closure (13.66).

(b) Use the linearised version of these equations to find the dispersion relation for the slow waves
in a double-adiabatic plasma and to show that, in the limit of β � 1, these “slow waves” in fact
propagate much faster than the Alfvén waves. In what way is the physics of these CGL slow
waves different from the physics of the slow waves in standard MHD with isotropic pressure and
why, therefore, are they able to propagate faster?

Exercise 15.9. Firehose instability.121 (a) Consider again a plasma with anisotropic pres-
sure (13.65) in a static, uniform equilibrium with a straight magnetic field, but this time allow
the equilibrium pressure, not just its perturbations, to be anisotropic: p⊥0 6= p‖0. Working in
RMHD ordering, show that the Alfvénic perturbations still decouple from the compressive ones
and do not depend on δp⊥ and δp‖.

(b) Derive their dispersion relation and determine the condition under which they become
unstable. This is called the firehose instability. Can you explain the physical mechanism of this
instability? What changes in the feedback to fluid displacements that makes Alfvénic pertur-
bations in a pressure-anisotropic plasma unstable, while when p⊥0 = p‖0, these perturbations
behave as propagating waves?

(c) In the intergalactic medium, the typical pressure anisotropy is |p⊥ − p‖|/p‖ ∼ 10−2 and

plasma beta is β ∼ 102 (or larger). In (certain parts of) fusion devices, |p⊥− p‖|/p‖ ∼ 10−1 and

β ∼ 10−2. Which of these plasmas is likely to suffer from the firehose instability?

120This was the 2021 exam question.
121The 2016 exam question was based on this. While this is a useful exercise that can be done
at this point in our story, I will come back to the firehose instability in §19.8, where you will
find most of the answers.
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15.3.3. Elsasser Fields and the Energetics of RMHD

The Elsasser approach (§15.2.6) can be adapted to the RMHD system. Defining
Elsasser potentials

ζ± = Φ± Ψ ⇔ δZ±⊥ = u⊥ ±
δB⊥√
4πρ0

= ẑ ×∇⊥ζ±, (15.127)

it is a straighforward exercise to show that the “vorticities” of the the two Elsasser fields,

ω± = ẑ · (∇⊥ × δZ±⊥) = ∇2
⊥ζ
± (15.128)

(fluid vorticities ± electric currents), satisfy the following evolution equation

∂ω±

∂t
∓ vA

∂ω±

∂z
+ {ζ∓, ω±} = {∂jζ±, ∂jζ∓} , (15.129)

where summation over the repeated index j is implied. The main corrolary of this
equation is the same as in §15.2.6, although here it applies to perpendicular perturbations
only: only counter-propagting Alfvénic perturbations can interact and any finite-amplitude
perturbation composed of just one Elsasser field is a nonlinear solution.

Some light is perhaps shed on the nature of the interaction between Elasser fields if we notice
that the left-hand side of (15.129) tells us that the Elsasser vorticity ω± is propagated along
the mean field at the speed vA and advected across the field by the Elsasser field δZ∓⊥. The
right-hand side of (15.129) is a kind of vortex-stretching term, implying a tendency for vortices
and current layers to be produced in the (x, y) plane. There is a preference for current layers,
as it turns out. The term in the right-hand side of (15.129) has opposite signs for the two
Elsasser fields. Therefore, arguably, nonlinear dynamics favour ω+ω− < 0, i.e., |∇2

⊥Ψ |2 > |∇2
⊥Φ|2

(larger currents than vorticities). This is, indeed, what is seen in numerical simulations of MHD
turbulence (see Zhdankin et al. 2016 and §15.4).

The energies of the two Elsasser fields are individually conserved (cf. §15.2.7),

d

dt

∫
dr |∇⊥ζ±|2 =

d

dt

∫
dr |δZ±⊥|

2 = 0, (15.130)

i.e., when the two fields do interact, they scatter each other nonlinearly, but do not
exchange energy.

There is an Elsasser-like formulation for the slow waves as well:122

δZ±‖ = u‖ ±
δB√
4πρ0

√
1 +

v2
A

c2s
. (15.131)

Then, from (15.123–15.125), one gets, after more algebra,

∂δZ±‖

∂t
∓ csvA√

c2s + v2
A

∂δZ±‖

∂z
=

− 1

2

[(
1∓ 1√

1 + v2
A/c

2
s

)
{ζ+, δZ±‖ }+

(
1± 1√

1 + v2
A/c

2
s

)
{ζ−, δZ±‖ }

]
.

(15.132)

Note the (expected) appearance of the slow-wave phase speed [cf. (15.33)] in the left-hand

122At high β, vA � cs, so we recover from (15.131) and (15.127) the Elsasser fields as defined
for iMHD in (15.75).
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side. Thus, slow waves interact only with Alfvénic perturbations—when vA � cs, only
with the counterpropagating ones, but at finite β, because the slow waves are slower, a
co-propagating Alfvénic perturbation can catch up with a slow one, have its way with it
in passing and speed on (it’s a tough world).

There is no energy exchange in these interactions: the “+” and “−” slow-wave energies
are individually conserved:

d

dt

∫
dr |δZ±‖ |

2 = 0. (15.133)

15.3.4. Entropy Mode

There are only two equations in (15.132), whereas we had three equations (15.123–
15.125) for our three compressive fields δB, u‖ and δρ. The third equation, (15.125), was
in fact for the entropy perturbation:

dδs

dt
= 0 ,

δs

s0
= −γ

(
δρ

ρ0
+
v2

A

c2s

δB

B0

)
. (15.134)

We see that δs is a decoupled variable, independent from ζ± or δZ±‖ (because it is the

only one that involves δρ/ρ0). Equation (15.134) says that δs is a passive scalar field,
simply carried around by the Alfvénic velocity u⊥ (via d/dt). At high β, this is just a
density perturbation.

The associated linear mode is not a wave: its dispersion relation is

ω = 0 . (15.135)

This is the (famously often forgotten) 7th MHD mode, known as the entropy mode (there
are 7 equations in MHD, so there must be 7 linear modes: two fast waves, two Alfvén
waves, two slow waves and one entropy mode).

Exercise 15.10. Go back to §15.1 and find where this mode was overlooked.

Since the entropy mode is decoupled, its “energy” (variance) is individually conserved:

d

dt

∫
dr |δs|2 = 0. (15.136)

Thus, in RMHD, the (nonlinear) evolution of all perturbations is constrained by 5 separate
conservation laws:

∫
dr |δZ±⊥|2,

∫
dr |δZ±‖ |

2 and
∫

dr |δs|2 are all invariants.

15.3.5. Discussion

Such are the simplifications allowed by anisotropy. Besides greater mathematical
simplicity, what is the moral of this story, physically? Let me leave you with two
observations.

• In a strong magnetic field, linear propagation is a parallel effect, whilst nonlinearity
is a perpendicular effect (advection by u⊥, adjustment of propagation direction by
δB⊥). RMHD equations express the idea that linear and nonlinear physics play equally
important role—this becomes the fundamental guiding principle in the theory of MHD
turbulence (§15.4). The idea is that complicated nonlinear dynamics that emerge in the
perpendicular plane get teased out along the field because propagating waves enforce a
degree of parallel spatial coherence. The distances over which this happens are determined
by equating linear and nonlinear time scales, k‖vA ∼ k⊥u⊥. Dynamics cannot stay

coherent over distances longer than ∼ k−1
‖ determined by this balance because of
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causality: points separated by longer parallel distances cannot exchange information
quickly enough to catch up with perpendicular nonlinearities acting locally at each of
these points. This principle is called critical balance.

• Restricting the size of perturbations to be small made the RMHD system, in a
certain sense, “less nonlinear” than the full MHD (or than iMHD, where δB/B0 ∼ 1 was
allowed). This led to the system’s dynamics being constrained by more invariants: the
MHD energy invariant got split into 5 individually conserved quadratic quantities.

Exercise 15.11. You might find it an interesting excercise to think about properties of the
RMHD system in 2D, in the light of the two observations above. How many invariants are there?
In what kind of physical circumstances can we use 2D RMHD without necessarily expecting
parallel coherence of the system to break down by the causality argument?

15.4. MHD Turbulence

RMHD is a good starting point for developing the theory of MHD turbulence—a phenomenon
observed with great precision in the solar wind and believed ubiquitous in the Universe.
Everything that I have to say on this subject can be found in Schekochihin (2022).

Exercise 15.12. Weak RMHD turbulence. If you followed §§7.2 and 8.4, try your hand
at constructing a WT theory for Alfvén waves in RMHD. A good starting point is the RMHD
equations in the form (15.129) as the underlying dynamical equations for the waves. You can
check your theory by consulting Appendix A of Schekochihin (2022).

16. MHD Relaxation

So far, we have only considered MHD in a straight field against the background of
constant density and pressure (except in §15.2.8, where this was generalised slightly). As
any more complicated (static) equilibrium will locally look like this, what we have done
has considerable universal significance. Now we shall occupy ourselves with a somewhat
less universal (i.e., dependent on the circumstances of a particular problem) and more
“large-scale” (compared to the dynamics of wavy perturbations) question: what kind of
(static) equilibrium states are there and into which of those states will an MHD fluid
normally relax?

16.1. Static MHD Equilibria

Let us go back to the MHD equations (13.57–13.60) and seek static equilibria, i.e., set
u = 0 and ∂/∂t = 0. The remaining equations are

−∇p+
j ×B
c

= 0, j =
c

4π
∇×B, ∇ ·B = 0 (16.1)

(the force balance, Ampère’s law and the solenoidality-of-B constraint). These are 7
equations for 7 unknowns (p, B, j), so a complete set. Density is irrelevant because
nothing moves and so inertia does not matter.

The force-balance equation has two immediate general consequences:

B ·∇p = 0, (16.2)

so magnetic surfaces are surfaces of constant pressure, and

j ·∇p = 0, (16.3)
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(a) (b) Plasma is confined.

Figure 73. z pinch.

so currents flow along those surfaces.
Equation (16.2) implies that if magnetic field lines are stochastic and fill the volume

of the system, then p = const across the system and so the force balance becomes

j ×B = 0. (16.4)

Such equilibria are called force-free and turn out to be very interesting, as we shall
discover soon (from §16.1.2 onwards).

16.1.1. MHD Equilibria in Cylindrical Geometry

As the simplest example of an inhomogeneous equilibrium, let us consider the case of
axial and cylindrical symmetry:

∂

∂θ
= 0,

∂

∂z
= 0. (16.5)

Solenoidality of the magnetic field then rules out it having a radial component:

∇ ·B =
1

r

∂

∂r
rBr = 0 ⇒ rBr = const ⇒ Br = 0. (16.6)

Ampère’s law tells us that currents do not flow radially either:

j =
c

4π
∇×B ⇒



jr = 0,

jθ = − c

4π

∂Bz
∂r

,

jz =
c

4π

1

r

∂

∂r
rBθ.

(16.7)

Finally, the radial pressure balance gives us

∂p

∂r
=

(j ×B)r
c

=
jθBz − jzBθ

c
=

1

4π

(
−Bz

∂Bz
∂r
− Bθ

r

∂

∂r
rBθ

)
= − ∂

∂r

B2
z

8π
− B2

θ

4πr
− ∂

∂r

B2
θ

8π
⇒ ∂

∂r

(
p+

B2

8π

)
= − B

2
θ

4πr
. (16.8)

This simply says that the total pressure gradient is balanced by the tension force. A
general equilibrium for which this is satisfied is called a screw pinch.

One simple particular case of this is the z pinch (Fig. 73a). This is achieved by letting
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(a) (b) Coronal loop.

(c) Plasma is confined. (d) Magnetic field is confined.

Figure 74. θ pinch.

a current flow along the z axis, giving rise to an azimuthal field:

jθ = 0, jz =
c

4π

1

r

∂

∂r
rBθ ⇒ Bθ =

4π

c

1

r

∫ r

0

dr′r′jz(r
′), Bz = 0. (16.9)

Equation (16.8) becomes

∂p

∂r
= −1

c
jzBθ . (16.10)

The “pinch” comes from magnetic loops and is due to the curvature force: the loops
want to contract inwards, the pressure gradient opposes this and so plasma is confined
(Fig. 73b). This configuration will, however, prove to be very badly unstable (§17.4)—
which does not stop it from being a popular laboratory set up for short-term confinement
experiments (see, e.g., review by Haines 2011).

Another simple particular case is the θ pinch (Fig. 74a). This is achieved by imposing
a straight but radially non-uniform magnetic field in the z direction and, therefore,
azimuthal currents:

Bθ = 0, jz = 0, jθ = − c

4π

∂Bz
∂r

. (16.11)

Equation (16.8) is then just a pressure balance, pure and simple:

∂

∂r

(
p+

B2
z

8π

)
= 0 . (16.12)

In this configuration, we can confine the plasma (Fig. 74c) or the magnetic flux (Fig. 74d).
The latter is what happens, for example, in flux tubes that link sunspots (Fig. 74b). The
θ pinch is a stable configuration (Q-11).

The more general case of a screw pinch (16.8) is a superposition of z and θ pinches, with
both magnetic fields and currents wrapping themselves around cylindrical flux surfaces.
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The next step in complexity is to assume axial, but not cylindrical symmetry (∂/∂θ = 0,
∂/∂z 6= 0). This is explored in Q-9.

For a much more thorough treatment of MHD equilibria, the classic textbook is Freidberg (2014).

16.1.2. Force-Free Equilibria

Another interesting and elegant class of equilibria arises if we consider situations in
which ∇p is negligible and can be completely omitted from the force balance. This can
happen in two possible sets of circumstances:

—pressure is the same across the system, e.g., because the field lines are stochastic
[a previously mentioned consequence of (16.2)];

—β = p/(B2/8π)� 1, so thermal energy is negligible compared to magnetic energy and
so p is irrelevant.

A good example of the latter situation is the solar corona, where β ∼ 1−10−6 (assuming
n ∼ 109 cm−3, T ∼ 102 eV and B ∼ 1 − 103 G, the lower value applying in the
photosphere, the upper one in the coronal loops; see Fig. 74b)

In such situations, the equilibrium is purely magnetic, i.e., the magnetic field is “force-
free,” which implies that the current must be parallel to the magnetic field:

j ×B = 0 ⇒ j ‖ B ⇒ 4π

c
j = ∇×B = α(r)B, (16.13)

where α(r) is an arbitrary scalar function. Taking the divergence of the last equation
tells us that

B ·∇α = 0, (16.14)

so the function α(r) is constant on magnetic surfaces. If B is chaotic and volume-filling,
then α = const across the system.

The case of α = const is called the linear force-free field. In this case, taking the curl
of (16.13) and then iterating it once gives us

−∇2B = α∇×B = α2B ⇒
(
∇2 + α2

)
B = 0 , (16.15)

so the magnetic field satisfies a Helmholtz equation (to solve which, one must, of course,
specify some boundary conditions).

Thus, there is, potentially, a large zoo of MHD equilibria. Some of them are stable,
some are not, and, therefore, some are more interesting and/or more relevant than others.
How does one tell? A good question to ask is as follows. Suppose we set up some initial
configuration of magnetic field (by, say, switching on some current-carrying coils, driving
currents inside plasma, etc.)—to what (stable) equilibrium will this system eventually
relax?

In general, any initially arranged magnetic configuration will exert forces on the
plasma, these will drive flows, which in turn will move the magnetic fields around;
eventually, everything will settle into some static equilibrium. We expect that, normally,
some amount of the energy contained in the initial field will be lost in such a relaxation
process because the flows will be dissipating, the fields diffusing and/or reconnecting,
etc.—the losses occur due to the resistive and viscous terms in the non-ideal MHD
equations derived in §13. Thus, one expects that the final relaxed static state will be a
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minimum-energy state and so we must be able to find it by minimising magnetic energy:∫
dr

B2

8π
→ min . (16.16)

Clearly, if the relaxation occured without any constraints, the solution would just be
B = 0. In fact, there are constraints. These constraints are topological: if you think
of magnetic field lines as a tangled mess, you will realise that, while you can change
this tangle by moving field lines around, you cannot easily undo linkages, knots, etc.—
anything that, to be undone, would require the field lines to have “ends”. This intuition
can be turned into a quantitative theory once we discover that the induction equation
(13.59) has an invariant that involves the magnetic field only and is, in a certain sense,
“better conserved” than energy.

16.2. Helicity

Magnetic helicity in a volume V is defined as

H =

∫
V

drA ·B , (16.17)

where A is the vector potential, ∇×A = B.

16.2.1. Helicity Is Well Defined

This is not obvious because A is not unique: a gauge transformation

A→ A+ ∇χ, (16.18)

with χ an arbitrary scalar function, leaves B unchanged and so does not affect physics.
Under this transformation, helicity stays invariant:

H → H +

∫
V

drB ·∇χ = H +

∫
∂V

dS ·B χ = H, (16.19)

provided B at the boundary is parallel to the boundary, i.e., provided the volume V
encloses the field (nothing sticks out).

16.2.2. Helicity Is Conserved

Let us go back to the induction equation (13.23) (in which we retain resistivity to keep
track of non-ideal effects, i.e., of the breaking of flux conservation):

∂B

∂t
= ∇× (u×B − η∇×B) . (16.20)

“Uncurling” this equation, we get

∂A

∂t
= u×B − η∇×B + ∇χ. (16.21)

Using (16.20) and (16.21), we have

∂

∂t
A ·B = B · (����u×B − η∇×B + ∇χ) +A · [∇× (u×B − η∇×B)]

= −ηB · (∇×B) + ∇ · (Bχ)

−∇ · [A× (u×B − η∇×B)] + (��
��u×B − η∇×B) · (∇×A)︸ ︷︷ ︸

= B

= ∇ · [Bχ− uA ·B +BA · u+ ηA× (∇×B)]− 2ηB · (∇×B). (16.22)
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Integrating this and using Gauss’s theorem, we get

∂

∂t

∫
V

drA ·B =

∫
∂V

dS · [Bχ− uA ·B +BA · u+ ηA× (∇×B)]

− 2η

∫
V

drB · (∇×B). (16.23)

The surface integral vanishes provided both u and B are parallel to the boundary (no
fields stick out and no flows cross). The resistive term in the surface integral can also
be ignored either by arranging V appropriately or simply by taking it large enough so
B → 0 on ∂V , or, indeed, by taking η → +0. Thus,

dH

dt
= −2η

∫
drB · (∇×B) , (16.24)

magnetic helicity is conserved in ideal MHD.123

Furthermore, it turns out that even in resistive MHD, helicity is “better conserved”
than energy, in the following sense. As we saw in §13.10.2, the magnetic energy evolves
according to

d

dt

∫
drB2 =

(
energy exchange terms

and fluxes

)
− 2η

∫
dr |∇×B|2. (16.25)

The first term on the right-hand side contains various fluxes and energy exchanges with
the velocity field [see (13.54)], all of which eventually decay as the system relaxes (flows
decay by viscosity). The second term represents Ohmic heating. If η is small but the
Ohmic heating is finite, it is finite because magnetic field develops fine-scale gradients:
∇ ∼ η−1/2, so

− 2η

∫
dr |∇×B|2 → const as η → +0. (16.26)

But then the right-hand side of (16.24) is

− 2η

∫
drB · (∇×B) = O(η1/2)→ 0 as η → +0. (16.27)

Thus, as an initial magnetic configuration relaxes, while its energy can change quickly
(on dynamical times), its helicity changes only very slowly in the limit of small η. The
constancy of H (as η → +0) provides us with the constraint subject to which the energy
will need to be minimised.

Before we use this idea, let us discuss what the conservation of helicity means physically,
or, rather, topologically.

123The resistive term in the right-hand side of (16.24) is ∝
∫

drB · j, a quantity known as the
current helicity.
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Figure 75. Linked flux tubes.

16.2.3. Helicity Is a Topological Invariant

Consider two linked flux tubes, T1 and T2 (Fig. 75). The helicity of T1 is the product
of the fluxes through T1 and T2:

H1 =

∫
T1

drA ·B =

∫
T1

dl︸︷︷︸
bdl

· dS︸︷︷︸
bdS

A ·B︸ ︷︷ ︸
A · bB

=

∫
T1

A · bdl Bb · bdS =

∫
T1

A · dlB · dS = Φ1

∫
T1

A · dl︸ ︷︷ ︸
=
∫
S1
B · dS

= Φthrough hole in T1

= Φ1Φ2. (16.28)

By the same token, in general, in a system of many linked tubes, the helicity of tube i is

Hi = ΦiΦthrough hole in tube i = Φi
∑
j

ΦjNij , (16.29)

where Nij is the number of times tube j passes through the hole in tube i. The total
helicity of the this entire assemblage of flux tubes is then

H =
∑
ij

ΦiΦjNij . (16.30)

Thus, H is the number of linkages of the flux tubes weighted by the field strength in
them. It is in this sense that helicity is a topological invariant.

Note that the cross-helicity
∫

dr u · B (§15.2.7) can similarly be interpreted as counting the
linkages between flux tubes (B) and vortex tubes (ω = ∇× u). The current helicity

∫
drB · j

[appearing in the right-hand side of (16.24)] counts the number of linkages between current
loops. The latter is not an MHD invariant though.

16.3. J. B. Taylor Relaxation

Let us now work out the equilibrium to which an MHD system will relax by minimising
magnetic energy subject to constant helicity:

δ

∫
V

dr
(
B2 − αA ·B

)
= 0, (16.31)
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where α is the Lagrange multiplier introduced to enforce the constant-helicity constraint.
Let us work out the two terms:

δ

∫
V

drB2 = 2

∫
V

drB · δB = 2

∫
V

drB · (∇× δA)

= 2

∫
V

dr [−∇ · (B × δA) + (∇×B) · δA]

= −2

∫
∂V

dS · (B × δA) + 2

∫
V

dr (∇×B) · δA, (16.32)

δH = δ

∫
V

drA ·B =

∫
V

dr (B · δA+A · δB) =

∫
V

dr [B · δA+A · (∇× δA)]

=

∫
V

dr
[
B · δA−∇ · (A× δA) + (∇×A)︸ ︷︷ ︸

= B

·δA
]

= −
∫
∂V

dS · (A× δA) + 2

∫
V

drB · δA. (16.33)

Now, since

∂δB

∂t
= ∇× (u×B) = ∇×

(
∂ξ

∂t
×B

)
(16.34)

for small displacements, we have δA = ξ ×B, whence

B × δA = B2ξ −B · ξB, (16.35)

A× δA = A ·B ξ −A · ξB. (16.36)

Therefore, the surface terms in (16.32) and (16.33) vanish if B and ξ are parallel to
the boundary ∂V , i.e., if the volume V encloses both B and the plasma—there are no
displacements through the boundary.

This leaves us with

δ

∫
V

dr
(
B2 − αA ·B

)
= 2

∫
V

dr (∇×B − αB) · δA = 0, (16.37)

which instantly implies that B is a linear force-free field:

∇×B = αB ⇒ ∇2B = −α2B . (16.38)

Thus, our system will relax to a linear force-free state determined by (16.38) and
system-specific boundary conditions. Here α = α(H) depends on the (fixed by initial
conditions) value of H via the equation

H(α) =

∫
drA ·B =

1

α

∫
drB2, (16.39)

where B is the solution of (16.38) (since ∇×B = αB = α∇×A, we have B = αA+∇χ
and the χ term vanishes under volume integration).

Thus, the prescription for finding force-free equilibria is

—solve (16.38), get B = B(α), parametrically dependent on α,
—calculate H(α) according to (16.39),
—set H(α) = H0, where H0 is the initial value of helicity, hence calculate α = α(H0)

and complete the solution by using this α in B = B(α).

Note that it is possible for this procedure to return multiple solutions. In that case, the
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Figure 76. John Bryan Taylor (born 1928), one of the founding fathers of modern plasma
physics, author of the Taylor relaxation (§16.3), Taylor constraint (in dynamo theory),
Chirikov–Taylor map (in chaos theory), the ballooning theory (in tokamak MHD), and many
other clever things, including a key role in the design of the UK’s first hydrogen bomb (1957).
This picture was taken in 2012 at the Wolfgang Pauli Institute in Vienna.

solution with the smallest energy must be the right one (if a system relaxed to a local
minimum, one can always imagine it being knocked out of it by some perturbation and
falling to a lower energy).

Exercise 16.1. Force-free fields in 2D.124 Show that for incompressible MHD confined to
the 2D plane (x, y), the quantity

∫
d2rA2

z is conserved, except for resistive dissipation and under
suitable assumptions about what happens at the boundaries of the domain (this 2D invariant is
sometimes called “anastrophy”). Work out the 2D version of J. B. Taylor relaxation and show
that the resulting equilibrium field is a linear force-free field.

16.4. Relaxed Force-Free State of a Cylindrical Pinch

Let us illustrate how the procedure derived in §16.3 works by considering again the
case of cylindrical and axial symmetry [see (16.5)]. The z component of (16.38) gives us
the following equation for Bz(r):

B′′z +
1

r
B′z + α2Bz = 0. (16.40)

This is a Bessel equation, whose solution, subject to Bz(0) = B0 and Bz(∞) = 0, is

Bz(r) = B0J0(αr) . (16.41)

We can now calculate the azimuthal field as follows

αBθ = (∇×B)θ = −B′z ⇒ Bθ(r) = B0J1(αr) . (16.42)

This gives us an interesting twisted field (Fig. 77), able to maintain itself in equilibrium
without help from pressure gradients.

Finally, we calculate its helicity according to (16.39): assuming that the length of the

124The 2020 exam question was based on this.
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Figure 77. Relaxed cylindrical pinch.

cylinder is L, its radius R and so its volume V = πR2L, we have

H =
1

α

∫
drB2 =

2πLB2
0

α

∫ R

0

drr
[
J2

0 (αr) + J2
1 (αr)

]
=
B2

0V

α2

[
J2

0 (αR) + 2J2
1 (αR) + J2

2 (αR)− 2

αR
J1(αR)J2(αR)

]
. (16.43)

If we solve this for α = α(H), our solution is complete.

Exercise 16.2. Work out what happens in the general case of ∂/∂θ 6= 0 and ∂/∂z 6= 0 and
whether the simple symmetric solution obtained above is the correct relaxed, minimum-energy
state (not always, it turns out). This is not a trivial exercise. The solution is in Taylor & Newton
(2015, §9), where you will also find much more on the subject of J. B. Taylor relaxation, relaxed
states and much besides—all from the original source.

There are other useful variational principles—other in the sense that the constraints that are
imposed are different from helicity conservation. The need for them arises when one considers
magnetic equilibria in domains that do not completely enclose the field lines, i.e., when dS·B 6= 0
at the boundary. One example of such a variational principle, also yielding a force-free field
(although not necessarily a linear one), is given in Q-1(e). A specific example of such a field
arises in Q-9(f).

16.5. Decay of MHD Turbulence

Let me show you how one can use the idea of relaxation at constant helicity to work out, non-
rigorously but rather convincingly, I think, the decay law (with time) of some arbitrary initial
magnetic configuration. As I argued at the end of §16.1.2, such a configuration would normally
go unstable, drive flows, and eventually rearrange itself into a force-free state—without, as we
now know, changing its net helicity. Let us imagine that this is all happening in empty space
(no interesting boundaries) and that initial magnetic energy is 〈B2

0〉 (average over volume),
consisting of random, tangled magnetic fields correlated on scale ∼ `0. How will the magnetic
energy 〈B2〉 and the field correlation scale ` change as functions of time? This is known as the
problem of the decay of MHD turbulence.

Let us do some “twiddle algebra”. As per the relaxation philosophy articulated above, let us
assume that the magnetic energy will decay at a rate that is independent of resistivity, to wit,
comparable to the inverse dynamical time ∼ u/`, where u is the typical size, and ` the typical
scale, of the flows in the system:

dB2

dt
∼ −uB

2

`
∼ −B

3

`
, (16.44)

where B is the typical size of the fields. The last step is reasonable if we assume that the flows
are “Alfvénic”, u ∼ B (with the understanding that B is measured in velocity units, as in
§15.2.5), i.e., driven by (or in concert with) the magnetic forces. Conservation of helicity allows



240 A. A. Schekochihin

us to relate ` to B: since A ∼ B`,

H = V 〈A ·B〉 ∼ V B2` ∼ const ⇒ ` ∝ B−2. (16.45)

Using this in (16.44), we get

dB2

dt
∝ −B5 ⇒ 〈B2〉 ∝ t−2/3, ` ∝ t2/3. (16.46)

Thus, we expect the energy to decay as aa power-law decay with time, whose exponent is fixed
by the assumptions of conserved helicity and Alfvénicity of flows. As their energy decays, the
magnetic structures will become larger and larger, also in a power-law fashion. A Taylor state
will be reached only when they finally bump into some physical boundaries.

This may all look rather uncontroversial and not very difficult to grasp, but it is, in fact,
the tip of a sizeable iceberg of past and current research. I have swept a number of nuances
under the rug here, e.g., whether the decay and merger of magnetic structures really happens
on an ideal-MHD time scale (not obviously and not always!), and also have not addressed such
questions as what might happen if H = 0 but some local links and twists of the magnetic field
still impose local topological constraints on its decay. If this topic interests you, read my review
(Schekochihin 2022, §12) and/or the paper by Hosking & Schekochihin (2021), and follow the
paper trail from there.

Exercise 16.3. Decay of 2D MHD turbulence. Show that in 2D, the decay laws are

〈B2〉 ∝ t−1, ` ∝ t1/2. (16.47)

16.6. Parker’s Problem and Topological MHD

Coming soon. . . On topology in MHD, a very mathematically minded student might enjoy
the book by Arnold & Khesin (1999).

17. MHD Stability and Instabilities

We now wish to take a more general view of the MHD stability problem: given some
static125 equilibrium (some ρ0, p0, B0 and u0 = 0), will this equilibrium be stable to
small perturbations of it, i.e., will these perturbations grow or decay?

There are two ways to answer this question:

1) Carry out the normal-mode analysis, i.e., linearise the MHD equations around the
given equilibrium, just as we did when we studied MHD waves in §15.1, and see if any
of the frequencies (solutions of the dispersion relation) turn out to be complex, with
positive imaginary parts (growth rates). This approach has the advantage of being direct
and also of yielding specific information about rates of growth or decay, the character of
the growing and decaying modes, etc. However, for spatially complicated equilibria, this
is often quite difficult to do and one might be willing to settle for less: just being able
to prove that some configuration is stable or that certain types of perturbations might
grow. Hence the the second approach:

2) Check whether, for a given equilibrium, all possible perturbations will lead to the
energy of the system increasing. If so, then the equilibrium is stable—this is called the
energy principle and we shall prove it shortly. If, on the other hand, certain perturbations
lead to the energy decreasing, that equilibrium is unstable. The advantage of this second

125A treatment of the more general case of a dynamic equilibrium, u0 6= 0, can be found in the
excellent textbook by Davidson (2016).
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approach is that we do not need to solve the (linearised) MHD equations in order to
pronounce on stability, just to examine the properties of the perturbed energy functional.

It should be already quite clear how to do the normal-mode analysis, at least concep-
tually, so I shall focus on the second approach.

17.1. Energy Principle

Recall what the total energy in MHD is (§13.10)

E =

∫
dr

(
ρu2

2
+
B2

8π
+

p

γ − 1

)
≡
∫

dr
ρu2

2
+W. (17.1)

As we saw in §15.1, all perturbations of an MHD system away from equilibrium can
be expressed in terms of small displacements ξ—we will work this out shortly for a
general equilibrium, but for now, let us accept that this will be true.126 As u = ∂ξ/∂t
by definition of ξ, we have

E =

∫
dr

1

2
ρ0

∣∣∣∣∂ξ∂t
∣∣∣∣2 +W0 + δW1[ξ] + δW2[ξ, ξ] + . . . , (17.2)

where we have kept terms up to second order in ξ and so W0 is the equilibrium part of
W (i.e., its value for ξ = 0), δW1[ξ] is linear in ξ, δW2[ξ, ξ] is bilinear (quadratic), etc.
Energy must be conserved to all orders, so

dE

dt
=

∫
dr ρ0

∂2ξ

∂t2︸ ︷︷ ︸
≡ F [ξ]

·∂ξ
∂t

+ δW1

[
∂ξ

∂t

]
+ δW2

[
∂ξ

∂t
, ξ

]
+ δW2

[
ξ,
∂ξ

∂t

]
+ · · · = 0. (17.3)

This must be true at all times, including at t = 0, when ξ and ∂ξ/∂t can be chosen inde-
pendently (MHD equations are second-order in time if written in terms of displacements).
Therefore, for arbitrary functions ξ and η,∫

dr η · F [ξ] + δW1[η] + δW2[η, ξ] + δW2[ξ,η] + · · · = 0. (17.4)

In the first order, this tells us that

δW1[η] = 0, (17.5)

which is good to know because it means that δW1 disappears from (17.2) (there are no
first-order energy perturbations). In the second order, we get∫

dr η · F [ξ] = −δW2[η, ξ]− δW2[ξ,η]. (17.6)

Let η = ξ. Then (17.6) implies

δW2[ξ, ξ] = −1

2

∫
dr ξ · F [ξ] . (17.7)

This is the part of the perturbed energy in (17.2) that can be both positive and negative.
The Energy Principle is

δW2[ξ, ξ] > 0 for any ξ ⇔ equilibrium is stable (17.8)

126In fact, also the fully nonlinear dynamics can be completely expressed in terms of
displacements if the MHD equations are written in Lagrangian coordinates (see §13.13).
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(a) Instability. (b) “Overstability” (does not happen in MHD).

Figure 78. MHD instabilities.

(Bernstein et al. 1958). Before we are in a position to prove this, we must do some
preparatory work.

17.1.1. Properties of the Force Operator

Since the right-hand side of (17.6) is symmetric with respect to swapping ξ ↔ η, so
must be the left-hand side: ∫

dr η · F [ξ] =

∫
dr ξ · F [η]. (17.9)

Therefore, operator F [ξ] is self-adjoint. Since, by definition,

F [ξ] = ρ0
∂2ξ

∂t2
, (17.10)

the eigenmodes of this operator satisfy

ξ(t, r) = ξn(r)e−iωnt ⇒ F [ξn] = −ρ0ω
2
nξn. (17.11)

As always for self-adjoint operators, we can prove a number of useful statements.

1) The eigenvalues {ω2
n} are real.

Proof. If (17.11) holds, so must

F [ξ∗n] = −ρ0(ω2
n)∗ξ∗n, (17.12)

provided F has no complex coefficients (we shall confirm this explicitly in §17.2.1). Taking
the full scalar products (including integarting over space) of (17.11) with ξ∗n and of (17.12)
with ξn and subtracting one from the other, we get

−
[
ω2
n − (ω2

n)∗
] ∫

dr ρ0|ξn|2︸ ︷︷ ︸
> 0

=

∫
dr ξ∗n · F [ξn]−

∫
dr ξn · F [ξ∗n] = 0

⇒ ω2
n = (ω2

n)∗ , q.e.d. (17.13)

This result implies that, if any MHD equilibrium is unstable, at least one of the eigenvalues
must be ω2

n < 0 and, since it is guaranteed to be real, any MHD instability will give rise
to purely growing modes (Fig. 78a), rather than growing oscillations (also known as
“overstabilities”; see Fig. 78b).

2) The eigenmodes {ξn} are orthogonal.

Proof. Taking the full scalar products of (17.11) with ξm (assuming m 6= n and
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non-degeneracy of ω2
m,n), and of the analogous equation

F [ξm] = −ρ0ω
2
mξm (17.14)

with ξn and subtracting them, we get127

− (ω2
n − ω2

m)︸ ︷︷ ︸
6= 0

∫
dr ρ0ξn · ξm =

∫
dr ξm · F [ξn]−

∫
dr ξn · F [ξm] = 0

⇒
∫

dr ρ0ξn · ξm = δnm

∫
dr ρ0|ξn|2 , q.e.d. (17.15)

17.1.2. Proof of the Energy Principle

Let us assume completeness of the set of eigenmodes {ξn} (not, in fact, an indispensable
assumption, but we shall not worry about this nuance here; see Kulsrud 2005, §7.2). Then
any displacement at any given time t can be decomposed as

ξ(t, r) =
∑
n

an(t)ξn(r). (17.16)

The energy perturbation (17.7) is

δW2[ξ, ξ] = −1

2

∫
dr ξ · F [ξ] = −1

2

∑
nm

anam

∫
dr ξn · F [ξm]

=
1

2

∑
nm

anamω
2
m

∫
dr ρ0ξn · ξm︸ ︷︷ ︸
use (17.15)

=
1

2

∑
n

a2
nω

2
n

∫
dr ρ0|ξn|2. (17.17)

By the same token,

K[ξ, ξ] ≡ 1

2

∫
dr ρ0|ξ|2 =

1

2

∑
n

a2
n

∫
dr ρ0|ξn|2. (17.18)

Then, if we arrange ω2
1 6 ω2

2 6 . . . , the smallest eigenvalue is

ω2
1 = min

ξ

δW2[ξ, ξ]

K[ξ, ξ]
. (17.19)

Therefore,
• condition (17.8) is sufficient for stability because, if δW2[ξ, ξ] > 0 for all possible ξ,

then the smallest eigenvalue ω2
1 > 0, and so all eigenvalues are positive, ω2

n > ω2
1 > 0;

• condition (17.8) is necessary for stability because, if the equilibrium is stable, then
all eigenvalues are positive, ω2

n > 0, whence δW2[ξ, ξ] > 0 in view of (17.17), q.e.d.

17.2. Explicit Calculation of δW2

Now that we know that we need the sign of δW2 to ascertain stability (or otherwise),
it is worth working out δW2 as an explicit function of ξ. It is a second-order quantity, but
(17.7) tells us that all we need to calculate is F [ξ] to first order in ξ, i.e., we just need
to linearise the MHD equations around an arbitrary static equilibrium. The procedure is
the same as in §15.1, but without assuming ρ0, p0 and B0 to be spatially homogeneous.

127Note that in view of (17.13), we can take {ξn} to be real.
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17.2.1. Linearised MHD Equations

Thus, generalising somewhat the procedure adopted in (15.3–15.5), we have

∂ρ

∂t
+ ∇ · (ρu) = 0 ⇒ ∂δρ

∂t
= −∇ ·

(
ρ0
∂ξ

∂t

)
⇒ δρ = −∇ · (ρ0ξ) , (17.20)(

∂

∂t
+ u ·∇

)
p = −γp∇ · u ⇒ ∂δp

∂t
= −∂ξ

∂t
·∇p0 − γp0∇ ·

∂ξ

∂t

⇒ δp = −ξ ·∇p0 − γp0∇ · ξ , (17.21)

∂B

∂t
= ∇× (u×B) ⇒ ∂δB

∂t
= ∇×

(
∂ξ

∂t
×B0

)
⇒ δB = ∇× (ξ ×B0) . (17.22)

Note that again δρ, δp and δB are all expressed as linear operators on ξ—and so δW =
δ
∫

dr
[
B2/8π + p/(γ − 1)

]
must also be some operator involving ξ and its gradients but

not ∂ξ/∂t (as we assumed in §17.1).

Finally, we deal with the momentum equation (to which we add gravity as this will
give some interesting instabilities):

ρ

(
∂u

∂t
+ u ·∇u

)
= −∇p+

(∇×B)×B
4π

+ ρg. (17.23)

This gives us

F [ξ] = ρ0
∂2ξ

∂t2
= −∇δp+

(∇×B0)× δB
4π

+
(∇× δB)×B0

4π
+ δρ g

= ∇ (ξ ·∇p0 + γp0∇ · ξ)− g∇ · (ρ0ξ) +
j0 × δB

c
+

(∇× δB)×B0

4π
, (17.24)

where j0 = c(∇×B0)/4π, we have used (17.20) and (17.21) for δρ and δp, respectively,
and δB is given by (17.22).
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17.2.2. Energy Perturbation

Now we can use (17.24) in (17.7) to calculate explicitly

δW2 =
1

2

∫
dr

[
−ξ ·∇ (ξ ·∇p0 + γp0∇ · ξ)︸ ︷︷ ︸
= (ξ ·∇p0)∇·ξ+γp0(∇·ξ)2

after integration by parts

+ (g · ξ)∇ · (ρ0ξ)

− (j0 × δB) · ξ
c︸ ︷︷ ︸

=
j0 · (ξ × δB)

c

− (∇× δB)×B0

4π
· ξ︸ ︷︷ ︸

=
(∇× δB) · (ξ ×B0)

4π
by parts

=
(δB ×∇) · (ξ ×B0)

4π

=
δB · [∇× (ξ ×B0)]

4π

=
|δB|2

4π
, using (17.22)

]
. (17.25)

Thus, we have arrived at a standard textbook (e.g., Kulsrud 2005) expression for
the energy perturbation (this expression is non-unique because one can do various
integrations by parts):

δW2 =
1

2

∫
dr

[
(ξ ·∇p0)∇ · ξ + γp0(∇ · ξ)2 + (g · ξ)∇ · (ρ0ξ)

+
j0 · (ξ × δB)

c
+
|δB|2

4π

]
, (17.26)

where δB = ∇ × (ξ ×B0). Note that two of the terms inside the integral (the second
and the fifth) are positive-definite and so always stabilising. The terms that are not sign-
definite and so potentially destabilising involve equilibrium gradients of pressure, density
and magnetic field (currents). It is perhaps not a surprise to learn that Nature, with
its fundamental yearning for thermal equilibrium, might dislike gradients—while it is of
course not a rule that all such inhomogeneities render the system unstable, we will see
that they often do, usually when gradients exceed certain critical thresholds.

All we need to do now is calculate δW2 according to (17.26) for any equilibrium that
interests us and see if it can be negative for any class of perturbations (or show that it
is positive for all perturbations).

17.3. Interchange Instabilities

As the first and simplest example of how one does stability calculations using the
Energy Principle, we will (perhaps disappointingly) consider a purely hydrodynamic
situation: the stability of a simple hydrostatic equilibrium describing a generic stratified
atmosphere:

ρ0 = ρ0(z) and p0 = p0(z) satisfying
dp0

dz
= −ρ0g (17.27)

(gravity acts downward, against the z direction, g = −gẑ).
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17.3.1. Formal Derivation of the Schwarzschild Criterion

With B0 = 0 and the hydrostatic equilibrium (17.27), (17.26) becomes

δW2 =
1

2

∫
dr
[
ξzp
′
0∇ · ξ + γp0(∇ · ξ)2 − gξz(ρ′0ξz + ρ0∇ · ξ)

]
=

1

2

∫
dr
[
2p′0ξz∇ · ξ + γp0(∇ · ξ)2 − ρ′0gξ2

z

]
, (17.28)

where we have used ρ0g = −p′0. We see that δW2 depends on ξz and ∇ · ξ. Let us treat
them as independent variables and minimise δW2 with respect to them (i.e., seek the
most unstable possible situation):

∂

∂(∇ · ξ)

[
integrand
of (17.28)

]
= 2p′0ξz + 2γp0(∇ · ξ) = 0 ⇒ ∇ · ξ = − p′0

γp0
ξz. (17.29)

Substituting this back into (17.28), we get

δW2 =
1

2

∫
dr

(
− p′20
γp0
− ρ′0g

)
ξ2
z =

1

2

∫
dr

ρ0g

γ

(
p′0
p0
− γ ρ

′
0

ρ0

)
︸ ︷︷ ︸

=
d

dz
ln
p0

ργ0

ξ2
z . (17.30)

By the Energy Principle, the system is stable iff

δW2 > 0 ⇔ d ln s0

dz
> 0 , (17.31)

where s0 = p0/ρ
γ
0 is the entropy function. The inequality (17.31) is the Schwarzschild

criterion for convective stability.128 If this criterion is broken, there will be an instability,
called the interchange instability.

This calculation illustrates both the power and the weakness of the method:
—on the one hand, we have obtained a stability criterion quite quickly and without

having to solve the underlying equations,
—on the other hand, while we have established the condition for instability, we have

as yet absolutely no idea what is going on physically.

17.3.2. Physical Picture

We can remedy the latter problem by examining what type of displacements give rise
to δW2 < 0 when the Schwarzschild criterion is broken. Recalling (17.20) and (17.21) and
specialising to the displacements given by (17.29) (as they are the ones that minimise
δW2), we get

δp

p0
= −ξ ·∇p0

p0
− γ∇ · ξ = −p

′
0

p0
ξz − γ∇ · ξ = 0, (17.32)

δρ

ρ0
= − 1

ρ0
∇ · (ρ0ξ) = −ρ

′
0

ρ0
ξz −∇ · ξ =

1

γ

(
−γ ρ

′
0

ρ0
+
p′0
p0

)
=

1

γ

d ln s0

dz︸ ︷︷ ︸
< 0

(unstable)

ξz. (17.33)

128We studied perturbations of a stably stratified atmosphere in §15.2.8 and Q-6, where we saw
that these perturbations indeed did not grow provided the entropy scale length 1/Hs = d ln s0/dz
was positive.
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Figure 79. Interchange instability.

Thus, the offending perturbations maintain themselves in pressure balance (i.e., they
are not sound waves) and locally increase or decrease density for blobs of fluid that fall
(ξz < 0) or rise (ξz > 0), respectively.

This gives us some handle on the situation: if we imagine a blob of fluid slowly rising
(slowly, so δp = 0) from the denser nether regions of the atmosphere to the less dense
upper ones, then we can ask whether staying in pressure balance with its surroundings
will require the blob to expand (δρ < 0) or contract (δρ > 0). If it is the latter, it will fall
back down, pulled by gravity; if the former, then it will keep rising (buoyantly) and the
system will be unstable. The direction of the entropy gradient determines which of these
two scenarios is realised.

17.3.3. Intuitive Rederivation of the Schwarzschild Criterion

We can use this physical intuition to derive the Schwarzschild criterion directly.
Consider two blobs, at two different vertical locations, lower (1) and upper (2), where the
equilibrium densities and pressures are ρ01, p01 and ρ02, p02. Now interchange these two
blobs (Fig. 79). Inside the blobs, the new densities and pressures are ρ1, p1 and ρ2, p2.

Requiring the blobs to stay in pressure balance with their local surroundings gives

p1 = p02, p2 = p01. (17.34)

Requiring the blobs to rise or fall adiabatically, i.e., to satisfy p/ργ = const, and then
using pressure balance (17.34) gives

p01

ργ01

=
p1

ργ1
=
p02

ργ1
⇒ ρ1

ρ01
=

(
p02

p01

)1/γ

. (17.35)

Requiring that the buoyancy of the rising blob overcome gravity, i.e., that the weight
of the displaced fluid be larger than the weight of the blob,

ρ02g > ρ1g, (17.36)

gives the condition for instability:

ρ1 < ρ02 ⇔ ρ1

ρ02
=
ρ01

ρ02

(
p02

p01

)1/γ

< 1 ⇔ p02

ργ02

<
p01

ργ01

. (17.37)

This is exactly the same as the Schwarzschild condition (17.31) for the interchange
instability (and this is why the instability is called that).

Note that, while this is of course a much simpler and more intuitive agrument than
the application of the Energy Principle, it only gives us a particular example of the
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kind of perturbation that would be unstable under particular conditions, not any general
criterion of what equilibria might be guaranteed to be stable.

In Q-10, we will explore how the above considerations can be generalised to an equilibrium that
also features a non-zero magnetic field.

17.4. Instabilities of a Pinch

As our second (also classic) example, we consider the stability of a z-pinch equilibrium
(§16.1.1, Fig. 73):

B0 = B0(r)θ̂, j0 = j0(r)ẑ =
c

4πr
(rB0)′ẑ, p′0(r) = −1

c
j0B0 = −B0(rB0)′

4πr
. (17.38)

Since we are going to have to work in cylindrical coordinates, we must first write all
the terms in (17.26) in these coordinates and with the equilibrium (17.38):

(ξ ·∇p0)(∇ · ξ) = ξrp
′
0

(
1

r

∂

∂r
rξr +

�
�
�@
@
@

1

r

∂ξθ
∂θ

+
∂ξz
∂z

)

= p′0
ξ2
r

r
+ p′0ξr

(
∂ξr
∂r

+
∂ξz
∂z

)
, (17.39)

γp0(∇ · ξ)2 = γp0

(
1

r

∂

∂r
rξr +

1

r

∂ξθ
∂θ

+
∂ξz
∂z

)2

, (17.40)

δB = ∇× (ξ ×B0) = r̂

(
1

r

∂

∂θ
ξrB0

)
+ θ̂

(
− ∂

∂z
ξzB0 −

∂

∂r
ξrB0

)
+ ẑ

(
1

r

∂

∂θ
ξzB0

)
,

(17.41)

j0 · (ξ × δB)

c
=

j0
c︸︷︷︸

= − p
′
0

B0

(ξrδBθ − ξθδBr) = p′0

[
ξr

(
∂ξz
∂z

+
∂ξr
∂r

+ ξr
B′0
B0

)
+
�
�
��Z

Z
ZZ

ξθ
1

r

∂ξr
∂θ

]
,

= p′0ξr

(
∂ξz
∂z

+
∂ξr
∂r

)
+
p′0B

′
0

B0
ξ2
r , (17.42)

|δB|2

4π
=

B2
0

4πr2

[(
∂ξr
∂θ

)2

+

(
∂ξz
∂θ

)2
]

+
B2

0

4π

(
∂ξz
∂z

+
∂ξr
∂r

+ ξr
B′0
B0

)2

︸ ︷︷ ︸
=
B2

0

4π

(
∂ξz
∂z

+
∂ξr
∂r

)2

+

2B0B
′
0

4π
ξr

(
∂ξz
∂z

+
∂ξr
∂r

)
+
B′20
4π

ξ2
r

. (17.43)

The terms that are crossed out have been dropped because they combine into a full
derivative with respect to θ and so, upon substitution into (17.26), vanish under integra-
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tion. Assembling all this together, we have

δW2 =
1

2

∫
dr

{(
p′0 +

p′0rB
′
0

B0
+
rB′20
4π

)
︸ ︷︷ ︸

= 2p′0 +
B2

0

4πr

ξ2
r

r
+ 2

(
p′0 +

B0B
′
0

4π

)
︸ ︷︷ ︸

= − B2
0

4πr

ξr

(
∂ξz
∂z

+
∂ξr
∂r

)

+ γp0(∇ · ξ)2 +
B2

0

4πr2

[(
∂ξr
∂θ

)2

+

(
∂ξz
∂θ

)2
]

+
B2

0

4π

(
∂ξz
∂z

+
∂ξr
∂r

)2
}

=
1

2

∫
dr

{
2p′0

ξ2
r

r
+
B2

0

4π

(
∂ξz
∂z

+
∂ξr
∂r
− ξr

r

)2

+ γp0(∇ · ξ)2 +
B2

0

4πr2

[(
∂ξr
∂θ

)2

+

(
∂ξz
∂θ

)2
]}

, (17.44)

where, in simplifying the first two terms in the integrand, we used the equilibrium
equation (17.38):

p′0 = − B
2
0

4πr
− B0B

′
0

4π
⇒ rB′20

4π
= −p

′
0rB

′
0

B0
− B0B

′
0

4π
= −p

′
0rB

′
0

B0
+ p′0 +

B2
0

4πr
. (17.45)

Finally, after a little further tiding up,

δW2 =
1

2

∫
dr

{
2p′0

ξ2
r

r
+
B2

0

4π

(
r
∂

∂r

ξr
r

+
∂ξz
∂z

)2

+ γp0

(
1

r

∂

∂r
rξr +

1

r

∂ξθ
∂θ

+
∂ξz
∂z

)2

+
B2

0

4πr2

[(
∂ξr
∂θ

)2

+

(
∂ξz
∂θ

)2
]}

. (17.46)

17.4.1. Sausage Instability

Let us first consider axisymmetric perturbations: ∂/∂θ = 0. Then δW2 depends on two
variables only:

ξr and η ≡ ∂ξr
∂r

+
∂ξz
∂z

. (17.47)

Indeed, unpacking all the r derivatives in (17.46), we get

δW2 =
1

2

∫
dr

[
2p′0

ξ2
r

r
+
B2

0

4π

(
η − ξr

r

)2

+ γp0

(
η +

ξr
r

)2
]
. (17.48)

We shall treat ξr and η as independent variables and minimise δW2 with respect to η:

∂

∂η

[
integrand
of (17.48)

]
= 2

B2
0

4π

(
η − ξr

r

)
+ 2γp0

(
η +

ξr
r

)
= 0 ⇒ η =

1− γβ/2
1 + γβ/2

ξr
r
,

(17.49)
where, as usual, β = 8πp0/B

2
0 . Putting this back into (17.48), we get

δW2 =

∫
dr p0

[
rp′0
p0

+
1

β

(
γβ

1 + γβ/2

)2

+
γ

2

(
2

1 + γβ/2

)2
]
ξ2
r

r2

=

∫
dr p0

(
r

d ln p0

dr
+

2γ

1 + γβ/2

)
ξ2
r

r2
. (17.50)
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Figure 80. Sausage instability.

There will be an instability (δW2 < 0) if (but not only if, because we are considering the
restricted set of axisymmetric displacements)

−r d ln p0

dr
>

2γ

1 + γβ/2
, (17.51)

i.e., when the pressure gradient is too steep, the equilibrium is unstable.
What sort of instability is this? Recall that the perturbations that we have identified

as making δW2 < 0 are axisymmetric, have some radial and axial displacements and are
compressible: from (17.49),

∇ · ξ = η +
ξr
r

=
2

1 + γβ/2

ξr
r
. (17.52)

They are illustrated in Fig. 80. The mechanism of this aptly named sausage instability
is clear: squeezing the flux surfaces inwards increases the curvature of the azimuthal
field lines, this exerts stronger curvature force, leading to further squeezing; conversely,
expanding outwards weakens curvature and the plasma can expand further.

Exercise 17.1. Convince yourself that the displacements that have been identified cause
magnetic perturbations that are consistent with the cartoon in Fig. 80.

17.4.2. Kink Instability

Now consider non-axisymmetric perturbations (∂/∂θ 6= 0) to see what other insta-
bilities might be there. First of all, since we now have θ variation, δW2 depends on
ξθ. However, in (17.46), ξθ only appears in the third term, where it is part of ∇ · ξ,
which enters quadratically and with a positive coefficient γp0. We can treat ∇ · ξ as
an independent variable, alongside ξr and ξz, and minimise δW2 with respect to it.
Obviously, the energy perturbation is minimal when

∇ · ξ = 0, (17.53)

i.e., the most dangerous non-axisymmetric perturbations are incompressible (unlike for
the case of the axisymmetric sausage mode in §17.4.1: there we could not—and did not—
have such incompressible perturbations because we did not have ξθ at our disposal, to
be chosen in such a way as to enforce incompressibility).

To carry out further minimisation of δW2, it is convenient to Fourier transform our
displacements in the θ and z directions—both are directions of symmetry (i.e., the
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equilibrium profiles do not vary in these directions), so this can be done with impunity:

ξ =
∑
m,k

ξmk(r) ei(mθ+kz). (17.54)

Then (17.46) (with ∇ · ξ = 0) becomes, by Parseval’s theorem (the operator F [ξ] being
self-adjoint; see §17.1.1),

δW2 =
1

2

∑
m,k

2πLz

∫ ∞
0

dr r

{
2p′0
|ξr|2

r
+
B2

0

4π

[∣∣∣∣r ∂

∂r

ξr
r

+ ikξz

∣∣∣∣2 +
m2

r2

(
|ξr|2 + |ξz|2

)]}
.

(17.55)

As ξz and ξ∗z only appear algebraically in (17.55) (no r derivatives), it is easy to
minimise δW2 with respect to them: setting the derivative of the integrand with respect
to either ξz or ξ∗z to zero, we get

− ik
(
r
∂

∂r

ξr
r

+ ikξz

)
+
m2

r2
ξz = 0 ⇒ ξz =

ikr3

m2 + k2r2

∂

∂r

ξr
r
. (17.56)

Putting this back into (17.55) and assembling terms, we get

δW2 =
∑
m,k

πLz

∫ ∞
0

dr r

{
2p0

(
rp′0
p0

+
m2

β

)
|ξr|2

r2

+
B2

0

4π

[(
1− k2r2

m2 + k2r2

)2

+
m2k2r2

(m2 + k2r2)2

]
︸ ︷︷ ︸

=
m2

m2 + k2r2

∣∣∣∣r ∂

∂r

ξr
r

∣∣∣∣2
}
. (17.57)

The second term here is always stabilising. The most unstable modes will be ones with
k → ∞, for which the stabilising term is as small as possible. The remaining term will
allow δW2 < 0 and, therefore, an instability, if

−r d ln p0

dr
>
m2

β
. (17.58)

Again, the equilibrium is unstable if the pressure gradient is too steep. The most unstable
modes are ones with the smallest m, viz., m = 1.

Note that another way of writing the instability condition (17.58) is

− rp′0 =
B2

0

4π
+
rB0B

′
0

4π
> m2B

2
0

8π
⇒ r

d lnB0

dr
>
m2

2
− 1 , (17.59)

where we have used the equilibrium equation (17.38).

What does this instability look like? The unstable perturbations are incompressible:

∇ · ξ = 0 ⇒ 1

r

∂

∂r
rξr +

im

r
ξθ + ikξz = 0. (17.60)
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Figure 81. Kink instability.

Setting m = 1 and using (17.56), we find

iξθ = − ∂

∂r
rξr +

k2r4

m2 + k2r2︸ ︷︷ ︸
≈ r2

as k →∞

∂

∂r

ξr
r
≈ −2ξr and ξz � ξr. (17.61)

The basic cartoon (Fig. 81) is as follows: the flux surfaces are bent, with a twist (to
remain uncompressed). The bending pushes the magnetic loops closer together and thus
increases magnetic pressure in concave parts and, conversely, decreases it in the convex
ones. Plasma is pushed from the areas of higher B to those with lower B, thermal pressure
in the latter (convex) areas becomes uncompensated, the field lines open up further, etc.
This is called the kink instability.

Similar methodology can be used to show that, unlike the z pinch, the θ pinch (§16.1.1, Fig. 74)
is always stable: see Q-11.

17.5. Further Reading on MHD Instabilities

There are very many of these, easily a whole course’s worth. They are an interesting topic.
A founding text is the old, classic, super-meticulous monograph by Chandrasekhar (2003). In
the context of toroidal (fusion) plasmas, you want to learn the so-called ballooning theory, a
tour de force of theoretical plasma physics, which, like the relaxation theory, is associated with
J. B. Taylor’s name—so his lectures, Taylor & Newton 2015, are a good starting point (the
original paper on the subject is Connor et al. 1979). In the unlikely event that you have an
appetite for more energy-principle calculations in the style of §17.4, the book by Freidberg (2014)
will teach you more than you ever wanted to know. In astrophysics, MHD instabilities have been
a hot topic since the early 1990s, not least due the realisation by Balbus & Hawley (1991) that
the magnetorotational instability (MRI) is responsible for triggering turbulence and, therefore,
maintaining momentum transport in accretion flows—the Oxford lecture notes by Balbus (2015)
are an excellent place to start learning about this subject (this is also an opportunity to learn
how to handle equilibria that are not static,e.g., most interestingly, featuring rotating and shear
flows). Another excellent set of lecture notes on astrophysical fluid dynamics is Ogilvie (2016),
this one originating from Cambridge Part III.

As with everything in physics, the frontier in this subject is nonlinear phenomena. One very
attractive theoretical topic has been the theory of explosive instabilities and erupting flux tubes
by Steve Cowley and his co-workers: the founding (quite pedagogically written) paper was
Cowley & Artun (1997), a key more recent one is Cowley et al. (2015); follow the paper trail
from there for various refinements and applications (from space to tokamaks).
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18. Magnetic Reconnection

Most of our discussion revolved around properties of ideal MHD equations. It is, in
fact, quite essential to study resistive effects, even when resistivity is very small, because
many ideal solutions have a natural tendency to develop ever smaller spatial gradients,
which can only be regularised by resistivity (we touched on this, e.g., in §16.2.2). The key
linear result here is the tearing mode, a resistive instability associated with the propensity
of magnetic-field lines to reconnect—change their topology in such a way as to release
some of their energy. This will be discussed in §18.1.

But here again the frontier is nonlinear: the theory of magnetic reconnection. Tearing
modes, in their nonlinear stage, tend to lead to formation of current sheets (which is, in
fact, a general tendency of X-point solutions in MHD: see Q-5), and how reconnection
happens after that has been a subject of frenetic research since mid-20th century.
Magnetic reconnection is believed to be a key player in a host of plasma phenomena,
from solar flares to the so-called “sawtooth crash” in tokamaks, to MHD turbulence.
Kulsrud (2005, §14) has a good introduction to the history and the basics of the subject,
coming from a live witness and key contributor. There has been much going on in it in
the last two decades, many of the advances occurring on the collisionless reconnection
front requiring kinetic theory (some key names to search for in the extensive recent
literature are W. Daughton, J. Drake, J. Egedal), but even within MHD, the discovery
of the plasmoid instability (amounting to the realisation that current sheets are tearing
unstable; see Loureiro et al. 2007) has led to a new theory of resistive MHD reconnection
(Uzdensky et al. 2010), a development that I (obviously) find important. I will go through
all that in §§18.2 and 18.3.

Even more recently, magnetic reconnection became intimately intertwined with the
theory of MHD turbulence (§15.4)—you will find an account of this in my (hopefully
pedagogical) review, Schekochihin (2022). Its Appendix D also contains a “reconnection
primer” covering tearing modes, current sheets and related topics in the most straight-
forward non-rigorous way that I could manage.

18.1. Tearing Mode

Coming soon. . . For now, see http://www-thphys.physics.ox.ac.uk/people/

AlexanderSchekochihin/notes/PartIIIMHD/LecturesL05/sec16_TearingMode.pdf,
Schekochihin (2022, Appendix D.1), Boldyrev & Loureiro (2018), Parra (2019a), or
Kunz (2020). Other good places to read about tearing are Taylor & Newton (2015), the
original paper by Furth et al. (1963), or standard textbooks (e.g., Sturrock 1994, §17).

18.2. Sweet–Parker Reconnection

See Schekochihin (2022, Appendix D.4.1).

Exercise 18.1. Plasmoid instability. See Schekochihin (2022, Appendix D.4.2) and Loureiro
et al. (2007).

18.3. Fast MHD Reconnection

See Schekochihin (2022, Appendix D.6) and Uzdensky et al. (2010).

http://www-thphys.physics.ox.ac.uk/people/AlexanderSchekochihin/notes/PartIIIMHD/LecturesL05/sec16_TearingMode.pdf
http://www-thphys.physics.ox.ac.uk/people/AlexanderSchekochihin/notes/PartIIIMHD/LecturesL05/sec16_TearingMode.pdf
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Magnetohydrodynamics Problem Set

1. Clebsch Coordinates. As ∇·B = 0, it is always possible to find two scalar functions
α(r) and β(r) such that

B = ∇α×∇β. (18.1)

(a) Argue that any magnetic field line can be described by the equations

α = const, β = const. (18.2)

This means that (α, β, `), where ` is the distance (arc length) along the field line, are a
good set of curvilinear coordinates, known as the Clebsch coordinates.

(b) Show that the magnetic flux through any area S in the (x, y) plane is

Φ =

∫
S̃

dα dβ, (18.3)

where S̃ is the area S in new coordinates after transforming (x, y)→ (α(x, y, 0), β(x, y, 0)).

(c) Show that if (18.1) holds at time t = 0 and α and β are evolved in time according to

dα

dt
= 0,

dβ

dt
= 0, (18.4)

where d/dt is the convective derivative, then (18.1) correctly describes the magnetic field
at all t > 0.

(d) Argue from the above that magnetic flux is frozen into the flow and magnetic field
lines move with the flow.

(e∗) Show that the field that minimises the magnetic energy within some domain
subject to the constraint that the values of α and β are fixed at the boundary of this
domain (i.e., that the “footpoints” of the field lines are fixed) is a force-free field.129

A prototypical example of the kind of fields that arise from the variational principle in (e) is
the “arcade” fields describing magnetic loops sticking out of the Sun’s surface, with footpoints
anchored at the surface. One such field will be considered in Q-9(f) and more can be found in
Sturrock (1994, §13).

2. Uniform Collapse. A simple model of star formation envisions a sphere of galactic
plasma with number density ngal = 1 cm−3 undergoing a gravitational collapse to a
spherical star with number density nstar = 1026 cm−3. The magnetic field in the galactic
plasma is Bgal ∼ 3 × 10−6 G. Assuming that flux is frozen, estimate the magnetic field
in a star. Find out if this is a good estimate. If not, how, in your view, could we account
for the discrepancy?

3. Flux Concentration. Consider a simple 2D model of incompressible convective
motion (Fig. 82):

u = U
(
− sin

πx

L
cos

πz

L
, 0, cos

πx

L
sin

πz

L

)
. (18.5)

(a) In the neighbourhood of the stagnation point (0, 0, 0), linearise the flow, assume
vertical magnetic field, B = (0, 0, B(t, x)) and derive an evolution equation for B(t, x),

129This is based on the 2017 exam question.
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Figure 82. Convective cells from Q-3.

including both advection by the flow and Ohmic diffusion. Suppose the field is initially
uniform, B(t = 0, x) = B0 = const. It should be clear to you from your equation that
magnetic field is being swept towards x = 0. What is the time scale of this sweeping?
Given the magnetic Reynolds number Rm = UL/η � 1, show that flux conservation
holds on this time scale.

(b) Find the steady-state solution of your equation. Assume B(x) = B(−x) and use
flux conservation to determine the constants of integration (in terms of B0 and Rm).
What is the width of the region around x = 0 where the flux is concentrated? What is
the magnitude of the field there?

(c∗) Obtain the time-dependent solution of your equation for B and confirm that it
indeed converges to your steady-state solution. Find the time scale on which this happens.

Hint. The following changes of variables may prove useful: ξ =
√
πRmx/L, τ = πUt/L,

X = ξeτ , s = (e2τ − 1)/2.

(d) Can you think of a quick heuristic argument based on the induction equation that
would tell you that all these answers were to be expected?

4. Zeldovich (1956) Antidynamo Theorem. Consider an arbitrary 2D velocity field:
u = (ux, uy, 0). Assume incompressibility. Show that, in a finite system (i.e., in a system
that can be enclosed within some volume outside which there are no fields or flows), this
velocity field cannot be a dynamo, i.e., any initial magnetic field will always eventually
decay.

Hint. Consider separately the evolution equations for Bz and for the magnetic field in
the (x, y)-plane. Show that Bz decays by working out the time evolution of the volume
integral of B2

z . Then write Bx, By in terms of one scalar function (which must be possible
because ∂Bx/∂x+ ∂By/∂y = 0) and show that it decays as well.

Q-5 is optional.

5. X-Point Collapse. Consider the following initial magnetic-field configuration:

B0(r0) = B0ẑ + ẑ ×∇0Ψ(x0, y0), (18.6)

where r0 = (x0, y0, z0), B0 = const, and

Ψ(x0, y0) =
x2

0 − y2
0

2
. (18.7)
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(a) X-point at t = 0. (b) Collapsing sheet at t > 0.

Figure 83. X-point collapse.

This is called an X-point (Fig. 83a).

(a) Use the Lagrangin MHD equation (13.87), where r = (x, y, z), and seek a solution
in the form

x = ξ(t)x0, y = η(t)y0, z = z0. (18.8)

Show that ξ and η satisfy the following equations

ξ̈ = η

(
1

η2
− 1

ξ2

)
, η̈ = ξ

(
1

ξ2
− 1

η2

)
. (18.9)

(b) Consider the possibility that, as time goes on, η(t) becomes ever smaller, η → 0,
while ξ(t) tends to a constant, ξ → ξc. Show that the solution that has this property is

ξ(t) ≈ ξc +
9

4

(
2

9ξc

)1/3

(tc − t)4/3, η(t) ≈
(

9ξc
2

)1/3

(tc − t)2/3 (18.10)

as t→ tc, where tc is some finite time. This is called the Syrovatskǐi (1971) solution.

(c) Calculate the magnetic field as a function of time and convince yourself that the
Syrovatskii solution describes the initial X-point configuration collapsing explosively to
a sheet along the x axis. What happens after t reaches tc?

(d) Do a similar calculation, but for incompressible Lagrangian MHD, i.e., assuming
J = 1 = const (which is now the equation that determines the total pressure; cf. §15.2.5).
Show that the solution in this case is

ξ(t) = Λ(t), η(t) =
1

Λ(t)
, (18.11)

where Λ(t) is an arbitrary function of time. Take Λ(t) = eλt and show that this solution
corresponds to an exponentially collapsing X-point. This is called the Chapman &
Kendall (1963) solution. Can this evolution continue forever?

(e) Show that the fluid flow associated with a collapsing solution consists of an inflow
(into the “sheet”) and an outflow (from the “sheet”). Going back to the general solution
(18.11), assume that the outflow velocity ux at a given fixed Lagrangian position xout

is equal to some known constant uout (i.e., as the “sheet” collapses and gets longer, the
outflow from its ends is always the same). Find ξ(t) and η(t) in this case. This solution
is due to Uzdensky & Loureiro (2016) (read their paper to find out what the use of it is).

6. MHD Waves in a Stratified Atmosphere. The generalisation of iMHD to the case
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of a stratified atmosphere is explained in §15.2.8. Convince yourself that you understand
how the SMHD equations and the SMHD ordering arise and then study them as follows.

(a) Work out all SMHD waves (both their frequencies and the corresponding eigenvec-
tors). It is convenient to choose the coordinate system in such a way that k = (kx, 0, kz),
where z is the vertical direction (the direction of gravity). The mean magnetic field
B0 = B0b0 is assumed to be straight and uniform, at a general angle to z. We continue
referring to the projection of the wave number onto the magnetic-field direction as
k‖ = k · b0 = kxb0x + kzb0z. Note that in the case of B0 = 0, you are dealing with
stratified hydrodynamics, not MHD—the waves that you obtain in this case are the well
known gravity waves, or “g-modes”.

(b) Explain the physical nature of the perturbations (what makes the fluid oscillate)
in the special cases (i) kz = 0 and b0 = ẑ, (ii) kz = 0 and b0 = x̂, (iii) kx = 0, (iv)
kz 6= 0, kx 6= 0 and b0 = ẑ.

(c) Under what conditions are the perturbations you have found unstable? What is the
physical mechanism for the instability? What role does the magnetic field play (stabilising
or destabilising) and why? Cross-check your answers with §17.3 and Q-10.

(d) Find the conserved energy (a quadratic quantity whose integral over space stays
constant) for the full nonlinear SMHD equations (15.97–15.100). Give a physical inter-
pretation of the quantity that you have obtained—why should it be conserved?

Do either Q-7 or Q-8.

7. Electron MHD. In certain physical regimes (roughly realised, for example, in the
solar-wind and other kinds of astrophysical turbulence at scales smaller than the ion
Larmor radius; see Schekochihin et al. 2009 or Boldyrev et al. 2013), plasma turbulence
can be described by an approximation in which the magnetic field is frozen into the
electron flow ue, while ions are considered motionless, ui = 0. In this approximation,
Ohm’s law becomes130

E = −ue ×B
c

. (18.12)

Here ue can be expressed directly in terms of B because the current density in a plasma
consisting of motionless hydrogen ions (ni = ne) and moving electrons is

j = ene(ui − ue) = −eneue, (18.13)

but, on the other hand, j is known via Ampère’s law. Here ne is the electron number
density and e the electron charge.

(a) Using this and Faraday’s law, show that the evolution equation for the magnetic
field in this approximation is

∂B

∂t
= −di∇× [(∇×B)×B] , (18.14)

where the magnetic field has been rescaled to Alfvénic velocity units, B/
√

4πmini →
B, and di = c/ωpi is the ion inertial scale (“ion skin depth”), ωpi =

√
4πe2ni/mi.

130Strictly speaking, the generalised Ohm’s law in this approximation also contains an
electron-pressure gradient (see, e.g., Goedbloed & Poedts 2004), but that vanishes upon
substitution of E into Faraday’s law.
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Equation (18.14) is the equation of Electron MHD (EMHD), completely self-consistent
for B.

(b) Show that magnetic energy is conserved by (18.14). Is magnetic helicity conserved?
Does J. B. Taylor relaxation work and what kind of field will be featured in the relaxed
state? Is it obvious that this field is a good steady-state solution of (18.14)?

(c) Consider infinitesimal perturbations of a straight-field equilibrium, B = B0ẑ+ δB,
and show that they are helical waves with the dispersion relation

ω = ±k‖vAkdi . (18.15)

These are called Kinetic Alfvén Waves (KAW).

(d) Now consider finite perturbations and argue that the appropriate ordering in which
linear and nonlinear physics can coexist while perturbations remain small is

|δb| ∼ δB

B
∼
k‖

k
� 1. (18.16)

Under this ordering, show that the magnetic field can be represented as

δB

B0
=

1

vA
ẑ ×∇⊥Ψ + ẑ

δB

B
(18.17)

and the evolution equations for Ψ and δB/B0 are

∂Ψ

∂t
= v2

Adib ·∇
δB

B0
,

∂

∂t

δB

B0
= −dib ·∇∇2

⊥Ψ , (18.18)

where b ·∇ is given by (15.115). These are the equations of Reduced Electron MHD.

(e) Check that the conservation of magnetic energy and the KAW dispersion relation
(18.15) are recovered from (18.18). Is there any other conservation law?

8. Hydrodynamics of Rotating Fluid.131 Most of this question is not on MHD, but
deals with equations describing a somewhat analogous system: also embedded into an
external field and supporting anisotropic wave-like perturbations. It is an incompressible
fluid rotating at angular velocity Ω = Ωẑ, where ẑ is the unit vector in the direction of
the z axis. The velocity field u in such a fluid satisfies the following equation

∂u

∂t
+ u ·∇u = −∇p+ 2u×Ω, (18.19)

where pressure p is found from the incompressibility condition ∇ · u = 0, the last term
on the right-hand side is the Coriolis force, the centrifugal force has been absorbed into
p, and viscosity has been ignored.

(a) Consider infinitesimal perturbations of a static (u0 = 0), homogeneous equilibrium
of (18.19). Show that the system supports waves with the dispersion relation

ω = ±2Ω
k‖

k
. (18.20)

These are called inertial waves. Here k = (k⊥, 0, k‖) (without loss of generality); the
subscripts refer to directions perpendicular and parallel to the axis of rotation.

131This is based on the 2018 exam question.
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(b) In the case k‖ � k⊥, determine the direction of propagation of the inertial
waves. Determine also the relationship between the components of the velocity vector u
associated with the wave. Comment on the polarisation of the wave.

(c) When rotation is strong, i.e., when Ω � ku, perturbations in a rotating system
are anisotropic with ε = k‖/k⊥ � 1. Order the linear and nonlinear time scales to be
similar to each other and work out the ordering of all relevant quantities, namely, u⊥
(horizontal velocity), u‖ (vertical velocity), δp (perturbed pressure), ω, Ω, k‖, k⊥ with
respect to each other and to ε. Using this ordering, show that the motions of a rotating
fluid satisfy the following reduced equations

∂

∂t
∇2
⊥Φ+

{
Φ,∇2

⊥Φ
}

= 2Ω
∂u‖

∂z
,

∂u‖

∂t
+
{
Φ, u‖

}
= −2Ω

∂Φ

∂z
, (18.21)

where the “Poisson bracket” is defined by (15.114) and Φ is the stream function of the

perpendicular velocity, i.e., to the lowest order in ε, u
(0)
⊥ = ẑ×∇⊥Φ. Note that, in order

to obtain the above equations, you will need to work out ∇⊥ ·u⊥ to both the lowest and

next order in ε, i.e., both ∇⊥ · u(0)
⊥ and ∇⊥ · u(1)

⊥ .

(d) Show that any purely horizontal flows in a strongly rotating fluid must be exactly
two-dimensional (i.e., constant along the axis of rotation).

(e) For a strongly rotating, incompressible, highly electrically conducting fluid em-
bedded in a strong uniform magnetic field B0 parallel to the axis of rotation, discuss
qualitatively under what conditions you would expect anisotropic (k‖ � k⊥) Alfvénic
and slow-wave-like (pseudo-Alfvénic) perturbations to be decoupled from each other?

There are certain interesting similarities between MHD turbulence and turbulence in rotating
fluid systems described by (18.21) and, indeed, also turbulence in stratified environments that
we dealt with in §15.2.8 and Q-6. If you would like to know more, see Nazarenko & Schekochihin
(2011) and follow the paper trail from there.

9. Grad–Shafranov Equation. Consider static MHD equilibria (16.1) in cylindrical
coordinates (r, θ, z) and assume axisymmetry, ∂/∂θ = 0.

(a) Using the solenoidality of the magnetic field, show that any axisymmetric such field
can be expressed in the form

B = I∇θ + ∇ψ ×∇θ, (18.22)

where I and ψ are functions of r and z and ∇θ = θ̂/r (θ̂ is the unit basis vector in the
θ direction). Show that magnetic surfaces are surfaces of ψ = const.

(b) Using the force balance, show that ∇I ×∇ψ = 0 and ∇p ×∇ψ = 0 and hence
argue that

I = I(ψ) and p = p(ψ) (18.23)

are functions of ψ only (i.e., they are constant on magnetic surfaces).

(c) Again from the force balance, show that ψ(r, z) satisfies the Grad–Shafranov
equation

−
(
∂2ψ

∂r2
− 1

r

∂ψ

∂r
+
∂2ψ

∂z2

)
= 4πr2 dp

dψ
+ I

dI

dψ
. (18.24)

This defines the shape of an axisymmetric equilibrium, given the profiles p(ψ) and I(ψ).
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Figure 84. A simple equilibrium from Q-9, superficially resembling the poloidal cross-section
of a tokamak.

(d) Show that in cylindrical symmetry (∂/∂θ = 0, ∂/∂z = 0), (18.24) reduces to (16.8).

(e∗) Assume I(ψ) = const (so the azimuthal field Bθ = I/r is similar to the magnetic
field from a central current) and p(ψ) = aψ, where a is some constant. Find a solution
of (18.24) that gives rise to magnetic surfaces that resemble nested tori, but with “D-
shaped” cross section (Fig. 84; this looks a bit like the modern tokamaks). If you stipulate
that p must vanish at r = 0 and at r = R along the z = 0 axis and also at z = ±L
along the r = 0 axis and that the maximum pressure at r < R is p0, show that the
corresponding magnetic surfaces are described by

ψ = 2

√
2πp0

1 +R2/4L2
r2

(
1− r2

R2
− z2

L2

)
. (18.25)

Where is the (azimuthal) magnetic axis of these surfaces? What is the value of a?

(f) Seek solutions to (18.24) that are linear force-free fields. Show that in this case,
(18.24) reduces to the Bessel equation (a substitution ψ = rf(r, z) will prove useful). Set
Bz(0, 0) = B0. Find solutions of two kinds: (i) ones in a semi-infinite domain z > 0, with
the field vanishing exponentially at z → ∞; (ii) ones periodic in z. If you also impose
the boundary condition Br = 0 at r = R, how can this be achieved? Can either of these
solutions be the result of J. B. Taylor relaxation of an MHD system? If so, how would one
decide whether it is more or less likely to be the correct relaxed state than the solution
derived in §16.4?

You will find the solution of the type (i) in Sturrock (1994, §13) (who also shows how to construct
many other force-free fields, useful in various physical and astrophysical contexts). Think of this
solution in the context of Q-1(e). The solution of type (ii) is a particular case of the general
(∂/∂θ 6= 0) equilibrium solution derived and discussed in Taylor & Newton (2015, §9). However,
the axisymmteric solution is not very useful because, as they show, depending on the values of
helicity and of R, the true relaxed state is either the cylidrically and axially symmetric solution
derived in §16.4 or one which also has variation in the θ direction.

10. Magnetised Interchange Instability. Consider the same set up as in §17.3, but
now the stratified atmosphere is threaded by straight horizontal magnetic field (Fig. 85):

ρ0 = ρ0(z), p0 = p0(z), B0 = B0(z)x̂,
d

dz

(
p0 +

B2
0

8π

)
= −ρ0g. (18.26)
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Figure 85. Magnetised atmosphere.

We shall be concerned with the stability of this equilibrium.

(a) For simplicity, assume ∂ξ/∂x = 0. This rules out any perturbations of the magnetic-
field direction, δb = 0, so there will be no field-line bending, no restoring curvature
forces. For this restricted set of perturbations, work out δW2 and observe that, like in
the unmagnetised case considered in §17.3, it depends only on ∇ · ξ and ξz. Minimise
δW2 with respect to ∇ · ξ and show that

d

dz
ln
p0

ργ0
+

2

β

d

dz
ln
B0

ρ0
< 0 (18.27)

is a sufficient condition for instability (the magnetised interchange instability). Would
you be justified in expecting stability if the condition (18.27) were not satisfied?

(b) Explain how this instability operates and rederive the condition for instability by
considering interchanging blobs (or, rather, flux tubes), in the spirit of §17.3.3.

If field-line bending is allowed (∂ξ/∂x 6= 0), another instability emerges, the Parker (1966)
instability. Do investigate. Another thing to investigate is what happens when magnetised
atmospheres are metastable: it turns out that they are nonlinearly unstable and have a tendency
to rearrange themselves in rather whimsical ways—a very beautiful theory of this is Hosking
& Cowley (2024), where, curiously, some ideas from the statistical mechanics of collisionless
plasmas (§10) come methodologically handy.

11. Stability of the θ Pinch. Consider the following cylindrically and axially symmet-
ric equilibrium:

B0 = B0(r)ẑ, j0 = j0(r)θ̂ = − c

4π
B′0(r)θ̂,

d

dr

(
p0 +

B2
0

8π

)
= 0 (18.28)

(a θ pinch; see §16.1.1, Fig. 74). Consider general displacements of the form

ξ = ξmk(r)eimθ+ikz. (18.29)

Show that the θ pinch is always stable. Specifically, you should be able to show that

δW2 = πLz

∫ ∞
0

dr r

{
γp0|∇ · ξ|2 +

B2
0

4π

[
k2
(
|ξr|2 + |ξθ|2

)
+

∣∣∣∣ξrr +
∂ξr
∂r

+
imξθ
r

∣∣∣∣2
]}

> 0,

(18.30)
where Lz is the length of the cylinder.

IUCUNDI (iterum) ACTI LABORES.
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PART IV

Kinetic Theory of Plasmas in a Strong Magnetic Field

19. Kinetic MHD

In Part I of these Lectures, where kinetic theory was introduced, my starting point
was the Vlasov–Landau equation (1.30), coupled to Maxwell’s equations (1.23–1.26) for
E and B in terms of charge densities and currents. I then quickly set B = 0 and spent
all of my time investigating a collisionless plasma in the electrostatic approximation, de-
scribed by the Vlasov–Poisson system (1.50–1.51). On a (seemingly) completely separate
track, in Part III, I looked at the fluid dynamics of a conducting medium threaded by
magnetic fields—while I often called this medium “plasma”, I refused to engage with
its microscopic structure and instead derived evolution equations for its mass density,
velocity and pressure from the basic requirements imposed by conservation laws (§§13.1,
13.2, and 13.10).

Kinetic descriptions are often harder to wrap one’s mind around than fluid ones and so
we like imagining plasmas as fluids, characterised by density, velocity, and also pressure,
temperature or some generalisations thereof. Even in the very kinetic lectures on such
things as longitudinal plasma waves (§3), to inject some physical intuition, I occasionally
appealed to fluid-dynamical descriptions: the “Langmuir hydrodynamics” (Exercise 3.1,
then §8.1.1) and the “hydrodynamics of sound waves” (Exercise 3.6, then §8.1.2). Such
descriptions reduce the dimensionality of the phase space from 6 to 3 and thus make
things “simpler”, expressing everything in terms of “intuitive” quantities—but why are
these quantities intuitive?

Well, they are, of course, densities of conserved integrals (total number of particles,
momentum, energy), but our predilection for limiting ourselves to them unless we
absolutely must do otherwise (like in the case of Landau damping: see §5.4) is rooted in
the fact that gases that we are used to (e.g., Earth’s atmosphere) are very collisional.
In application to the Vlasov–Landau equation (1.30), this would mean that the collision
term in the right-hand side of the equation were dominant, i.e., the typical collision rate
for each species α were large compared to the typical frequencies associated with particle
motions, waves, etc.:

να � ω, kvthα. (19.1)

Then, to lowest order in the large-να expansion (e.g., Helander & Sigmar 2005; Parra
2019a; Kunz 2021),(

∂fα
∂t

)
c

= 0 ⇒ fα(t, r,v) =
nα(t, r)[

πv2
thα(t, r)

]3/2 exp

[
−|v − uα(t, r)|2

v2
thα(t, r)

]
, (19.2)

i.e., the distribution function of species α is a local Maxwellian with, for each species,
some particle-number density nα, flow velocity uα, and temperature Tα = mαv

2
thα/2, all

functions of time (slow compared to να) and space.132 The dirty secret of the “ideal”
MHD description is that, to get closed equations, I did, in fact, need collisions to be
dominant—you can try to spot now where that happened in §13 (exercise); I will point
this out in what follows.

In this part of the Lectures, I shall be interested in a physical regime where collisions

132It is convenient to let different species have different flow velocities and temperatures because
these often equalise at a lesser rate than each species’ distribution converges to a Maxwellian:
see texts cited above (19.2), or any other textbook on plasma physics.
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are not so dominant, viz.,

να ∼ ω, kvthα, or even να � ω, kvthα, (19.3)

but I will make a concerted effort to preserve as much of the fluid approach as possible.
Indeed, we shall see that, in the presence of a strong magnetic field (“strong” in a sense
shortly to be quantified), one can preserve quite a lot of it—thus making an explicit, and
aesthetically pleasing as well as physically intuitive, link between kinetics and MHD.

19.1. Peculiar Kinetics

I would like to start with a preliminary technical step that will facilitate formulating
plasma kinetics explicitly as a generalisation of the fluid theory. Let us change variables
in the Vlasov–Landau equation (1.30) as follows:

(t, r,v)→ (t, r,w), w = v − uα(t, r), (19.4)

where w is called the “peculiar velocity” and, by definition,

uα(t, r) =
1

nα(t, r)

∫
dv vfα(t, r,v), (19.5)

nα(t, r) =

∫
dv fα(t, r,v), (19.6)

whatever fα might be (not, generally, a Maxwellian). Thus, the mean flow of species α
(“fluid”, or “ordered”, motion) is explicitly separated from the particle’s “disordered”
motion. Under (19.4),(

∂

∂t

)
v

=

(
∂

∂t

)
w

+

(
∂w

∂t

)
v

· ∂
∂w

=

(
∂

∂t

)
w

− ∂uα
∂t
· ∂
∂w

, (19.7)

(∇)v = (∇)w + (∇w)v ·
∂

∂w
= (∇)w − (∇uα)v ·

∂

∂w
, (19.8)

∂

∂v
=

∂

∂w
(19.9)

(the subscripts tell you what is held constant while taking derivatives). The kinetic
equation in these new variables is, therefore,

∂fα
∂t

+ (uα +w) ·∇fα +

{
qα
mα

[
E +

(uα +w)×B
c

]
− ∂uα

∂t
− (uα +w) ·∇uα

}
· ∂fα
∂w

=

(
∂fα
∂t

)
c

. (19.10)

Let us introduce compact notation for a convective derivative with respect to the mean
flow of species α,

d

dtα
≡
(
∂

∂t

)
w

+ uα · (∇)w, (19.11)

and group terms in (19.10) nicely:

dfα
dtα

+w ·∇fα+

[
qα
mα

w ×B
c
−w ·∇uα+

qα
mα

(
E +

uα ×B
c

)
− duα

dtα︸ ︷︷ ︸
≡ aα

acceleration
independent of w

]
· ∂fα
∂w

=

(
∂fα
∂t

)
c

.

(19.12)
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The terms in the square bracket involving uα are the non-inertial forces that the particle
experiences in a frame moving with the mean flow of the species α.

19.2. Momentum Equations

The definition (19.5) of the mean flow velocity now becomes a constraint on the new
distribution function‘fα(t, r,w): ∫

dwwfα = 0. (19.13)

Taking the first w moment of (19.12),
∫

dwmαw(19.12), and using (19.13) gives us
an evolution equation for uα—this is exactly equivalent to taking the first v moment
of (1.30):

d

dtα

∫
dwmαwfα︸ ︷︷ ︸

= 0

+ ∇ ·
∫

dwmαwwfα︸ ︷︷ ︸
≡ Pα

pressure
tensor

+

∫
dwmαw

(
qα
mα

w ×B
c

−w ·∇uα + aα

)
· ∂fα
∂w︸ ︷︷ ︸

integrate by parts, use (19.13),
get −mαnαaα

=

∫
dwmαw

(
∂fα
∂t

)
c︸ ︷︷ ︸

≡ Rα

friction force

. (19.14)

Thus, we have a force balance:

∇ · Pα −mαnαaα = Rα. (19.15)

Substituting for aα from (19.12), we get the momentum equation for species α:

mαnα
duα
dtα

= −∇ · Pα + qαnα

(
E +

uα ×B
c

)
+Rα . (19.16)

To summarise, our new kinetic equation is (19.12), and it depends on the fields E, B
and uα, which are calculated from fα and each other via Maxwell’s equations (1.23–1.26)
and the momentum equation (19.16). We are on the brink of being able to work with
MHD variables. Recall that what we cared about in §13 was the flow of mass:

ρ =
∑
α

mαnα, u =
1

ρ

∑
α

mαnαuα. (19.17)

Let us see how the mass density and the mass-flow velocity evolve with time.

19.3. Continuity Equations

Taking the
∫

dw (zeroth) moment of (19.12), we get

dnα
dtα

+

∫
dw

(
qα
mα

w ×B
c

−w ·∇uα
)
· ∂fα
∂w

= 0, (19.18)
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where all other terms vanish by (19.13) and by the conservation of particles by collisions.
After integration by parts, so does the middle term in (19.18), and we are left with

dnα
dtα

+ nα∇ · uα = 0. (19.19)

Equivalently, and more conventionally,

∂nα
∂t

+ ∇ · (nαuα) = 0, (19.20)

the continuity equation for species α, whence, after summation over species,∑
αmα(19.20), we get the mass-continuity equation

∂ρ

∂t
+ ∇ · (ρu) = 0 , (19.21)

the same as in MHD (13.2).

19.4. Mass Flow

Now let us sum the momentum equation (19.16) over species:

∑
α

mαnα
duα
dtα

= −∇ · P + σE +
j ×B
c

, (19.22)

where P =
∑

Pα is the total pressure tensor,

σ ≡
∑
α

qαnα =
∇ ·E

4π
(19.23)

by Gauss’s law (13.9), and

j ≡
∑
α

qαnαuα =
c

4π

(
∇×B − 1

c

∂E

∂t

)
(19.24)

by Ampère’s law (13.12). The terms involving E will be negligible, but we shall need a
good estimate of the size of the electric field to prove this in what follows (§19.5).
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There is some tedious work to be done on the left-hand side of (19.22):∑
α

mαnα
duα
dtα

=
∑
α

d

dtα
mαnαuα︸ ︷︷ ︸

use (19.17)

−
∑
α

mαuα
dnα
dtα︸ ︷︷ ︸

use (19.19)

=
∂

∂t
ρu+

∑
α

[uα ·∇mαnαuα +mαnαuα∇ · uα]︸ ︷︷ ︸
= ∇ ·

∑
αmαnαuαuα

and let uα = u+ u′α, where u′α is the
drift velocity of species α with respect to

the mass flow

= ρ
∂u

∂t
+ u

∂ρ

∂t︸ ︷︷ ︸
use

(19.21)

+∇ ·
[
ρuu+

∑
α

mαnα
(
��
�u′αu +��

�uu′α + u′αu
′
α

)
︸ ︷︷ ︸

vanishings due to zero net drift:∑
αmαnαu

′
α = 0

]

= ρ

(
∂u

∂t
+ u ·∇u

)
︸ ︷︷ ︸

≡ du/dt

+∇ ·
∑
α

mαnαu
′
αu
′
α. (19.25)

Assembling this with (19.22), we arrive at the following evolution equation for the mean
mass flow:

ρ
du

dt
= −∇ ·

(
P +

∑
α

mαnαu
′
αu
′
α

)
+ σE +

j ×B
c

. (19.26)

19.5. Ideal Ohm’s Law

To get the promised estimate for the size of E, let us return to (19.16) and rearrange
it so:

E = −uα ×B
c

+
�
�
��Z
Z
ZZ

∇ · Pα
qαnα

−
�
�
�@
@
@

Rα

qαnα
+
�
�
�
�Z

Z
Z
Z

mα

qα

duα
dtα

. (19.27)

All the crossed-out terms are small, as follows. The last term compared to the first is∣∣∣∣mα

qα

duα
dtα

∣∣∣∣∣∣∣∣uα ×Bc
∣∣∣∣ ∼

cmαω��uα
qα��uαB

∼ ω

Ωα
� 1, (19.28)

where Ωα = qαB/cmα is the Larmor frequency of the particles of species α. We assume
that the characteristic frequencies of the dynamics are always slow compared to the
particles’ Larmor motion:

kuα ∼ ω � Ωα. (19.29)

This is the sense in which the magnetic field shall be required to be “strong”. Note that
this has nothing to do with either the value of plasma beta (15.24) or with whether the
magnetic field is dynamically strong enough to affect the mean (fluid) motion [cf. (13.45)].

Moving on to the friction term in (19.27) and using the fact that the friction (drag)
force on species α by other species is (e.g., Helander & Sigmar 2005; Parra 2019a; Kunz
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2021)

Rα = −mαnα
∑
α′

ναα′ (uα − uα′) , (19.30)

where ναα′ is the interspecies collision rate, we can estimate∣∣∣∣ Rα

qαnα

∣∣∣∣∣∣∣∣uα ×Bc
∣∣∣∣ ∼

cmα��nα ναα′��uα
qα��nα��uαB

∼ ναα′

Ωα
� 1. (19.31)

Thus, collisions too are to be assumed slower than the Larmor motion. In kinetic theory,
such a plasma is sometimes called magnetised or weakly collisional; if, at the same time,
ναα′ � ω, kvthα, it is called dilute (by Balbus 2004; I shall come back to this limit
in §21.3).

Finally, let us deal with the pressure term in (19.27):∣∣∣∣∇ · Pαqαnα

∣∣∣∣∣∣∣∣uα ×Bc
∣∣∣∣ ∼

ckmα��nα v
2
thα

qα��nαuαB
∼ kv2

thα

uαΩα
∼ kv2

thi

uiΩi︸ ︷︷ ︸
assuming
Ti ∼ Te

∼ kρi
Ma
� 1, (19.32)

where Ma ∼ ui/vthi is the Mach number (cf. §15.2) and ρi = vthi/Ωi is the ion Larmor
radius (not to be confused with the ion mass density, which will always be called mini).
To enable the neglect of the pressure term, we may assume

kρi � Ma ∼ 1. (19.33)

The restriction that kρi � 1 follows from (19.29) provided Ma ∼ 1 (so kvthi ∼ kui ∼
ω � Ωi).

What, however, if we want Ma � 1, as we will, in §20.5? Typically, in such an approximation,
the pressure tensor will split into a slower- and faster-varying parts, Pα = P0α + δPα, where
δPα ∼ MaP0α. Then ∇ · Pα ∼ ∇ · δPα ∼ kMaP0α, so Ma in (19.32) cancels and kρi � 1 is
all that is needed. In this case, kρi � 1 is an additional constraint, not equivalent to ω � Ωi.
Keeping the latter but allowing kρi ∼ 1 leads to a more sophisticated approximation, called
gyrokinetics (§23). I will return to the possibility of subsonic flows (specifically, Ma ∼ kρi � 1)
in §§19.11 and 20.5.

Thus, to reiterate, we have assumed the ordering

ναα′ ∼ ω ∼ kuα ∼ kvthi � Ωα , (19.34)

and deduced, to lowest order in this approximation, that

E = −uα ×B
c

, (19.35)

an equation sometimes referred to as the “ideal Ohm’s law”. It gives us two things.
First, it implies immediately that the part of the mean flow velocity locally perpen-

dicular to the magnetic field is

u⊥α = c
E ×B
B2

= u⊥, (19.36)

idependent of species, i.e., perpendicularly to B, all species move in concert at the E×B
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drift velocity. This is the sense in which the magnetic field “fluidises” even a collisionless
plasma.

Secondly, we can use (19.35) to estimate the size of E in (19.24) and (19.26):∣∣∣∣1c ∂E∂t
∣∣∣∣

|∇×B| ∼
ωuα��B

c2k��B
∼ u2

α

c2
� 1, (19.37)

|σE|∣∣∣∣j ×Bc
∣∣∣∣ ∼
�kE

2

�kB2
∼ u2

α

c2
� 1. (19.38)

These are, of course, exactly the same estimates as I made in §13.3 based on the MHD
Ohm’s law (13.13). In the absence of resistivity (i.e., in neglect of collisions), that is the
same as (19.35), if use (19.36) to rewrite it as

E +
u×B
c

= 0 . (19.39)

To get ηj in the right-hand side, write (19.27) for electrons, α = e, and keep the friction forceRe.
A systematic derivation can be found, e.g., in the texts cited above (19.30).

19.6. Almost MHD

An immediate consequence of (19.36) is that all species drifts with respect to the mean
mass flow can only be parallel to B:

u′α = u′‖αb. (19.40)

With this additional information, and with the neglect of the electric field allowed by
(19.37) and (19.38), the momentum equation (19.26) becomes

ρ
du

dt
= −∇ ·

(
P +

∑
α

mαnαu
′2
‖αbb+

B2

8π
I− BB

4π

)
, (19.41)

where the Lorentz force has been expressed as the divergence of the Maxwell stress
according to (13.20). Another immediate consequence of (19.39) is a closed equation for
B in terms of u: from Faraday’s law (13.11),

∂B

∂t
= −c∇E = ∇× (u×B) ⇒ dB

dt
= B ·∇u−B∇ · u , (19.42)

the familiar (ideal) MHD induction equation (§13.5).
Together with the mass-continuity equation (19.21), (19.41) and (19.42) look exactly

like the first three ideal MHD equations (13.57–13.59), but with the scalar pressure
replaced by the pressure tensor plus the additional stress associated with the species
drifts. In a strongly collisional environment, the lowest-order approximation of (19.16) in
the large-να expansion is Rα = 0, so, by (19.30), there are no species drifts. In the same
expansion, the pressure tensor is isotropic, P = pI, and thus MHD is recovered. This,
however, requires the collision rate to be larger than all other frequencies, in particular,
the Larmor frequency, breaking the assumption (19.34). Let us see what can be deduced
about P without breaking this assumption.
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19.7. Gyrotropic Plasma

Let us go back to our kinetic equation (19.12) and make the following observation
about one of its terms:

qα
mα

w ×B
c

· ∂fα
∂w

= −Ωα
(
∂fα
∂ϑ

)
w⊥,w‖

, (19.43)

where Ωα = qαB/cmα is again the Larmor frequency and I have made a change of
variables in the velocity space:

w = w⊥ cosϑ x̂+ w⊥ sinϑ ŷ + w‖ ẑ, (19.44)

with the triplet of orts (x̂, ŷ, ẑ) chosen in such a way that ẑ is aligned with the local
direction of the magnetic field, ẑ = b. Then(

∂

∂ϑ

)
w⊥,w‖

= −w⊥ sinϑ
∂

wx
+ w⊥ cosϑ

∂

wy
, (19.45)

w × b = w⊥ sinϑ x̂− w⊥ cosϑ ŷ, (19.46)

and (19.43) follows. We can, therefore, rewrite (19.12) so:

Ωα

(
∂fα
∂ϑ

)
w⊥,w‖

=
dfα
dtα

+w ·∇fα + (aα −w ·∇uα) · ∂fα
∂w
−
(
∂fα
∂t

)
c

. (19.47)

It is not hard to see that, if one assumes the ordering (19.34), all terms on the right-hand
side of (19.47) are small compared to its left-hand side—the Larmor motion dominates.
Therefore, to lowest order in the large-Ωα expansion,

Ωα

(
∂fα
∂ϑ

)
w⊥,w‖

= 0 ⇒ fα = fα(t, r, w⊥, w‖) , (19.48)

i.e., the distribution function does not depend on the gyroangle. Such a plasma is
called gyrotropic. The evolution equation for fα can be found by averaging (19.47) over
ϑ and using (19.48): 〈rhs of (19.47)〉ϑ = 0.

I shall do this calculation in §19.9, but first, in pursuit of instant gratification, let me
explore the immediate consequence of gyrotropy for the structure of the pressure tensor:

Pα =

∫
dwmαwwfα(t, r, w⊥, w‖) = mα

∫
dw⊥w⊥

∫
dw‖fα(t, r, w⊥, w‖)

∫
dϑww.

(19.49)
The gyroangle integral is easy:∫

dϑww = 2π〈ww〉ϑ = 2π

[
w2
⊥
2

(I− bb) + w2
‖bb

]
. (19.50)

Therefore, the pressure tensor is diagonal,

Pα = p⊥α (I− bb) + p‖αbb , (19.51)

with the perpendicular and parallel pressures defined as

p⊥α =

∫
dw

mαw
2
⊥

2
fα, p‖α =

∫
dwmαw

2
‖fα. (19.52)
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This gives us the final form of the momentum equation (19.41):

ρ
du

dt
= −∇

(
p⊥ +

B2

8π

)
+ ∇ ·

[
bb

(
p⊥ − p′‖ +

B2

4π

)]
, (19.53)

where the combined pressures are

p⊥ =
∑
α

p⊥α, p‖ =
∑
α

p‖α, p′‖ = p‖ +
∑
α

mαnαu
′2
‖α. (19.54)

Thus, the difference between MHD and “kinetic MHD” boils down to p⊥ − p′‖ 6= 0

and to the need to calculate p⊥ and p′‖ kinetically. Manifestly, this pressure difference
matters only if

|p⊥ − p′‖| &
B2

4π
⇔

|p⊥ − p′‖|
p‖

&
B2

4πp‖
≡ 2

β‖
, (19.55)

i.e., not in low-beta plasmas (of which more later—their physics is different; see §22).
Plasmas where both (19.55) and (19.34) are satisfied are usually in space (although, with
ever more powerful lasers, it might be possible to get them in the lab: see Meinecke et al.
2022).

Exercise 19.1. Pressure tensor with gyroviscosity. Here you have an opportunity to hone
your tensor-algebra and gyroaveraging skills, which is boring but useful—and, as a reward, you
will get an expression for the pressure tensor that includes some non-gyrotropic corrections
(which will later prove to play an interesting physical role: see Exercises 19.3 and 19.4).

(a) Convince yourself that the following identity holds exactly:

ww =
w2
⊥
2

(I− bb) + w2
‖bb+

∂T

∂ϑ
, (19.56)

where, in, respectively, vector and index notation,

T =
(
w‖b+

w⊥
4

)
(w⊥ × b) + (w⊥ × b)

(
w‖b+

w⊥
4

)
, (19.57)

Tij =
1

4
Mijklwkwl, where Mijkl = (δik + 3bibk)εjlnbn + εilnbn(δjk + 3bjbk). (19.58)

Show therefore that the pressure tensor is, exactly,

Pij = p⊥δij − (p⊥ − p‖)bjbj −
1

4
Mijkl

∫
dwwkwl

∂f

∂ϑ︸ ︷︷ ︸
≡ Gij

, (19.59)

suppressing the species index α here and in everything that follows. Use the kinetic equa-
tion (19.47) to show that, again exactly,∫

dwwkwl
∂f

∂ϑ
=

1

Ω

[
dPkl
dt

+∇mqmkl + (δmnPkl + δknPml + δlnPml)∇mun − Ckl
]
, (19.60)

where qmkl = m
∫

dwwmwkwlf is the heat-flux tensor and Ckl = m
∫

dwwkwl(∂f/∂t)c.

(b) To obtain the next-order correction to the gyrotropic pressure tensor (19.51), one simply
needs to calculate the last term in (19.59) via (19.60) assuming f to be gyrotropic (which it is
to lowest order) in the right-hand side of the latter equation. Then gyroaveraging can be carried
out in all velocity integrals similarly to how it was done in (19.49). Do this and show that

G =
1

Ω

[
b× S · (I + 3bb)− (I + 3bb) · S× b

4
+ b (σ × b) + (σ × b) b

]
, (19.61)
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with the auxiliary notation

S = [p⊥∇u+ ∇(q⊥b)] + [p⊥∇u+ ∇(q⊥b)]
T , (19.62)

σ =
(
p⊥ − p‖

)(db

dt
+ b ·∇u

)
+
(
3q⊥ − q‖

)
b ·∇b, (19.63)

where q⊥ = m
∫

dww‖(w
2
⊥/2)f and q‖ = m

∫
dww3

‖f are the parallel fluxes of the perpendicular
and parallel heat, respectively. If you find this calculation difficult, some intermediate steps are
shown in Appendix A of Schekochihin et al. (2010).

The tensor (19.61) is called the gyroviscosity tensor. With p⊥ = p‖ and no heat fluxes, it
first appeared in the paper by Braginskii (1965), who assumed sonic flows, u ∼ vthi, a regime in
which the heat fluxes worked out to be smaller. They got upgraded to compete with subsonic
flows by Mikhailovskii & Tsypin (1971).

Exercise 19.2. Next-order corrections to Ohm’s law. (a) Use the electron momentum
equation to determine the next-order (in kρi) corrections to the evolution of the magnetic
field. Namely, in (19.27) with α = e, retain the electron-pressure term, using the lowest-order
(gyrotropic) approximation for it (what do you have to assume to do that while being allowed
to drop the other terms?). Assume further that there are only two species in a plasma, electrons
and a single species of ions, whose flow dominates the mass flow u. Hence work out ue in terms
of u and the current density j, which you can express in terms of B via Ampère’s law. Show
therefore that the magnetic field evolves according to

∂B

∂t
= ∇×

{
u×B +

c

ene
∇ ·

[(
p⊥e +

B2

8π

)
I− bb

(
p⊥e − p‖e +

B2

8π

)]}
. (19.64)

The extra magnetic terms in this equation are known as the “Hall term” (and give rise to the
Electron MHD approximation considered in Q-7 of the MHD Problem Set). In the absence of
pressure anisotropy, pressure and density gradients, do they upset the conservation of magnetic
flux?

(b) Show that (19.64) can be written in the form

∂B

∂t
= ∇× (ueff ×B)−

c∇ne ×∇p‖e
en2

e

+

(
c∇

p⊥e − p‖e
ene

)
× ∇B

B
, (19.65)

where ueff is some effective velocity, which you must work out. Argue that the magnetic flux is
frozen provided the last two terms on the right-hand side can be neglected. The first of these is
known as the Biermann (1950) battery, a popular (in astrophysical and laser-plasma literature)
mechanism for making magnetic fields from scratch, with no seed.

19.8. Firehose Instability

I will discuss the ways in which a pressure anistropy might arise later one, after we
learn how to calculate p⊥ and p′‖, but first I want to take a break from deriving equations
and extract some fun physics from what we have got. If you have done Exercise 15.9, you
have a pretty good idea of what is about happen.

Let us take our new momentum equation (19.53), together with the induction equa-
tion (19.42), linearise them, and see what can be learned. The linearisation will be around
a putative equilibrium with

ρ = ρ0 = const, p⊥ = p⊥0 = const, p′‖ = p′‖0 = const, B = B0ẑ = const, (19.66)

and no flows [cf. (15.1)].
The linearised induction equation (19.42) is, as in MHD [cf. (15.5)],

− ωδB = B0

(
k‖u− ẑk · u

)
, (19.67)
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turning, for δB⊥/B0 = δb and δB‖ = δB, into

−ωδb = k‖u⊥, (19.68)

−ω δB
B0

= −k⊥ · u⊥. (19.69)

The linearised momentum equation (19.53) is, noting that k · δb = −k‖δB/B0,

−ωρ0u = −k
(
δp⊥ +

B0δB

4π

)
+ k ·

[
(ẑ δb+ δb ẑ)

(
p⊥0 − p′‖0 +

B2
0

4π

)
+ ẑẑ

(
δp⊥ − δp′‖ +

B0δB

2π

)]
= −k⊥

(
δp⊥ +

B0δB

4π

)
− ẑk‖

[
��δp⊥ +

�
�
�B0δB

4π
+
δB

B0

(
p⊥0 − p′‖0 +

�
��B
2
0

4π

)
−��δp⊥ + δp′‖ −�

�
�B0δB

2π

]
︸ ︷︷ ︸

= δp′‖ +
(
p⊥0 − p′‖0

) δB
B0

+ δb k‖

(
p⊥0 − p′‖0 +

B2
0

4π

)
. (19.70)

Obviously, we cannot complete the job because we need the kinetic equation to calculate
δp⊥ and δp′‖, but we can extract a piece that is entirely independent of any kinetic

perturbations: let us take the perpendicular part of (19.70),

− ωρ0u⊥ = −k⊥
(
δp⊥ +

B0δB

4π

)
+ δb k‖

(
p⊥0 − p′‖0 +

B2
0

4π

)
, (19.71)

and cross it with k⊥, noting that, from (19.68), δb = −k‖u⊥/ω:

− ωρ0 k⊥ × u⊥ = k‖

(
p⊥0 − p′‖0 +

B2
0

4π

)(
−
k‖

ω
k⊥ × u⊥

)
. (19.72)

You guessed it right, these are Alfvén waves (cf. §15.1.1), with the dispersion relation

ω2 = k2
‖

(
p⊥0 − p′‖0

ρ0
+ v2

A

)
, (19.73)

where, as in (15.10), vA = B0/
√

4πρ0. Like in MHD, these waves do not care about (do
not involve) compressive perturbations—and, therefore, they do not care about kinetics,
just about the equilibrium stress. Obvioulsy, to get the rest of the linear modes, we shall
need kinetics.

But look at the terrifying thing that is manifest in (19.73): if

p⊥0 − p′‖0
ρ0

+ v2
A < 0 ⇔

p′‖0 − p⊥0

p‖0
>

B2
0

4πp‖0
≡ 2

β‖
, (19.74)

the Alfvén wave ceases to be a wave and becomes an instability—this is called the
firehose instability (discovered in the days of yore by the giants of old: Rosenbluth 1956;
Chandrasekhar et al. 1958; Parker 1958; Vedenov & Sagdeev 1958). Its physics is clear
enough. Pressure anisotropy provides an additional stress, which weakens the restoring



Oxford MMathPhys Lectures: Plasma Kinetics and MHD 273

Figure 86. Firehose instability: magnetic flux tube buckling in a pressure-anisotropic
environment (p‖ > p⊥).

magnetic-tension force and, when large enough, turns the restoring force negative, so
field lines lose elasticity and develop a tendency to buckle (Fig. 86).

A truly bad implication of (19.73) is that the instability’s growth rate

γ = k‖

√
p′‖0 − p⊥

ρ0
− v2

A ∝ k‖, (19.75)

so the fastest-growing modes are at k‖ → ∞, i.e., outside our approximation kρi � 1.
Thus, the equations that we are deriving are ill-posed in physical regimes where they
can develop large enough (negative) pressure anisotropy to satisfy (19.74). Keep this in
mind. We shall see later on (§21.1) that positive pressure anisotropy, p⊥0 > p′‖0, is also
bad.

Exercise 19.3. Peak growth rate of the firehose instability. Using the results of Exer-
cises 19.1 and 19.2 (no need to have derived them to do this exercise), and assuming, as in §19.8,
a homogeneous equilibrium with a non-zero negative (p⊥ < p‖) pressure anisotropy and no heat
fluxes (q⊥ = q‖ = 0), and also a single ion species, show that the dispersion relation for the
growing firehose perturbations with k⊥ = 0 is

ω

Ωi
= ±

(k‖ρi)
2

4
(1− δ) +

i|k‖ρi|√
2
|Λ|1/2

√
1−

k2
‖

k2
0

, k0ρi =
2
√

2

|1− δ| |Λ|
1/2 , (19.76)

where ρi = vthi/Ωi, vthi =
√

2p‖i/mini,

Λ =
p⊥i − p‖i + p⊥e − p‖e

p‖i
+

2

β‖i
< 0, β‖i =

8πp‖i
B2

, δ =
p⊥i − p‖i − (p⊥e − p‖e)

p‖i
− 2

β‖i
,

(19.77)
and I have suppressed 0’s in the subscripts of the equilibrium quantities. Find the peak growth
rate and the wave number at which it is reached.

Note that in the above calculation, you should drop the electron gyroviscosity tensor Ge
because Ωe � Ωi. Besides this, what do you need to assume in order for your calculation, based
on including the gyroviscosity tensor perturbatively, to be valid?

Exercise 19.4. Gyrothermal instability. Generalise the result of Exercise 19.3 to an equi-
librium with non-zero ion heat fluxes and study again the stability of k⊥ = 0 perturbations.
You should find that an instability exists provided(

2q⊥i − q‖i
p‖ivthi

)2

>
(1− δ)2

2
Λ . (19.78)

Study what happens very far from, and very close to, marginal stability. Note that even when
there is no pressure anisotropy, there is an instability, driven purely by the ion heat fluxes—it
is called the gyrothermal instability (GTI) (Schekochihin et al. 2010; Rosin et al. 2011).
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You must be wondering what happens in nature: these instabilities grow, then what? How do
they saturate? There is some research literature on this subject, which is sufficiently fresh that,
instead of distilling it into a textbook-style exposition, I would rather invite you to read it. Here
is a short, super-biased selection, whence you are free, however, to follow the paper trail into
both the past and the future:

• Kunz et al. (2014) and Melville et al. (2016, and references therein)—how the firehose satu-
rates. Basically, firehose fluctuations scatter particles and thus make the plasma effectively more
collisional, pinning its pressure anisotropy to the instability threshold (19.74) (the instability
also has another way of saturating, not involving particle scattering: see Rosin et al. 2011, where
a very long and very systematic kinetic calculation is done for a very simplified case—an exercise
of mostly pedagogical use).
• Squire et al. (2017, and references therein)—what happens if you try to propagate a finite-

amplitude Alfvén wave through a high-beta plasma, but it gets interrupted by the loss of tension
due to pressure anisotropy that it itself develops.
• Bott et al. (2021)—MHD turbulence in a firehose-infested plasma.

The interaction of large-scale MHD dynamics at high beta with a sea of firehose fluctuations
usually triggered by it at small scales is an active research topic—do jump in!

19.9. Gyroaveraged Kinetic Equation

Going back to deriving equations, let me do I promised to do after (19.48): gyroaverage
the kinetic equation (19.47) and thus derive the evolution equation for fα valid to lowest
order in the KMHD expansion (19.34).

I shall process the right-hand side of (19.47) term by term. The first term:〈(
dfα
dtα

)
w

〉
ϑ

=

(
dfα
dtα

)
w⊥,w‖

+
��

���
��

〈(
dw⊥
dtα

)
w

〉
ϑ

∂fα
∂w⊥

+

��
�
��

��〈(
dw‖

dtα

)
w

〉
ϑ

∂fα
∂w‖

, (19.79)

where the last two terms vanish by the following property. Since w⊥ =
√
w2 − w2

‖
and w‖ = w · b, any time or space derivatives of these taken at constant w and then
gyroveraged are 〈(

∂w‖
)
w

〉
ϑ

= 〈(∂b) ·w〉ϑ = w‖(∂b) · b = 0, (19.80)

〈(∂w⊥)w〉ϑ = −
w‖

w⊥

〈(
∂w‖

)
w

〉
ϑ

= 0. (19.81)

Using the same kind of calculation in the second term of (19.47), we get〈
w · (∇fα)w

〉
ϑ

= w‖
(
∇‖fα

)
w⊥,w‖

+
〈
w · (∇w⊥)w

〉
ϑ

∂fα
∂w⊥

+
〈
w ·
(
∇w‖

)
w

〉
ϑ

∂fα
∂w‖︸ ︷︷ ︸

=
〈
w · (∇b) ·w

〉
ϑ

(
−
w‖
w⊥

∂fα
∂w⊥

+
∂fα
∂w‖

)
= w‖∇‖fα +

∇‖B
B

w⊥
2

(
w‖

∂fα
∂w⊥

− w⊥
∂fα
∂w‖

)
, (19.82)

where the gyroveraged expression was calculated using (19.50):

〈ww〉ϑ : ∇b =
w2
⊥
2

∇ · b+

(
w2
‖ −

w2
⊥
2

)
bb : ∇b︸ ︷︷ ︸

= 0

= −w
2
⊥
2

∇‖B
B

. (19.83)
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The third term in (19.47):〈
aα ·

∂fα
∂w

〉
ϑ

= aα ·

(〈
∂w⊥
∂w

〉
ϑ︸ ︷︷ ︸

=

〈
w − w‖b
w⊥

〉
ϑ

= 0

∂fα
∂w⊥

+

〈
∂w‖

∂w

〉
ϑ︸ ︷︷ ︸

= b

∂fα
∂w‖

)
= aα · b

∂fα
∂w‖

=

(
qα
mα

E‖ −
duα
dtα
· b
)
∂fα
∂w‖

. (19.84)

And finally the fourth term, where we again need (19.50):

−
〈
w · (∇uα) · ∂fα

∂w

〉
ϑ

= −
〈
w · (∇uα) ·

(
w − w‖b
w⊥

∂fα
∂w⊥

+ b
∂fα
∂w‖

)〉
ϑ

= −〈ww〉ϑ : (∇uα)
1

w⊥

∂fα
∂w⊥

+ bb : (∇uα)w‖

(
w‖

w⊥

∂fα
∂w⊥

− ∂fα
∂w‖

)
= (bb : ∇uα −∇ · uα)︸ ︷︷ ︸

=
1

B

dB

dtα

w⊥
2

∂fα
∂w⊥

− w‖
(
∇‖uα

)
· b ∂fα

∂w‖
. (19.85)

Assembling (19.79), (19.82), (19.84), and (19.85), we get the desired gyroaveraged kinetic
equation:

Dfα
Dtα

+
1

B

DB

Dtα

w⊥
2

∂fα
∂w⊥

+

(
qα
mα

E‖ −
Duα
Dtα

· b− w2
⊥
2

∇‖B
B

)
∂fα
∂w‖

=

(
∂fα
∂t

)
c

,

(19.86)
where the derivative along the (gyroaveraged) particle trajectory has been introduced:

D

Dtα
=

d

dtα
+ w‖∇‖ =

∂

∂t
+
(
uα + w‖b

)
·∇. (19.87)

It will be a refrain of these Lectures that things often become simpler, or more
analytically convenient, or more physically revealing when the variables descrobing the
phase space of gyrating and drifting particles are changed. It is, in my view, the right
attitude that there is no intrinsically “right” set of variables, just opportunistic choices.
In the next two subsections, I will explore some of the rearrangements of the kinetic
equation (19.86) assiciated with choices.

19.9.1. Hiding Species Drifts

The only place where the species drifts (19.40) appear is

D

Dtα
=

∂

∂t
+ u ·∇ +

(
u′‖α + w‖

)︸ ︷︷ ︸
≡ w′‖

∇‖ =
d

dt
+ w′‖∇‖ ≡

D

Dt
, (19.88)

where we have shoved the drifts back into the parallel velocity variable, so

v‖ = u‖α + w‖ = u‖ + w′‖. (19.89)

Making this transformation of variables in (19.86) turns all the appearances of uα into u:

Dfα
Dt

+
1

B

DB

Dt

w⊥
2

∂fα
∂w⊥

+

(
qα
mα

E‖ −
Du

Dt
· b− w2

⊥
2

∇‖B
B

)
∂fα
∂w′‖

=

(
∂fα
∂t

)
c

. (19.90)



276 A. A. Schekochihin

In this formulation, the drifts, if we want them, are moments of fα:133

u′‖α =
1

nα

∫
dww′‖fα. (19.91)

In fact, we do not want them all that much because the only place where we really need
them for our MHD-like equations is as part of the expression for p′‖α [see (19.54)], but
that too is readily computed as a moment of fα in our new parallel velocity variable:

p′‖α =

∫
dwmαw

2
‖fα︸ ︷︷ ︸

= p‖α

+mαnαu
′2
‖α =

∫
dwmαw

′2
‖ fα. (19.92)

All this is really just about which part of the particle motion is interpreted as
“internal”—peculiar velocity with respect to the mean flow uα of each species or to
the mean mass flow u.

Sometimes (e.g., in the original derivation of KMHD by Kulsrud 1964) the parallel
velocity variable v‖ is left entirely alone, with no separation into mean and peculiar
motion. Then, straightforwardly,

Dfα
Dt

+
1

B

DB

Dt

w⊥
2

∂fα
∂w⊥

+

(
qα
mα

E‖ −
Du⊥
Dt

· b− w2
⊥
2

∇‖B
B

)
∂fα
∂v‖

=

(
∂fα
∂t

)
c

. (19.93)

While this is slightly awkward because it makes u‖ determined from the mass-flow
evolution equation (19.53) redundant (as u‖ can now also be determined directly from fα),
this form of kinetic equation presents certain technical advantages for some of the
calculations that follow (in §§20 and 21.1).

Exercise 19.5. Derive Kulsrud’s KMHD kinetic equation (19.93).

19.9.2. Magnetic Moment

Another transformation of variables that I would like to discuss is far more interesting
(and consequential) physically. Let

(t, r, w⊥, w
′
‖)→ (t, r, µ, w′‖), µ =

w2
⊥

2B
, (19.94)

where µ is the “first adiabatic invariant”, a.k.a., the “magnetic moment”, of the particle
motion. Physically, it is the angular momentum of a gyrating particle: if r is the (velocity-
dependent) radius of gyration and w⊥ its speed, then

mw⊥r =
mw2
⊥

Ω
=
m2cw2

⊥
qB

∝ µ. (19.95)

This is conserved by the gyromotion, as we shall prove directly in §20.3, but are
about to see now from the form that the gyroaveraged kinetic equation takes in the
variables (19.94).

133If we do not make this change of variables, the drifts have to be determined from the projection
of (19.16) onto b.
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Under the transformation (19.94),(
Dfα
Dt

)
w⊥

=

(
Dfα
Dt

)
µ

+

(
Dµ

Dt

)
w⊥

∂fα
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⊥
2B2

DB
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∂fα
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, (19.96)

∂fα
∂w⊥

=
∂µ

∂w⊥

∂fα
∂µ

=
w⊥
B

∂fα
∂µ

. (19.97)

If this is substituted into (19.90), the first two terms in the kinetic equation reveal
themselves as always having wanted to have a cancellation and turn into the time
derivative along the particle trajectory at constant µ. That is a manifestation of the
conservation of µ by the particle motion—µ is then a kinetic variables with respect to
which there are no derivatives in the kinetic equation, it enters as a parameter. The
resulting form of the gyroaveraged kinetic equation is the simplest of all:

Dfα
Dt

+

(
qα
mα

E‖ −
Du

Dt
· b− µ∇‖B

)
∂fα
∂w′‖

=

(
∂fα
∂t

)
c

. (19.98)

This tells us simply that gyrating particles stream, conserve µ, and are subject to
three parallel forces: the parallel electric field, the parallel part of the non-inertial force
associated with the frame moving at the flow velocity, and the “mirror force” −µ∇‖B,
which is an effective parallel force felt by the little circular current that is the particle’s
Larmor orbit.

19.10. Kinetic MHD Equations Completed: Calculating E‖

So we are almost done with the derivation of a closed system of equations. From the
gyroverages kinetic equation (19.98), we can calculate

ρ =
∑
α

mα

∫
dw fα, p⊥ =

∑
α

mα

∫
dw µBfα, p′‖ =

∑
α

mα

∫
dww′2‖ fα, (19.99)

where, if we use the variables (19.94),∫
dw = 2π

∫
dw⊥w⊥

∫
w′‖ = 2πB

∫∫
dµdw′‖. (19.100)

This makes the continuity equation (19.21) redundant, and ρ, p⊥ and p′‖ go directly

into the momentum equation (19.53), which also needs B—it gets it from the induction
equation (19.42). Then the resulting u, alongside B and b, get reinserted into the kinetic
equation (19.98). The system is closed except we still need E‖. Let us figure out how to
get it.

Note first that the ideal Ohm’s law (19.39) only gave us a non-zero E⊥, which,
evidently, was much larger than E‖. Well, the only equation from the original Vlasov–
Maxwell set that we have not yet properly used is Gauss’s law (19.23). The part of
containing ∇ ·E is small: in the same spirit as we did the estimates in §19.5, we have

|∇ ·E|
4πene

∼ kuB

4πenec
∼ kuΩe

ω2
pe

∼ kλDe
u

vthe

Ωe
ωpe
∼ kλDeMai

√
me

mi

Ωe
ωpe
� 1. (19.101)

This is very safely small in a number of small parameters. Physically, quasineutrality is
violated only at ω ∼ ωpe, but we will always stay well clear of that: ω � Ωe � ωpe.
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Thus, we are left with ∑
α

qαnα =
∑
α

qα

∫
dw fα = 0 , (19.102)

the quasineutrality constraint—from which E‖ is determined implicitly, by the require-
ment that whatever fα comes out of (19.98) must unfailingly satisfy (19.102). This
completes the “hybrid” fluid-kinetic system known as Kinetic MHD (KMHD).

Exercise 19.6. Energy budget in KMHD.134 The total energy of a plasma is (cf. §13.10)

E =

∫
dr

[∑
α

(
mαnαu

2
α

2
+

3

2
pα

)
+
B2

8π

]
. (19.103)

(a) Starting from the KMHD equations (§19.10), prove that the total energy is conserved, viz.,

dE

dt
= 0, (19.104)

assuming no energy flows through any boundaries of the system. Use any set of kinetic variables
that you consider convenient for this purpose. If you find that handling the general case with
species drifts is challenging (it is certainly somewhat tedious), assume that there are no species
drifts. Cross-referencing your derivation with its MHD counterpart in §13.10 will help you see
(some of) what is new in the KMHD description.

(b) Define the temperature of species α to be Tα = pα/nα. Show that its evolution equation can
be written in the following form:

3

2
nα

dTα
dtα

= p‖α
1

nα

dnα
dtα
−∇ ·

(
qαb
)

+
(
p⊥α − p‖α

) 1

B

dB

dtα
, (19.105)

where qα is the heat flux and you may ignore any heating or cooling arising from collisions
with particles of other species. What is the physical meaning of each of the three terms on the
right-hand side of (19.105)?

Exercise 19.7. Reduced KMHD. The next step after deriving MHD equations in §13 was
to consider what happens if a strong straight magnetic field is imposed externally. In §15.3, this
led to Reduced MHD via the asumptions of small perturbations and strong anisotropy along the
imposed field (k‖ � k⊥). Work out how to derive a similar approximation for KMHD, leading
to Reduced KMHD (or Kinetic RMHD). You may assume f = f0 + δf , where the equilibrium
distribution is homogeneous in space and, in general, anisotropic: f0 = f0(w⊥, w‖). This is a
good independent-study project, but if you want this study to be closely guided, refer to Kunz
et al. (2015). A somewhat less demanding version of this calculation that you might want to try
first is one where you assume f0 to be a Maxwellian (so no equilibrium pressure anisotropy)—
you will find the outcome in Schekochihin et al. (2009), although arrived at by a different route,
via gyrokinetics (§23).

19.11. High-Flow vs. Low-Flow Drift Kinetics

Let me rewrite the gyroveraged kinetic equation (19.98) in Kulsrud’s original formu-
lation (19.93), i.e., using v‖ instead of w′‖, but still retaining µ as the perpendicular

velocity variable. By the same straightforward step as with (19.93), this simply involves
shifting the parallel flow u‖ back into the kinetic velocity variable and replacing u with
u⊥ everywhere: our kinetic particles now live in a perpendicularly drifting “fluid” frame.
As we saw in (19.36), this drift is just the particles’ E ×B drift, sometimes denoted

vE = c
E ×B
B2

(19.106)

134This is based on (a part of) the 2022 exam question.
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The gyroaveraged kinetic equation in this language,

∂fα
∂t

+ vE ·∇fα + v‖∇‖fα +

(
qα
mα

E‖ −
DvE
Dt

· b− µ∇‖B
)
∂fα
∂v‖

=

(
∂fα
∂t

)
c

,

(19.107)
is often called the drift-kinetic equation (DKE), stressing that it describes a drifting
kinetic population. Obviously, the E ×B drift is still determined as the perpendicular
part of the mass-flow velocity, vE = u⊥, given by the momentumn equation (19.53).

Recall that, in deriving this equation, we assumed, inter alia, that the mass flows are
sonic in size, i.e., u ∼ vE ∼ vthi, or Ma ∼ 1 [see (19.33)]. In drift kinetics, this is called
the high-flow ordering, and it is this ordering that allows the E×B drift and the parallel
particle streaming to enter on equal grounds in (19.107). It is, however, entirely possible,
and indeed common, for plasma dynamics to be subsonic—indeed I spent quite a bit
of time and energy discussing just such possibilities in MHD, in §§15.2–15.3. In drift
kinetics, this is the low-flow ordering, whereby, specifically, one assumes

Ma ∼ kρi � 1. (19.108)

As I discussed very cursorily after (19.33), this does not break the arguments of §19.5
leading to the ideal Ohm’s law (19.39). However, it certainly simplifies the DKE (19.107)
to a worrying degree: since now vE � vthi,

∂fα
∂t

+ v‖∇‖fα +

(
qα
mα

E‖ − µ∇‖B
)
∂fα
∂v‖

=

(
∂fα
∂t

)
c

. (19.109)

This is worrying because we now have a kinetic equation that contains no perpendicular
motion of the particles—it is essentially 1D kinetics! But we know that zero must never
be taken for an answer in asymptotic theory, and that, therefore, this disappearance of
an important element of physics means that we must go to next order to recapture it.135

In §20, I will explain how to do it, and then do it.

20. Drift Kinetics from Particle Motion
We are ready to start studying the full implications of KMHD (at least in the high-flow

ordering), but this time, I will go for delayed, rather than instant, gratification, and spend some
time rewinding back to basics and discussing how kinetic equations are derived directly from
particle motion. This will serve three purposes:

—solidify the physical interpretation of KMHD in terms of particle motion and µ conservation;
—offer a general scheme for systematic improvement of approximations;
—set us up for the derivation of drift kinetics in the low-flow ordering, the need for which
was signalled in §19.11, and which is an important analytical framework for, especially, fusion
physics.

This section largely follows the lecture notes of Parra (2019b), who based his exposition on
Hazeltine (1973).

20.1. Relationship Between Particle Motion and Kinetic Equations

Let me briefly go back to basics. Suppose we have a collection of particles in a phase space
described by the coordinates Q. Two examples that will be relevant in what follows are Q =

135Alternatively, we might have to infer that the terms that we count as large in our ordering
will in fact turn out to be smaller, and, therefore, must be assumed to be so a priori: e.g., recall,
that in RMHD, k‖/k⊥ ∼ Ma� 1 [see (15.104)]. This will also be assumed in gyrokinetics (§23).
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(r,v) and Q = (r, µ, v‖, ϑ). Suppose the motion of an individual particle is described by

Q̇ = V (Q, t), (20.1)

where V is the generalised phase velocity, e.g., for Q = (r,v),

V (r,v, t) =

(
v,

qα
mα

[
E(r, t) +

v ×B(r, t)

c

])
. (20.2)

Then, by exactly the same argument as, e.g., in §13.1, but applied to phase space, the conser-
vation of particles implies

∂P

∂t
+

∂

∂Q
·
(
V P

)
= 0 , (20.3)

where P (Q, t) is the phase-space density of particles. For Q = (r,v) and P = f , via (20.2), this
gets us the Vlasov equation (1.30).136

Now let us assume that Q 6= (r,v) and so some transformation of variables exists

(r,v)→ Q(r,v, t). (20.4)

The phase-space density in the new variables still satisfies (20.3) but P 6= f . Indeed the derivation
of (20.3) required P to be normalised in such a way that it integrated to the (conserved!) total
number of particles N . Therefore,∫

dQP = N =

∫∫
drdv f =

∫
dQ

∣∣∣∣det
∂(r,v)

∂Q

∣∣∣∣︸ ︷︷ ︸
≡ J

f, (20.5)

where J(Q, t) is the Jacobian of the transformation. Thus, if we stick with the definition of f
in the “original” variables (r,v), then, in any other variables,

P (Q, t) = J(Q, t)f
(
r(Q, t),v(Q, t), t

)
. (20.6)

Colloquially, I often refer to f in the new variables as f(Q, t). For this f , (20.3) implies

∂Jf

∂t
+

∂

∂Q
·
(
Q̇Jf

)
= 0 . (20.7)

By way of example, let us consider Q = (r, µ, v‖, ϑ), the variables in which we ended up
writing the KMHD kinetic equation (19.98), except with w′‖ replaced by v‖ as in (19.93) (this
will turn out to be the most germane set for calculations involving direct consideration of particle
motion). The transformation (20.4) is defined by

µ =
|(v − u) · (I− bb)|2

2B
, v‖ = v ·b, v = u ·(I−bb)+

√
2Bµ (x̂ cosϑ+ ŷ sinϑ)+v‖b. (20.8)

The Jacobian is

J =

∣∣∣∣det
∂(r,v)

∂Q

∣∣∣∣ =

∣∣∣∣det
∂v

∂(µ, v‖, ϑ)

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣
det



√
B

2µ
cosϑ

√
B

2µ
sinϑ 0

0 0 1

−
√

2Bµ sinϑ
√

2Bµ cosϑ 0



∣∣∣∣∣∣∣∣∣∣∣
= B. (20.9)

The kinetic equation (20.7) is, therefore,

∂Bf

∂t
+ ∇ · (ṙBf) +

∂

∂µ
(µ̇Bf) +

∂

∂v‖

(
v̇‖Bf

)
+

∂

∂ϑ

(
ϑ̇Bf

)
= 0. (20.10)

136Without the collision term, obviously. Or, to be precise, if we use the exact E and B, it gets
us the Klimontovich equation, then we separate the macroscopic fields, shove the microscopic
ones into the collision operator, then neglect the latter and get the Vlasov equation (§1.7).
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It turns out this can be rewritten simply as

∂f

∂t
+ ṙ ·∇f + µ̇

∂f

∂µ
+ v̇‖

∂f

∂v‖
+ ϑ̇

∂f

∂ϑ
= 0 . (20.11)

This might seem like a non-obvious step, requiring proof for the particular variable transforma-
tion that I have chosen. In fact, (20.7) always implies

∂f

∂t
+ Q̇ · ∂f

∂Q
= 0 (20.12)

because, by the conservation of phase-space volume,

∂J

∂t
+

∂

∂Q
·
(
Q̇J
)

= 0. (20.13)

Proof. This is perhaps obvious, but here it is explicitly. First observe that phase volume is
conserved in the (r,v) space: for an infinitesimal volume δΓ,

d

dt

∫∫
δΓ

drdv =
d

dt
δxδyδzδvxδvyδvz =

(∫∫
δΓ

drdv

)(
δẋ

δx
+
δẏ

δy
+
δż

δz
+
δv̇x
δvx

+
δv̇y
δvy

+
δv̇z
δvz

)
=

(∫∫
δΓ

drdv

)(
∂

∂r
· ṙ +

∂

∂v
· v̇
)

= 0 (20.14)

(obviously, because it is a Hamiltonian system; cf. §1.6). But this then implies

0 =
d

dt

∫∫
δΓ

drdv =
d

dt

∫
δΓ

dQ J(Q, t) =
d

dt
J(Q, t)

6∏
i=1

δQi

=

[∫
δΓ

dQ J(Q, t)

]( 6∑
i=1

δQ̇i
δQi

+
1

J

dJ

dt

)
=

[∫
δΓ

dQ J(Q, t)

] [
∂

∂Q
· Q̇+

1

J

(
∂J

∂t
+ Q̇ · ∂J

∂Q

)]
.

(20.15)

The expression in the second square bracket must, therefore, be equal to 0. But it is the same
as (20.13), q.e.d.

Thus, any time we want a kinetic equation in some new set of variables, instead of carrying
out variable transformations in the Vlasov equation, we can just work out Q̇ for a single particle
and substitute that into (20.12). This turns out to be a useful method.

Exercise 20.1. Calculate the Jacobian of the transformation (r,v) → (r, µ, ε, ϑ), where ε =
mw2/2, the kinetic energy of the particle’s peculiar motion.

20.2. General Perturbation Theory for Drift-Kinetic Equations

The reason it is useful is that it allows us to construct a systematic perturbation theory for
drift-kinetic equations describing particle motion in a strong magnetic field. The perturbation
theory is in the small parameter kρα, which it is conventional in plasma literature to call ρ∗.
We are already familiar with the lowest-order DKE (19.98), but sometimes one wants or needs
to go to higher orders, typically just one, O(ρ∗). Here is the least painful method for doing this.

Let me name Q = (r, µ, v‖), excluding ϑ. This is my new, reduced phase space, and I am
about to describe how to construct an evolution equation for the distribution function averaged
over ϑ. I must use (20.10) rather than (20.11) because I want to be able to average out the
ϑ derivative:

∂Bf

∂t
+

∂

∂Qi
Q̇iBf +

∂

∂ϑ
ϑ̇Bf = 0 (20.16)

and, after gyroaveraging,

∂B〈f〉
∂t

+
∂

∂Qi
B
〈
Q̇if

〉
= 0. (20.17)
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Let us now separate the gyroveraged parts of all quantities from the ϑ-dependent ones:

f = 〈f〉+ δf, Q̇i = 〈Q̇i〉+ δQ̇i. (20.18)

This gives us, from (20.17),

B

(
∂〈f〉
∂t

+ 〈Q̇i〉
∂〈f〉
∂Qi

)
+ 〈f〉

(
∂B

∂t
+

∂

∂Qi
〈Q̇i〉B

)
︸ ︷︷ ︸

= 0
gyroveraged (20.13)

+
∂

∂Qi
B
〈
δQ̇iδf

〉
= 0. (20.19)

Thus, the evolution equation for the gyroveraged distribution function is

∂〈f〉
∂t

+ 〈Q̇i〉
∂〈f〉
∂Qi

+
1

B

∂

∂Qi
B
〈
δQ̇iδf

〉
= 0 . (20.20)

This is all exact. Now let us do the perturbation theory in ρ∗. We shall work out the equations
for the particle motion later on (§20.3), but it is already obvious (§19.7) that

ϑ̇ = −Ω [1 +O(ρ∗)] . (20.21)

By the same argument as in §19.7, to lowest order in ρ∗, (20.16) then just tells us that f is
independent of ϑ, i.e., f = 〈f〉. Therefore, δf is O(ρ∗) compared to 〈f〉, and so the third term
in (20.20) is O(ρ∗) compared to the first two: to lowest order,

∂〈f〉
∂t

+ 〈Q̇i〉
∂〈f〉
∂Qi

= 0. (20.22)

Thus, the gyroveraged distribution function simply evolves with the gyroveraged particle tra-
jectories.

If we want the next-order correction (and you will see in §20.5 that sometimes we do), we
need δf . Now it is convenient to use (20.11) and substitute (20.21) in it:

∂f

∂t
+ Q̇i

∂f

∂Qi
+ (−Ω + . . . )

∂f

∂ϑ
= 0. (20.23)

Using (20.18) and the fact that (20.22) holds to lowest order, we get

Ω
∂δf

∂ϑ
= δQ̇i

∂〈f〉
∂Qi

. (20.24)

Since δQ̇i all have zero gyroverages, they must be representable as derivatives with respect to ϑ:
say,

δQ̇i = −Ω∂δQi
∂ϑ

, (20.25)

where δQi is defined by this equation.137 Therefore, integrating (20.24) gives us

δf = −δQi
∂〈f〉
∂Qi

. (20.26)

Inserting this into (20.20), we get the first-order approximation to the evolution equation for 〈f〉:
∂〈f〉
∂t

+ 〈Q̇i〉
∂〈f〉
∂Qi

=
1

B

∂

∂Qi
B
〈
δQ̇iδQj

〉∂〈f〉
∂Qj

=
���

���
��〈

δQ̇iδQj
〉 ∂2〈f〉
∂Qi∂Qj

+

(
1

B

∂

∂Qi
B
〈
δQ̇iδQj

〉) ∂〈f〉
∂Qj

. (20.27)

The first of these terms vanishes because, using (20.25), we find that the correlator〈
δQ̇iδQj

〉
= −Ω

〈
∂δQi
∂ϑ

δQj

〉
= Ω

〈
δQi

∂δQj
∂ϑ

〉
= −

〈
δQiδQ̇j

〉
(20.28)

137You can also think of (20.25) as following simply from δQ̇i = ϑ̇(∂δQi/∂ϑ) to lowest order,
via (20.21). Formally, this would require proving that gyroveraging and time differentiation of Qi
commute to lowest order, but we need not bother proving this.



Oxford MMathPhys Lectures: Plasma Kinetics and MHD 283

is antisymmetric with respect to swapping i ↔ j. The second term on the right-hand side
of (20.27) can now be combined with the second term on the left-hand side to give us the
following DKE, valid to two leading orders in ρ∗:

∂〈f〉
∂t

+ Q̇eff
i
∂〈f〉
∂Qi

= 0 , Q̇eff
i = 〈Q̇i〉+

1

B

∂

∂Qj
B
〈
δQjδQ̇i

〉
, (20.29)

where I have rearranged the equation to look like an advection of the gyroveraged distribution
by an effective gyroaveraged phase-space flow.

It should obvious how one would, if one cared enough, derive further, higher-order DKEs.
This is rarely, if ever, necessary.

So this is how far one can get in general. To give (20.29) a specific form, one must work

out the various gyroaverages of the particle motion that enter into Q̇eff
i . I shall do this in what

follows, pointing out interesting physics as I go along.

20.3. Particle Motion in a Strong Magnetic Field

20.3.1. Constant Fields

Let us start with a first-year undergraduate problem: motion of a charged particle in crossed,
constant E and B fields:

v̇ =
q

m

(
E +

v ×B
c

)
. (20.30)

This splits into parallel motion,

v̇‖ =
q

m
E‖ ⇒ v‖(t) = v‖0 +

q

m
E‖t, (20.31)

and perpendicular motion,

v̇⊥ =
q

m

(
E⊥ +

v⊥ ×B
c

)
. (20.32)

The latter equation consists of a homogeneous and inhomogeneous bits, and has a particular
integral

v⊥ = c
E⊥ ×B
B2

≡ vE , (20.33)

the E×B drift velocity—in a frame moving with this velocity, the particle sees no perpendicular
electric field. The full solution of (20.32) is, therefore,

v⊥ = w⊥ + vE , where ẇ⊥ = Ωw⊥ × b, Ω =
qB

mc
. (20.34)

Note that
d

dt
w2
⊥ = 0 ⇒ w⊥ = const. (20.35)

If we let w⊥ = w⊥(x̂ cosϑ+ŷ sinϑ), where everything is constant except ϑ, then (20.34) gives us

ẇ⊥ = w⊥ (−x̂ sinϑ+ ŷ cosϑ) ϑ̇ = Ωw⊥ (x̂ sinϑ− ŷ cosϑ) ⇒ ϑ̇ = −Ω ⇒ ϑ = ϑ0 −Ωt,
(20.36)

the Larmor motion (or gyromotion) of the particle. Assembling all this together, the particle’e
velocity is

v(t) = v‖(t)b+ vE + w⊥ [x̂ cosϑ(t) + ŷ sinϑ(t)] . (20.37)

The particle’s position is the integral of the above:

r(t) = r0 +

(
v‖0t+

qE‖t
2

2m

)
b+ vEt−

w⊥
Ω

[x̂ sinϑ(t)− ŷ cosϑ(t)]︸ ︷︷ ︸
=
w⊥(t)×B

Ω

. (20.38)
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20.3.2. Slowly Varying Fields

The idea now is that if E and B are functions of t and r, particle motion will look similar
to (20.38) as long as the characteristic time and length scales of the fields’ variation are long
compared to the Larmor frequency Ω and radius ρ = w⊥/Ω:

ρ∗ ≡ kρ� 1,
ω

Ω
� 1. (20.39)

Note that if ω ∼ kvth, then ρ∗ ∼ ω/Ω, so the two small parameters are the same [cf. (19.34)].
The other key thing to order is the size of the electric field: from (20.31),

ωvth ∼
q

m
E‖ ⇒ E‖ ∼

mωvth

q
, (20.40)

and from (20.33),

E⊥ ∼
vEB

c
∼ qB

mc

mvE
q
∼ Ω

ω

vE
vth

mωvth

q
∼ Ma

ρ∗
E‖. (20.41)

Thus, E⊥ � E‖ as long as Ma � ρ∗—this is the high-flow ordering (§§19.11 and 20.4); in
contrast, if Ma ∼ ρ∗, then E⊥ ∼ E‖, the low-flow ordering (§§19.11 and 20.5).

With these assumptions about the separation of scales, and with the experience of working
with constant fields (§20.3.1), the motion of the particle in slowly varying fields is begging
to be formally expressed as (20.37), but where now everything depends on t both directly
and via the r(t) dependence of the fields, that dependence being slow (∼ ω) except for ϑ.
Recalling §19.9.2, we know that we will want to express w⊥ = 2Bµ. Formally, this is a time-
dependent transformation of variables

(r,v)→ (r, µ, v‖, ϑ), (20.42)

and we need to calculate ṙ, µ̇, and v̇‖ if we want to write the kinetic equation (20.12) in the
new variables.

Most straightforwardly,

ṙ = v‖b+ vE +w⊥, (20.43)

and, anticipating the need to gyroaverage (§20.2),

〈ṙ〉 = v‖b+ vE . (20.44)

Slightly more work will be needed to calculate v̇‖ and µ̇. In preparation for that, note that,
with no approximations yet, we have, for any field ψ(r, t),

ψ̇ =

(
∂ψ

∂t

)
r,v

+ ṙ ·
(
∂ψ

∂r

)
v,t

=
∂ψ

∂t
+
(
v‖b+ vE︸ ︷︷ ︸
≡ Dψ

Dt

+w⊥) ·∇ψ. (20.45)

Therefore, since v‖ = v · b, we have

v̇‖ = v̇ · b︸︷︷︸
=

q

m
E‖

+

(
Db

Dt
+w⊥ ·∇b

)
·
(
��v‖b + vE +w⊥

)
. (20.46)

Gyroveraging this expression involves calculating

〈w⊥w⊥〉 : ∇b =
w2
⊥
2

(I− bb) : ∇b =
w2
⊥
2

∇ · b = −w
2
⊥

2B
∇‖B = −µ∇‖B. (20.47)

Therefore,

〈v̇‖〉 =
q

m
E‖ −

DvE
Dt

· b− µ∇‖B . (20.48)

These are, as before [cf. §19.9.2 and (19.107)], the parallel electric force, the parallel projection
of the non-inertial force due to the acceleration of the E ×B frame, and the mirror force.
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Turning to the evolution of the magnetic moment, we have

µ̇ =
w⊥ẇ⊥
B

− w2
⊥

2B2︸ ︷︷ ︸
=
µ

B

(
DB

Dt
+w⊥ ·∇B

)
. (20.49)

Since w⊥ = (v − vE) · (I− bb) and w⊥ =
√
w⊥ ·w⊥, we have

ẇ⊥ =
w⊥ · ẇ⊥
w⊥

=
w⊥
w⊥
·
(
v̇ − v̇E − v‖ḃ

)
=
w⊥
w⊥
·
[
��
�q

m
E‖b +Ω��w⊥ × b−

DvE
Dt

−w⊥ ·∇vE − v‖
(
Db

Dt
+w⊥ ·∇b

)]
= − 1

w⊥

[
w⊥ ·

(
DvE
Dt

+ v‖
Db

Dt

)
+w⊥w⊥ :

(
∇vE + v‖∇b

)]
, (20.50)

〈ẇ⊥〉 = −w⊥
2

(
∇ · vE − bb : ∇vE + v‖∇ · b

)
. (20.51)

Now observe that, since, identically, E = −vE ×B/c+ E‖b, Faraday’s law implies

∂B

∂t
= −c∇×E = −vE ·∇B +B ·∇vE −B∇ · vE − c∇×

(
E‖b

)
. (20.52)

Dotting this with B/B2 gives us

1

B

(
∂B

∂t
+ vE ·∇B

)
= bb : ∇vE −∇ · vE −

c

B
b ·
(
∇× E‖b

)︸ ︷︷ ︸
= E‖b·(∇×b)

. (20.53)

Using this expression in (20.51) yields

〈ẇ⊥〉 =
w⊥
2

[
1

B

(
∂B

∂t
+ vE ·∇B

)
+

c

B
E‖b · (∇× b) + v‖

∇‖B
B

]
=

µ

w⊥

[
DB

Dt
+ cE‖b · (∇× b)

]
. (20.54)

If we now use this to get the gyroaverage of (20.49), we find

〈µ̇〉 = µ
cE‖
B
b · (∇× b) . (20.55)

Using the E‖ estimate (20.40), (20.48) and (20.55) imply

〈µ̇〉
µ
∼ kvth

ω

Ω
�
〈v̇‖〉
v‖
∼ ω ∼ kvth. (20.56)

Thus, µ changes much more slowly than anything else—it is an adiabatic invariant of the particle
motion (in fact, µ is the lowest-order approximation to an invariant that is conserved to all orders,
with exponential precision: see Kruskal 1958, 1962).

Finally, the calculation of ϑ̇ is the same as (20.36):

ẇ⊥ = Ωw⊥ × b+ . . . ⇒ ϑ̇ = −Ω + . . . (20.57)

The higher-order terms in ẇ⊥, which we already saw in the square bracket of the second line
of (20.50), are there but will never be needed.

20.4. High-Flow Drift Kinetics: KMHD Regained

With these results, we can return to the derivation of drift-kinetic equations and immediately
obtain the lowest-order result (20.22):

∂〈f〉
∂t

+ 〈ṙ〉 ·∇〈f〉+ 〈v̇‖〉
∂〈f〉
∂v‖

+
�
�
��〈µ̇〉∂〈f〉
∂µ

= 0. (20.58)
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Using (20.44), (20.48), and (20.55), we recover the high-flow DKE (19.107), a.k.a. the KMHD
kinetic equation:

∂〈f〉
∂t

+
(
vE + v‖b

)
·∇〈f〉+

(
q

m
E‖ −

DvE
Dt

· b− µ∇‖B
)
∂〈f〉
∂v‖

= 0 . (20.59)

Check. Now to something new.

Exercise 20.2. Use the same method to derive kinetic equations for 〈f〉 in the following sets
of variables:
(a) (r, w⊥, w‖) [answer: (19.86)];

(b) (r, µ, ε), where ε = mαw
2/2 is the kinetic energy of the peculiar motion of the particle of

species α [confirm that the ways in which your answer is different from (21.42) make sense].

20.5. Low-Flow Drift Kinetics: Going to Higher Order

To go to next order in ρ∗, let us put into operation the general scheme (20.29). Besides 〈ṙ〉,
〈v̇‖〉, and 〈µ̇〉 given by (20.44), (20.48) and (20.55), respectively, we will need the ϑ-dependent
parts of ṙ, v̇‖, and µ̇, which we can get by substracting the above expression from (20.43),
(20.46), and (20.49):

δṙ = w⊥, (20.60)

δv̇‖ = w⊥ ·
[
Db

Dt
+���

��
(∇b) · vE

]
+

[
w⊥w⊥ −

w2
⊥
2

(I− bb)
]

: ∇b, (20.61)

δµ̇ = − 1

B

{
w⊥ ·

[
�
��DvE
Dt

+ v‖
Db

Dt
+ µ∇B

]
+

[
w⊥w⊥ −

w2
⊥
2

(I− bb)
]

:
(
���∇vE + v‖∇b

)}
.

(20.62)

We can drop all terms involving vE because vE � vth in the low-flow ordering and we only
require the lowest-order expressions for δQi, as they will go into the quadratic corrections in Q̇eff

i .
By the same token, assuming that the rate of evolution of the magnetic field is ω ∼ kvE ,

Db

Dt
≈ v‖b ·∇b = v‖κ, (20.63)

where κ is the curvature of the magnetic field line.
In order to get δr, δv‖, and δµ defined by (20.25), we must integrate (20.60–20.62) with

respect to ϑ. This is easily done by noticing that

w⊥ = w⊥ (x̂ cosϑ+ ŷ sinϑ) = w⊥
∂

∂ϑ
(x̂ sinϑ− ŷ cosϑ) =

∂

∂ϑ
w⊥ × b (20.64)

and, less obvious fact (which you derived in Exercise 19.1) that

w⊥w⊥ −
w2
⊥
2

(I− bb) =
∂

∂ϑ

1

4
[w⊥(w⊥ × b) + (w⊥ × b)w⊥] . (20.65)

Using these integration rules and retaining only the lowest-order terms, we get

δr ≈ −w⊥ × b
Ω

, (20.66)

δv‖ ≈ −
1

Ω

{
v‖(w⊥ × b) · κ+

1

4
[w⊥(w⊥ × b) + (w⊥ × b)w⊥] : ∇b

}
, (20.67)

δµ ≈ 1

BΩ

{
(w⊥ × b) ·

(
v2
‖κ+ µ∇B

)
+
v‖
4

[w⊥(w⊥ × b) + (w⊥ × b)w⊥] : ∇b
}
. (20.68)
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With these in hand, we now must calculate

ṙeff = vE + v‖b+
1

B
∇ ·

(
B〈δrδṙ〉

)
+

∂

∂v‖
〈δv‖δṙ〉+

∂

∂µ
〈δµδṙ〉, (20.69)

v̇eff
‖ =

q

m
E‖ −

DvE
Dt

· b︸ ︷︷ ︸
≈ q

m

(
b+

v‖
Ω
b× κ

)
·E

−µ∇‖B −
1

B
∇ ·

(
B〈δv‖δṙ〉

)
+

∂

∂µ
〈δµδv̇‖〉, (20.70)

µ̇eff = µ
cE‖
B
b · (∇× b)︸ ︷︷ ︸

=
q

m
E‖

vB

B

− 1

B
∇ ·

(
B〈δµδṙ〉

)
− ∂

∂v‖
〈δµδv̇‖〉. (20.71)

I have made a number of simplifications. In the expressions for 〈v̇‖〉 and 〈µ̇〉, we must now keep

two lowest order in ρ∗, but not more than that. Therefore, in v̇eff
‖ , we can approximate

DvE
Dt

· b ≈ v‖(∇‖vE) · b = −v‖(b ·∇b) ·
cE × b
B

= − q

m

v‖
Ω

(b× κ) ·E. (20.72)

In µ̇eff, it was convenient to introduce a new quantity

vB =
µB

Ω
b · (∇× b) , (20.73)

called the Baños drift, whose physical significance will emerge shortly. As far as the
quadratic corrections are concerned, because of the symmetry (20.28), we only need to
calculate four different correlators. These calculations are greatly reduced by the observation
that any gyroaverages involving an odd number of occurrances of w⊥ vanish, as does
anything that has the form

〈
scalar ∂

∂ϑ
scalar

〉
. This includes in particular the terms where

scalar = [w⊥(w⊥ × b) + (w⊥ × b)w⊥] : ∇b, thus obviating the unpleasant second terms
in (20.61) and (20.68).

20.5.1. Magnetic Drifts

Let us calculate the quadratic corrections to the gyroaveraged particle motion (20.69). The
first of them requires the correlator

〈δriδṙj〉 = −
〈
w⊥ × b
Ω

w⊥

〉
ij

= − εimn〈wmwj〉bn
Ω

= −w
2
⊥

2Ω
εimn (δmj − bmbj) bn = −µB

Ω
εijnbn.

(20.74)
Therefore, the first quadratic corection in (20.69) is

1

B
∇ ·

(
B〈δrδṙ〉

)
=

1

B
∇×

(
B
µB

Ω
b

)
=
µ

Ω
(B���∇× b −����b×∇B ) . (20.75)

Note that ∇ is taken at constant µ, so the factor µB/Ω = µmc/q goes right through the
gradient. Both terms will cancel in a moment. The correlator in the second quadratic correction
in (20.69) is

〈δv‖δṙ〉 = −v‖κ ·
〈
w⊥ × b
Ω

w⊥

〉
= −v‖

µB

Ω
b× κ (20.76)

⇒ ∂

∂v‖
〈δv‖δṙ〉 = vBb−

µB

Ω
���∇× b , (20.77)

the last step being a consequence of the vector identity

b× κ = −bb · (∇× b) + ∇× b, (20.78)
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deployed to arrange for the calcellation of the ∇×b term with its counterpart in (20.75). Finally,
the correlator in the third quadratic correction in (20.69) is

〈δµδṙ〉 =
v2
‖κ+ µ∇B

B
·
〈
w⊥ × b
Ω

w⊥

〉
=
µ

Ω
b×

(
v2
‖κ+ µ∇B

)
(20.79)

⇒ ∂

∂µ
〈δµδṙ〉 =

v2
‖

Ω
b× κ+ �2

µ

Ω
b×∇B. (20.80)

Note the cancellation of the factor of 2 with the second term in (20.75). We are ready to
assemble (20.69):

ṙeff = vE +
(
v‖ + vB

)
b+ vd , vd =

1

Ω
b×

(
v2
‖κ+ µ∇B

)
. (20.81)

Thus, going to next order in ρ∗ elicited two new drifts: a small additional mean motion along the
field lines, called the Baños drift (20.73), and two magnetic drifts acros the field: the curvature
drift and the ∇B drift, associated with two effective forces experienced by a gyrating particle,
perhaps already familiar to you from undergraduate textbooks.

20.5.2. Magnetic Forces

We already have one of the ingredients needed to work out the quadratic corrections to the
parallel acceleration (20.70): using (20.76), we get

− 1

B
∇ ·

(
B〈δv‖δṙ〉

)
=
v‖µ

Ω
∇ · (Bb× κ) =

v‖µ

Ω
[((((

(((b× κ) ·∇B +B∇ · (b× κ)] , (20.82)

where again, like in (20.75), µB/Ω was unaffected by ∇. The correlator required for the second
quadratic correction in (20.70) is

〈δµδv̇‖〉 =
v2
‖κ+ µ∇B

B
·
〈
w⊥ × b
Ω

w⊥

〉
· κv‖ = −

v‖µ

Ω

[(
v2
‖κ+ µ∇B

)
× b
]
· κ

= −
v‖µ

2

Ω
(b× κ) ·∇B (20.83)

⇒ ∂

∂µ
〈δµδv̇‖〉 = −�2

v‖µ

Ω
(b× κ) ·∇B. (20.84)

Note that the factor of 2 cancels with one of the terms in (20.82). Assembling (20.70), we get

v̇eff
‖ =

(
b+

v‖
Ω
b× κ

)
·
( q
m
E − µ∇B

)
︸ ︷︷ ︸

≡ a‖

+
v‖µB

Ω
∇ · (b× κ) . (20.85)

Terms have combined nicely, but let us finish the calculation before discussing physics.
To get the quadratic corrections to the rate of change of the magnetic moment (20.71), we

use (20.83) and (20.79):

− ∂

∂v‖
〈δµδv̇‖〉 =��

���
��µ2

Ω
(b× κ) ·∇B , (20.86)

− 1

B
∇ ·

(
B〈δµδṙ〉

)
= − µ

Ω
∇ ·

[
b×

(
v2
‖κ+ µ∇B

)]
= −

v2
‖µ

Ω
∇ · (b× κ)− µ2

Ω
b · (∇× b)b ·∇B︸ ︷︷ ︸
=
vB

B
µ∇‖B

−���
���

�µ2

Ω
(b× κ) ·∇B . (20.87)
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Assembling (20.71), we get

µ̇eff =
vB

B

( q
m
E‖ − µ∇‖B

)
︸ ︷︷ ︸

≈ a‖

−
v2
‖µ

Ω
∇ · (b× κ) . (20.88)

Note that the parallel acceleration a‖ that enters this expression is really the same one as
in (20.85), except the b× κ bit need not be there to this order in ρ∗.

20.5.3. Low-Flow Drift-Kinetic Equation

With (20.81), (20.85) and (20.88) in hand, we can write the DKE valid to two orders in ρ∗:

D〈f〉
Dt

=
∂〈f〉
∂t

+ (vE + vd) ·∇⊥〈f〉+
(
v‖ + vB

)
∇‖〈f〉

= −
[
a‖ +

v‖µB

Ω
∇ · (b× κ)

]
∂〈f〉
∂v‖

−

[
vB

B
a‖ −

v2
‖µ

Ω
∇ · (b× κ)

]
∂〈f〉
∂µ

. (20.89)

The b× κ terms are a bit of an eyesore. Let us make them pretty: using (20.78), we get

v‖µ

Ω
∇ · (b× κ) = −

v‖µ

Ω
∇ ·

(
b
vBΩ

µB

)
= −

v‖
B

∇ · (vBb) = v‖

(
vB

B2
∇‖B −

∇‖vB

B

)
= −∇‖

v‖vB

B
,

(20.90)
recalling yet again that all gradients are taken at constant µ and v‖. When physically un-
transparent terms like this turn up in pairs, this is often an indication that they really want
to cancel—they are only there because the equation is written in “wrong” variables, and the
cancellation can be consummated by an appropriate transformation to the “right” ones. It is
not hard to guess what this transformation is: to wit,

v̄‖ = v‖ + vB, µ̄ = µ−
v‖vB

B
. (20.91)

In these adjusted variables, and using (20.90), (20.89) becomes

D〈f〉
Dt

=
∂〈f〉
∂t

+ (vE + vd) ·∇⊥〈f〉+ v̄‖∇‖〈f〉+
DvB

Dt︸ ︷︷ ︸
≈����v‖∇‖vB

∂〈f〉
∂v̄‖

− v‖
(
D

Dt

vB

B

)
︸ ︷︷ ︸
≈
��

��v2
‖∇‖

vB

B

∂〈f〉
∂µ̄

=

(
−a‖ + v‖B∇‖

vB

B︸ ︷︷ ︸
=���

�v‖∇‖vB −
v‖vB

B
∇‖B

)

︸ ︷︷ ︸
= −a‖, but
with µ→ µ̄

(
∂〈f〉
∂v̄‖

−
Z
Z
ZZ

vB

B

∂〈f〉
∂µ̄

)
−

(
Z
ZZ

vB

B
a‖ +

�
��
�

v2
‖∇‖

vB

B

)
∂〈f〉
∂µ̄

, (20.92)

where only terms in the lowest two orders in ρ∗ and Ma (which means the lowest order in all
places where vB is involved) have been retained. Taking account of all the cancellations, we end
up with a very nicely compact equation:

∂〈f〉
∂t

+ (vE + vd) ·∇⊥〈f〉+ v̄‖∇‖〈f〉+
(
b+

v‖
Ω
b× κ

)
·
( q
m
E − µ̄∇B

) ∂〈f〉
∂v̄‖

= 0 , (20.93)

where vd is given by (20.81). The absence of a derivative with respect to µ̄ means that µ̄ is the
adiabatic invariant conserved to O(ρ2

∗)—the existence of such a thing was promised after (20.56),
with a reference to Kruskal (1958, 1962) (who proved conservation to all orders; just the second
order had been done shortly before him by Hellwig 1955).

The most important new feature of (20.93) compared with (20.59) is the magnetic drifts vd,
which enter on par with vE in the low-flow ordering. All other corrections are directly competing
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with larger terms, so will not be important, even though it would have been immoral to drop
them in the low-flow ordering.

21. Kinetic MHD Continued

21.1. Mirror Instability and Barnes Damping

Now that we have derived the KMHD (drift-kinetic) equation, let us use it. Recall that
in a simple, homogeneous, static equilibrium considered in §19.8, magnetic perturbations
δb and δB satisfied (19.68) and (19.69), respectively, tying them to u⊥, which, in turn,
obeyed (19.71). In §19.8, I extracted the δb part of this equation, which contained the
Alfvén waves and the firehose instability. These modes had δb = −k‖u⊥/ω perturbations
and everything else was = 0. Now I want to extract modes with δB 6= 0. Since, according
to (19.69), δB/B0 = k⊥ · u⊥/ω, one can do this simply by dotting (19.71) with k⊥:

− ωρ0k⊥ · u⊥ = −k2
⊥

(
δp⊥ +

B0δB

4π

)
+ k⊥ · δb k‖

(
p⊥0 − p′‖0 +

B2
0

4π

)
. (21.1)

Since k⊥ · δb = −k‖δB/B0, this can be rewritten as follows:

ω2 δB

B0
= k2
⊥

(
δp⊥
ρ0

+ v2
A

δB

B0

)
+ k2
‖

(
p⊥0 − p′‖0

ρ0
+ v2

A

)
δB

B0
. (21.2)

Physically, this is a balance between, on the left-hand side, ion inertia and, on the right-
hand side, the combined perpendicular pressure and the pressure-anisotropy-modified
tension force.

Once we calculate δp⊥, which we can do from the linearised kinetic equation, we will
be done. Note that I have not done anything about the parallel part of the full linearised
momentum equation (19.70), which is

− ωρ0u‖ = k‖

[
δp′‖ +

(
p⊥0 − p′‖0

) δB
B0

]
, (21.3)

but this can be obviated if one chooses the parallel kinetic variable to be v‖ rather
than w′‖. Then (21.3) is entirely contained in the linearised kinetic equation.

21.1.1. Formal Derivation of Dispersion Relation

Thus, the kinetic equation that we shall use will be (19.107). In our equilibrium,
vE = 0, E‖ = 0, and B = B0ẑ, so

∂f0

∂t
+ v‖

∂f0

∂z
= 0, (21.4)

and we are free to choose any f0 as long as it is not a function of t or z. Let us then have

f = f0(µ, v‖) + δf(t, r, µ, v‖). (21.5)

We will only need the perpendicular pressure [defined in (19.99)]:

p⊥ =

∫
dw

mw2
⊥

2
f = 2πmB2

∫∫
dv‖dµµf = 2πmB2

0

(
1 + 2

δB

B0

)∫∫
dv‖dµµ(f0 + δf)

= p⊥0 + 2p⊥0
δB

B0
+ 2πmB2

0

∫∫
dv‖dµµ δf︸ ︷︷ ︸

= δp⊥

. (21.6)
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There is a subtlety here, which it is important to understand in the context of some calculations
to follow. The equilibrium distribution f0(µ, v‖) is independent of r if one holds µ and v‖
constant. But that is not the same as holding w⊥ and v‖ constant, except when B = B0.

Therefore, denoting µ0 = w2
⊥/2B0,

∫
dw

mw2
⊥

2
f0(µ, v‖) =

∫
dw

mw2
⊥

2
f0

(
µ0

(
1 +

δB

B0

)−1

, v‖

)

≈
∫

dw
mw2

⊥
2

f0(µ0, v‖)−
δB

B0

∫
dw

mw2
⊥

2

(
µ
∂f0

∂µ

)
v‖

(µ0, v‖)

= p⊥0 −
δB

B0
2πm

∫∫
dv‖dµJBµ

2 ∂f0

∂µ
= p⊥0 + 2

δB

B0
p⊥0, (21.7)

where the second line is obtained by Taylor expansion in small δB/B0, the last step is achieved
via integration by parts, J = B is the Jacobian of the transformation (w⊥, w‖) → (µ, v‖),
and the distinction between B and B0 in the second term does not matter to the linear order.
The outcome is the same as in (21.6), but there it was achieved by a slightly different route:
changing the integration variables (w⊥, w‖) → (µ, v‖) first, then expanding JB in small δB.
The two methods are equivalent, but the one involving expanding f0 can be easier to follow for
certain choices of variables, as, e.g., in Exercise 21.1.

Exercise 21.1. Explore what would happen to (21.7) if, instead of (r, µ, v‖), you used the
variables (r, µ, ε) given by (21.39). Be mindful of the fact that, for these new variables, J =

B/m|v‖|, where |v‖| =
√

2(ε/m− µB), and that(
∂f0

∂µ

)
ε

=

(
∂f0

∂µ

)
v‖

− B

v‖

(
∂f0

∂v‖

)
µ

. (21.8)

Continue the calculation of the mirror dispersion relation in these variables and make sure that
you arrive at the same result (21.23). This exercise is pure algebra, but unless you can do this
algebra with ease, you have not quite got the hang of (the technical side of) this subject. This
is also a way to work through the following calculation in an active, rather than passive, mode.

To calculate δf , we linearise (19.107), which gives138

δf = − i

ω − k‖v‖

( q
m
E‖ − ik‖µδB

) ∂f0

∂v‖
. (21.9)

Recall that E‖ is supposed to be determined by the quasineutrality (19.102). By the
same token as (21.6), or (21.7),

n = 2πB

∫∫
dv‖dµ f = n0 + n0

δB

B0
+ 2πB0

∫∫
dv‖dµ δf︸ ︷︷ ︸

= δn

. (21.10)

Therefore, (21.9) must respect∑
α

qα2πB0

∫∫
dv‖dµ δfα = 0. (21.11)

138This is obviously a shorthand for a Laplace-transform solution along the same lines as in §3.
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As it should, (21.11) gives us the parallel electric field:

E‖ = ik‖
δB

B0

∑
α

qα2πB2
0

∫∫
dv‖dµµ

1

ω − k‖v‖
∂f0α

∂v‖∑
α

q2
α

mα
2πB0

∫∫
dv‖dµ

1

ω − k‖v‖
∂f0α

∂v‖

≡ ik‖
δB

B0
χ(ω, k‖). (21.12)

Putting this back into (21.9), we get

δf =
k‖

ω − k‖v‖
δB

B0

[ q
m
χ(ω, k‖)− µB0

] ∂f0

∂v‖
. (21.13)

Finally, from (21.6),

δp⊥ =

[
2p⊥0 + k‖2πmB

2
0

∫∫
dv‖dµµ

(q/m)χ(ω, k‖)− µB0

ω − k‖v‖
∂f0

∂v‖

]
δB

B0
. (21.14)

This is now ripe for substitution back into (21.2). The resulting dispersion relation
can be derived and solved for the general f0 (Exercise 21.2), but I prefer to simplify
by showing you the simple case of a “bi-Maxwellian” equilibrium with no species drifts
[cf. (6.45)]:

f0(µ, v‖) =
n0

π3/2v2
th⊥vth‖

exp

(
−2µB0

v2
th⊥
−

v2
‖

v2
th‖

)
. (21.15)

For such an equilibrium,

2πB0

∫
dµ f0 =

n0√
πvth‖

e−v
2
‖/v

2
th‖ ≡ FM(v‖), (21.16)

2πB2
0

∫
dµµf0 =

v2
th⊥
2

FM(v‖), (21.17)

2πB3
0

∫
dµµ2f0 =

v4
th⊥
2

FM(v‖). (21.18)

Therefore, carrying out the µ integral in (21.14),

δp⊥ =

{
2p⊥0 −

v2
th⊥
v2

th‖

[
qχ(ω, k‖)−mv2

th⊥
] ∫

dv‖
k‖v‖

ω − k‖v‖
FM(v‖)︸ ︷︷ ︸

= −n0 [1 + ζZ(ζ)]

}
δB

B0

=

{
2p⊥0 +

p⊥0

p‖0

[
n0qχ(ω, k‖)− 2p⊥0

]
[1 + ζZ(ζ)]

}
δB

B0
, (21.19)

where ζ = ω/|k‖|vth‖ and Z(ζ) is the plasma dispersion function (3.83); note that p⊥,‖0 =
mn0v

2
th⊥,‖/2.

By a similar set of calculations,

χ(ω, k‖) =

∑
α

nαqα
p⊥α
p‖α

[1 + ζαZ(ζα)]

∑
α

n2
αq

2
α

p‖α
[1 + ζαZ(ζα)]

, (21.20)

where I am now dropping 0’s in the subscripts of the equilibrium quantities. This χ goes
into (21.19), which, before it can be used in (21.2), has to be summed over species, because
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it is the total pressure perturbation that matters for the force balance. Normalising it to
ρ0v

2
A = B2

0/4π and introducing β⊥,‖α = 8πp⊥,‖α/B
2
0 , we get

δp⊥
ρ0v2

A

=
δB

B0

{∑
α

β⊥α −
∑
α

β⊥α
p⊥α
p‖α

[1 + ζαZ(ζα)]︸ ︷︷ ︸
= −

∑
α

β⊥α

[(
p⊥α
p‖α
− 1

)
︸ ︷︷ ︸
≡ ∆α

+
p⊥α
p‖α

ζαZ(ζα)

]
+X(ω, k‖)

}
, (21.21)

where the last term comes from the contribution in (21.19) involving χ (which originates
from E‖):

X(ω, k‖) =

(∑
α

nαqα
p⊥α
p‖α

[1 + ζαZ(ζα)]

)2

2
∑
α

n2
αq

2
α

β‖α
[1 + ζαZ(ζα)]

. (21.22)

The dispersion relation now follows from (21.2):

ω2 = k2
⊥v

2
A

{
1−

∑
α

β⊥α

[
∆α︸ ︷︷ ︸

≡ −Λ

+
p⊥α
p‖α

ζαZ(ζα)

]
+X

}
+ k2
‖v

2
A

(
1 +

1

2

∑
α

β‖α∆α

)
︸ ︷︷ ︸

≡ Y

.

(21.23)
This is obviously a complicated transcendental equation, which can be studied ad nau-
seam. I am not going to do this, but, in §21.1.2, will rather consider a simple but revealing
limit.

Exercise 21.2. Mirror dispersion relation for a general equilibrium. This exercise
is very boring. Instead of a bi-Maxwellian (21.15), consider a general homogeneous equilib-
rium f0α(µ, v‖). Define

−2πB0

∫
dµ

1

v‖

∂f0α

∂v‖
≡ mαnα

p‖α
F0α(v‖), (21.24)

−2πB2
0

∫
dµ

µ

v‖

∂f0α

∂v‖
≡ p⊥α
p‖α

F1α(v‖), (21.25)

−2πB3
0

∫
dµ

µ2

v‖

∂f0α

∂v‖
≡ 2p2

⊥α
mαnαp‖α

F2α(v‖), (21.26)∫
dv‖Flα(v‖) ≡ nαClα, l = 0, 1, 2, (21.27)∫

dv‖
Flα(v‖)

v‖ − ω/|k‖|
≡ nα
vth‖α

Zlα(ζα), ζα ≡
ω

|k‖|vth‖α
, vth‖α ≡

√
2p‖α
mαnα

. (21.28)

For a bi-Maxwellian f0α, all Clα = 1 and Zlα(ζα) = Z(ζα). With the above definitions, prove
that the general mirror dispersion relation is the same as (21.23) but with the expression in the
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figure brackets replaced by{
. . .

}
→ 1−

∑
α

β⊥α

[(
p⊥α
p‖α

C2α − 1

)
+
p⊥α
p‖α

ζαZ2α(ζα)

]
+X, (21.29)

X =

(∑
α

nαqα
p⊥α
p‖α

[C1α + ζαZ1α(ζα)]

)2

2
∑
α

n2
αq

2
α

β‖α
[C0α + ζαZ0α(ζα)]

. (21.30)

21.1.2. High-Beta Limit

The magic ordering is

1

β
∼ ∆ ∼ ζ � 1. (21.31)

You will see that this is the right thing to assume once we have worked through what it
implies.

Under this assumption, the E‖ contribution in (21.23) is small: indeed, the denom-
inator of X in (21.22) is O(1/β), whereas the numerator is O(1/β2), because, both
pressure anisotropy and ζα being small, it vanishes to lowest order by quasineutrality.
Furthermore, since ζα � 1, Z(ζα) ≈ i

√
π [see (3.91)]. We can also safely drop ζe compared

to ζi everywhere, since vthe � vthi. Finally,

ω2

k2
‖v

2
A

∼ ζ2
i βi ∼

1

βi
� 1, (21.32)

so the left-hand side of (21.23) (ion inertia) can be neglected. This leaves us with

− Λ− iβiζi
√
π +

k2
‖

k2
⊥
Y = 0. (21.33)

Clearly, −iζi = −iω/|k‖|vthi = γ/|k‖|vthi is real, and we find

γ =
|k‖|vthi√
πβi

(
Λ−

k2
‖

k2
⊥
Y

)
. (21.34)

This is an instability, called mirror instability,139 provided

Λ =
∑
α

β⊥α

(
p⊥α
p‖α
− 1

)
> 0 , (21.35)

i.e., provided the pressure anistropy is positive and large enough compared to 1/β. For
simplicity, let us assume momentarily that electrons have no anisotropy, in which case
the instability condition is

∆i =
p⊥i − p‖i

p‖i
>

1

βi
. (21.36)

Thus, as I promised at the end of §19.8, positive pressure anisotropies in KMHD are

139The realisation that positive pressure anisotropies are destabilising goes back to the same
people whom I quoted as the forefathers of the firehose instability in §19.8, but the first definitive
kinetic calculation appears to be due to Hasegawa (1969).
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Figure 87. Stability boundaries for the firehose (19.74) and mirror (21.36) instabilities. In gray,
a mock-up of the solar-wind data (the “Brazil plot”) is shown, as per Hellinger et al. (2006),
Bale et al. (2009), and Chen et al. (2016).

just as destabilising as the negative ones, and so the stable region in the parameter
space (∆i, βi) is an ever-narrower band as βi → ∞ (while at βi → 0, none of this
matters). This actually checks out rather well observationally in the solar wind, which
seems to restrict itself to the stable regime quite effectively, with increased level of
fluctuations (presumably firehose- and mirror-induced) at the margins, acting to keep
pressure anisotropy under control in some way that is increasingly well, but perhaps not
yet completely, understood. Fig. 87 is a cartoon; the iconic observational plot from the
solar wind, colloquially known as the “Brazil plot” on account of the shape of the region
occupied by the data, is in the paper by Bale et al. (2009) (although in fairness, the same
plot first appeared in Hellinger et al. 2006, albeit without the information about the
fluctuation level; Chen et al. 2016 have the most up-to-date version of this plot, taking
account of multiple species and their drifts).

Like the firehose, the mirror instability breaks through the constraints of the KMHD
approximation and renders our equations ill-posed. Indeed, accounting for the stabilising
effect of large k‖ in (21.34), it is not hard to see that the maximum growth rate is
achieved at

k‖ = k⊥

√
Λ

3Y
⇒ γmax =

2Λ3/2

3
√

3πY βi
k⊥vthi. (21.37)

This explodes at k⊥ → ∞, so clearly the maximum growth rate is reached outside
the k⊥ρi � 1 limit. Note that near the mirror threshold (Λ � 1), the most unstable
structures are highly anisotropic, k‖ � k⊥.

A detailed calculation that includes the finite-Larmor-radius effects and thus captures
the fastest-growing mirror modes can be found in the tutorial by Hellinger (2007). You
will also find a somewhat more systematic (than mine) treatment of the linear theory
of the mirror instability done under the KMHD approximation in the lecture notes by
Parra (2019b), while I shall now move on to discuss the physics of this instability.

21.1.3. Physics of Mirror Instability and Barnes Damping

Looking back at (21.2), it is evident that the “unstable” part of the dispersion
relation (21.23) comes entirely from the perpendicular pressure balance

δp⊥ +
B0δB

4π
≈

[
−
∑
α

β⊥α

(
p⊥α
p‖α
− 1

)
+
√
πβi

γ

|k‖|vthi
+ 1

]
B0δB

4π
≈ 0, (21.38)
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where the first term in the square bracket is the perpendicular-pressure perturbation
associated with non-resonant particles, the second one with the resonant ones (the

√
π

factor is a tell-tale signature of the Landau resonance!), and the last one is the magnetic-
pressure perturbation. We see that the effect of positive background pressure anisotropy is
to provide a positive perturbed perpendicular pressure in the magnetic troughs (δB < 0),
counteracting the magnetic pressure (and vice versa in the regions of δB > 0). In the
unstable regime, the total non-resonant plus magnetic pressure turns negative, so the
system, dynamically, wants to create greater magnetic rarefactions and compressions.
In MHD, this would create a destablised magnetosonic wave (cf. §15.1.6), but in a
collisionless plasma, it is time-aperiodic because the dominant effect of time evolution
comes in not via inertia, as in MHD, but via the perpendicular pressure perturbation
arising from the resonant particles and acting to restore pressure balance.

In order to see the origin, and the physics, of the resonant piece of δp⊥, it is quite
useful to write the kinetic equation using yet another set of variables:

(r, µ, v‖)→ (r, µ, ε), ε = mµB +
mv2
‖

2
, (21.39)

where ε is the particle’s kinetic energy (excluding the E ×B drift). In these variables,(
Df

Dt

)
µ,v‖

=

(
Df

Dt

)
µ,ε

+

(
Dε

Dt

)
µ,v‖︸ ︷︷ ︸

= mµ
DB

Dt

∂f

∂ε
=
Df

Dt
+mµ

(
dB

dt
+��

��v‖∇‖B
)
∂f

∂ε
,

(21.40)(
· · · − µ∇‖B

) ∂f
∂v‖

= m
(
· · · −���µ∇‖B

)
v‖
∂f

∂ε
. (21.41)

Upon substitution of this into the kinetic equation (19.107), the µv‖∇‖B term in (21.40)
cancels with the mirror force in (21.41), and we are left with

Df

Dt
+m

[
v‖

(
q

m
E‖ −

DvE
Dt

· b
)

+ µ
dB

dt

]
∂f

∂ε
= 0 . (21.42)

It is not hard to see that the resonant part of the pressure perturbation comes from
the last term in (21.42) (you already know this if you have done Exercise 21.1). This
effect is often called the betatron acceleration, ot magnetic pumping, referring to what
happens when magnetic troughs (δB < 0) are damped (γ < 0), giving energy to particles;
the mirror force −µ∇‖B in this case plays the same role as the electric field does in the
standard Landau resonance. If we focus on the lived experience of the δB perturbations
rather than of the particles, their damping is called Barnes (1966) damping, a.k.a.,
transit-time damping. This is a textbook result: in the absence of pressure anisotropy,
(21.38) gives immediately

γ ≈ −
|k‖|vthi√
πβi

. (21.43)

Physically, the perturbed magnetic pressure naturally opposes formation of δB per-
turbations and, to maintain pressure balance, the resonant particles’s pressure must
compensate by having γ < 0—consequently, perturbations are damped. In contrast, if the
additional non-resonant perpendicular pressure perturbation due to positive background
pressure anisotropy effectively reverses the effect of the magnetic pressure, then the
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resonant pressure must have γ > 0 to compensate for that—energy is moved from
particles to δB, mirror instability is operative.

As I did in the case of the firehose, let me point you to some research literature (again selected
with extreme bias) on the subject of how mirrors grow and saturate. Two now-classic papers,
Southwood & Kivelson (1993) and Kivelson & Southwood (1996), are worth reading for the
qualitative physical picture that they give of both linear and nonlinear (respectively) physics
involved. Rincon et al. (2015) offer a systematic (but very compressed) exposition of how to
derive a (weakly) nonlinear theory of the mirror instability. A much more qualitative, hand-
waiving picture is available from Melville et al. (2016) (building on the simulations of Kunz
et al. 2014). Unlike the firehose, the mirror instability in the (early) nonlinear stage leads not
to particle scattering but to particle trapping in troughs (δB < 0), effectively imposing a check
on the destabilising action of the pressure anisotropy.

Exercise 21.3. Free energy in Kinetic MHD.140 (a) Assume that the distribution of
particles consists of a spatially homogeneous mean and small (but not necessarily infinitesimally
small) perturbation:

fα = f0α(µ, ε) + δfα(t, r, µ, ε), B = B0ẑ + δB(t, r), (21.44)

where µ = w2
⊥/2B and ε = mαw

2/2 (cf. Exercise 20.2b). Show that δfα satisfies

Dδfα
Dtα

= −mα

[
w‖

(
qα
mα

E‖ −
Duα
Dtα

· b
)

+ µ
dB

dtα

]
∂f0α

∂ε
. (21.45)

Introduce a quantity that generalises TδS from Maxwellian kinetics [see (5.15)] to arbitrary f0,
and has previously turned up as Kruskal–Oberman available energy (9.31):

A =

∫
dr
∑
α

∫
dw

δf2
α

2(−∂f0α/∂ε)
. (21.46)

Show that it evolves according to

dA

dt
= −

∫
dr
∑
α

P[δfα] : ∇uα, P[δfα] = p⊥[δfα](I− bb) + p‖[δfα]bb, (21.47)

where the P[δfα] is the part of the pressure tensor associated with δfα:

p⊥[δfα] =

∫
dw

mαw
2
⊥

2
δfα, p‖[δfα] =

∫
dwmαw

2
‖δfα. (21.48)

Note that, in the (w⊥, w‖) and (µ, ε) variables, respectively,∫
dw = 2π

∫∫
dw‖dw⊥w⊥ = 2π

∫∫
dεdµJ, (21.49)

with the Jacobian J = B/mα|w‖|, where |w‖| =
√

2(ε/m− µB).

(b) Prove that the total kinetic energy K of the particles’ peculiar motion satisfies exactly

dK

dt
= −

∫
dr
∑
α

P[fα] : ∇uα, (21.50)

where P[fα] is the KMHD pressure tensor, whose components are defined analogously to (21.48)
but with the exact fα instead of δfα.141 Hence, using the fact that the total energy is conserved
(Exercise 19.6), show that

d

dt

[
A +

∫
dr

(∑
α

mαnαu
2
α

2
+
B2

8π

)]
=

∫
dr
∑
α

P[f0α] : ∇uα. (21.51)

140This is based on the 2023 exam question.
141This is particularly straightforward if you start with the drift-kinetic equation in (r, µ, ε)
variables written in the form (20.7) (gyroaveraged, of course).
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Recall that since f0α is a function of µ and ε and the exact B is involved in the definition of µ,
P[f0α] contains both the mean pressure and part of the perturbed pressure (the non-resonant
part; see Exercise 21.1).

(c) Hence show that the generalised free energy

F = A +

∫
dr

{∑
α

mαnαu
2
α

2
+

[
1−

∑
α

β‖α
2

(
1− p⊥α

p‖α

)]
δB2
⊥

8π

+

[
1−

∑
α

β⊥α

(
p⊥α
p‖α

C2α − 1

)]
δB2
‖

8π

}
, (21.52)

is conserved, to lowest non-trivial order in perturbations:

dF

dt
= 0 . (21.53)

Here p⊥α, p‖α, β⊥α, β‖α are all mean quantities, which can be taken to be constant in time and
space, and the constant C2α is defined by

2p2
⊥α
p‖α

C2α = −2πm2
αB

2
0

∫∫
dεdµJµ2 ∂f0α

∂ε
(21.54)

[cf. (21.27), C2α = 1 for a bi-Maxwellian mean distribution]. The following facts will come handy
in the proof: (

∂f0

∂µ

)
ε

= B

[
1

w⊥

(
∂f0

∂w⊥

)
w‖

− 1

w‖

(
∂f0

∂w‖

)
w⊥

]
, (21.55)

which is one step from (21.8),

d lnB

dtα
= bb : ∇uα −∇ · uα, (21.56)

which follows from Faraday’s law and (19.35), and was once used in the derivation (19.86), and

lnB = ln
√
B2

0 + 2B0 · δB + |δB|2 ≈ lnB0 +
δB‖
B0

+
δB2
⊥ − δB2

‖

2B2
0

, (21.57)

which is the Taylor expansion of the logarithm to second order. You may also assume that
all-space integrals of full derivatives vanish and

∫
dr δB = 0.

(d) Discuss what the conservation of the quadratic quantity (21.52) implies for stability of
KMHD with respect to small perturbations: can you formulate a sufficient condition for stability?
How is it compatible with the existence of the firehose and mirror instabilities?

As far as I know, the idea of a generalised free energy in the form (21.52) originates from Kunz
et al. (2015), who worked it out for KRMHD (see Exercise 19.7).

21.2. Origin of Pressure Anisotropy

Up to this point, I have taken the formal approach of picking a simple, (locally)
homogeneous equilibrium and considering small perturbations around it. The result is
that, if

|p⊥ − p‖|
p‖

&
1

β
, (21.58)

any such equilibrium would be violently unstable to fast, microscale modes, which, in fact,
take us outside the KMHD description. Their effect, once they saturate, is presumably
to limit all dynamics to the stable part of the parameter space—how that happens is a
live research question, but the emerging answer is, crudely, that the plasma will, thanks
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to those instabilities, develop an effective collisionality that pins pressure anisotropies
locally to the marginal levels.142 Let us now inquire how ubiquitous, or otherwise, the
need for such non-KMHD adjustments of KMHD dynamics is likely to be.

At β � 1, there is clearly no problem—I shall return to this limit in due course (in §22
and onwards)—but at β � 1 (or even β & 1), it is possible to show by a very elementary
argument that pressure anisotropies will be endemic, and so must be the associated
instabilities.

As we have seen, in the KMHD limit, each particle conserves its magnetic moment:

µ = const. (21.59)

But the mean of this over all velocities, for particles of species α, is

〈µ〉w =
1

nα

∫
dw µfα =

p⊥α
mαnαB

= const. (21.60)

For the purposes of a qualitative discussion, let me pretend momentarily (and, in general,
wrongly) that nα = const. Then (21.60) means that (locally in a fluid element) every
time plasma dynamics change B, the pressure p⊥α must change proportionally:

1

p⊥α

dp⊥α
dtα

∼ 1

B

dB

dtα
− να

p⊥α − p‖α
p⊥α

(21.61)

(the last term allows for the breaking of this principle by collisions, “true” or effective,
that want to isotropise pressure). Thus, physically, we expect any dynamics that in-
crease B to lead to p⊥ > p‖, triggering the mirror instability, and any that decrease B
to lead to p⊥ < p‖, triggering the firehose (I will make this conclusion more solid and
quantitative shortly). Since the magnetic field described by the MHD induction equation,
as it still is in KMHD (§19.6), is frozen into fluid motions, it is quite difficult to move
anything without changing B (§§13.7–13.9).

One simple way to see why the microinstabilities are not only inevitable but, in fact,
indispensable for high-β plasma dynamics to make physical sense, is to think of the
kinematic dynamo (§14). Take a magnetic field that is sufficiently weak to exert no
Lorentz force on the motions (B2/8π � ρu2/2) but sufficiently strong to magnetise
particles (Ωα � ku, να). A generic chaotic 3D flow will amplify such a field multi-fold—
in MHD. But in KMHD, every time B is doubled, so should be p⊥, which is proportional
to the total thermal energy of the plasma. Clearly, this is impossible, so the µ conservation
must be broken—and it is, by the effect of saturated microinstabilities on particles.

You will find a formal proof, and numerical confirmation, of the impossibility of dynamo
action in KMHD in the paper by Helander et al. (2016). Nevertheless, dynamo does work in
a collisionless, magnetised plasma—thanks to the microinstabilities (St-Onge & Kunz 2018).
Another interesting effect of microinstabilities is associated with compressive motions. The
presence of nα in (21.60) implies that any dynamics that change the density of the plasma
will also produce pressure anisotropies and thus trigger instabilities. The simplest such a
dynamical phenomenon is a sound wave: Kunz et al. (2020) launched one (numerically) into a
magnetised, collisionless, high-β plasma and discovered that, unlike in a textbook electrostatic
plasma (§3.11), it was able to propagate, like in MHD (§15.1.2), because it created its own local
effective collisionality by triggering firehose and mirror fluctuations that scattered particles.

142There is an additional interesting dynamical tendency for the plasma to be reluctant to have
motions that cross into the unstable regions, but that does not appear to be enough on its own:
the relevant paper to read about this is Squire et al. (2023) (and follow the paper trail).
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21.2.1. CGL Equations

Let us now work some of this out more formally. For that, we shall derive evolution
equations for p⊥α and p‖α from the KMHD kinetic equation. Its most convenient form
for this purpose is (19.86), in (w⊥, w‖) variables: dropping the species indices as usual,
to avoid clutter (but still meaning uα by u, etc.), it is

Df

Dt
+

1

B

DB

Dt

w⊥
2

∂f

∂w⊥
+

(
q

m
E‖ −

Du

Dt
· b− w2

⊥
2

∇‖B
B

)
∂f

∂w‖
=

(
∂f

∂t

)
c

. (21.62)

Multiply this by mw2
⊥/2 and integrate over velocities,

∫
dw = 2π

∫∫
dw‖dw⊥w⊥:

dp⊥
dt

+ b ·∇
∫

dww‖
mw2
⊥

2
f︸ ︷︷ ︸

≡ q⊥
‖ flux

of ⊥ heat

+
1

B

dB

dt
2π

∫∫
dw‖dw⊥

mw4
⊥

4

∂f

∂w⊥︸ ︷︷ ︸
= −2p⊥
by parts

+
∇‖B
B

2π

∫∫
dw‖dw⊥w‖

mw4
⊥

4

∂f

∂w⊥︸ ︷︷ ︸
= 2q⊥∇ · b

by parts

+

∫
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mw2
⊥

2

(
�
��
q

m
E‖ −

�
�
�du
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· b − w‖bb : ∇u−

�
��

��w2
⊥
2

∇‖B
B

)
∂f

∂w‖︸ ︷︷ ︸
= p⊥bb : ∇u = p⊥

(
1

B

dB

dt
− 1

n

dn

dt

)
by parts, then using induction and continuity equations

= −ν
(
p⊥ − p‖

)
.

(21.63)

The collision term can be derived formally, but it is also intuitive that the effect of
collisions should be to push the two pressures closer to each other. Assembling terms,
one gets

p⊥
d

dt
ln
p⊥
nB

= −∇ · (q⊥b)− q⊥∇ · b− ν
(
p⊥ − p‖

)
. (21.64)

This is the statement (21.60) of conservation of the mean magnetic moment in a fluid
element (associated with an individual species α), broken only by collisions and by heat
fluxes, i.e., in the case of the latter, by the leakage of (perpendicular) energy along the
field lines from/to the fluid element.
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Now multiply (21.62) by mw2
‖ and integrate, using the same tricks:

dp‖

dt
+ b ·∇

∫
dwmw3

‖f︸ ︷︷ ︸
≡ q‖
‖ flux

of ‖ heat

+
1

B

dB
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2π
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2
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⊥
2
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∂w⊥︸ ︷︷ ︸
= −p‖
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∇‖B
B

2π
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3
‖
w2
⊥
2

∂f
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B

= 3p‖

(
1

B

dB
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− 1

n
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)
− 2q⊥∇ · b

by parts, then using induction and continuity equations,
and

∫
dww‖f = 0

= −2ν
(
p‖ − p⊥

)
.

(21.65)

The form of the collision term ensures that collisions conserve total energy p⊥ + p‖/2.
Assembling terms, one gets

p‖
d

dt
ln
p‖B

2

n3
= −∇ ·

(
q‖b
)

+ 2q⊥∇ · b− 2ν
(
p‖ − p⊥

)
. (21.66)

Equations (21.64) and (21.66) (often with 0’s in the right-hand sides), which I promised
you some time ago in (13.66) and Exercise 15.8, are called Chew–Goldberger–Law (CGL)
equations (Chew et al. 1956), or, sometimes, the double-adiabatic approximation. “Dou-
ble” because, while (21.64) confirms the conservation of the first adiabatic invariant µ
modulo heat fluxes and collisions, (21.66) suggests that there is another adiabatic
invariant in the system, also modulo heat fluxes and collisions, whose conservation
controls the evolution of the parallel pressure (and reinforces the tendency towards
positive/negative pressure anisotropy when B is increased/decreased).

Exercise 21.4. CGL RMHD and CGL waves. If you did not do Exercise 15.8 when studying
MHD, do it now.

21.2.2. Longitudinal Invariant

Let us work out what this second invariant might be. By analogy with (21.60), if it is
some quantity associated with each individual particle, then

p‖αB
2

mαn3
α

=
1

nα

∫
dw

(
w‖B

nα

)2

fα = const (21.67)

should represent the mean of this quantity over all velocities. The mean square, rather,
it turns out, of a quantity called the longitudinal invariant:

J = w‖`α, (21.68)

where `α is the length along the field line of a fluid element moving with the species α.
Recall that an infinitesimal separation vector δr between two points frozen into the fluid
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Figure 88. Gyrating particle trapped in a magnetic mirror.

flow u satisfies the same equation as B/n, provided the magnetic field and density are
evolved by the same flow (§13.7):143

dδr

dt
= u(r + δr)− u(r) ≈ δr ·∇u, d

dt

B

n
=
B

n
·∇u. (21.69)

Therefore, `α ∝ B/nα, so J ∝ w‖B/nα and the conservation of 〈J2〉w in a fluid element
gives us (21.67).

This type of adiabaticity is related to particles getting trapped (or just slowed down)
in magnetic mirrors as they stream along the field lines (Fig. 88). Then they have a
second adiabatic invariant

J =

∮
w‖d` = const, (21.70)

where the integral is taken between the bounce points and conservation is assured
provided the bounce frequency is large: ωb ∼ k‖w‖ � ku (bouncing is faster than fluid
motion).

Parenthetically, let me explain why bouncing happens. Ignoring fluid motion, assumed slow
(vE � vth), and the slow change of B due to them, the equations of the gyroveraged particle
motion, to lowest order in ρ∗, are (§20.3.2)

ṙ = v‖b, µ̇ = 0, v̇‖ =
q

m
E‖ − µ∇‖B. (21.71)

Besides the conserved µ, there is a conserved energy:

H =
mw2

‖

2
+ qϕ(r) +mµB(r) ⇒ Ḣ = mv‖v̇‖ + qṙ ·∇ϕ+mµṙ ·∇B = 0. (21.72)

The motion along the field is then described by

˙̀ = v‖ = ±
√

2

m
[H − qϕ(`)− µB(`)]. (21.73)

The particle will bounce wherever the expression under the square root vanishes. Like always in
classical mechanics, these oscillations have an adiabatic invariant, given by (21.70).

143Note that B is frozen into u⊥, so also satisfies the induction equation with either u or uα:
the induction equation does not know about the parallel component of the flow, even if that is
less obvious when the double vector product is unravelled into three terms like in (19.42) (which
can, therefore, be written with uα instead of u).
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21.2.3. Pressure Anisotropy from CGL Equations

Finally, let us work out the evolution of pressure anisotropy from the CGL equa-
tions (21.64) and (21.66):

d

dt

(
p⊥ − p‖

)
=
(
p⊥ + 2p‖

) 1

B

dB

dt
+
(
p⊥ − 3p‖

) 1

n

dn

dt

−∇ ·
[
(q⊥ − q‖)b

]
− 3q⊥∇ · b− 3ν

(
p⊥ − p‖

)
. (21.74)

We see that, as anticipated at the beginning of this section, increasing/decreasing B
causes positive/negative pressure anisotropy. Increasing/decreasing density produces the
opposite effect, and heat fluxes can also cause pressure anistropies (by carrying in or out
along the field lines preferentially particles with larger perpendicular or parallel energies).
Collisions always, of course, strive to isotropise pressure.

21.2.4. Braginskii Viscosity

Therefore, in the collisional limit, ν � ω ∼ ku (but still ν � Ω), one expects the
pressure anisotropy to be small and dominated by the balance between the collisional
isotropisation and the three pressure-anisotropy production mechanisms: assuming p⊥−
p‖ � p⊥ ≈ p‖, this balance gives us

p⊥ − p‖
p‖

≈ 1

ν

{
1

B

dB

dt
− 2

3

1

n

dn

dt
−

∇ ·
[
(q⊥ − q‖)b

]
− 3q⊥∇ · b

3p‖

}
. (21.75)

Ignoring the heat fluxes and using the induction and continuity equations to rewrite the
above expression in terms of flow velocities, one gets

p⊥ − p‖ ≈
p‖

ν

(
bb : ∇u− 1

3
∇ · u

)
. (21.76)

If you substitute this into the momentum equation (19.53), where the pressure anisotropy
appears as a parallel stress, you will recognise its effect as that of a parallel collisional
viscosity—known as the Braginskii (1965) viscosity. Indeed, if B were held straight and
constant,

ρ
du

dt
= · · ·+

p‖

ν
∇2
‖u. (21.77)

Except of course now you know that, if B is not held straight and constant, such a
viscosity can be violently (if microscopically) destabilising.

Exercise 21.5. Viscous heating. Assuming the rate να of the collisional relaxation of pressure
anisotropy of species α to be larger than the rate of dynamical evolution of all quantities and
assuming also an incompressible mass flow, no species drifts, and no heat fluxes, use (19.105) to
show that the local rate of viscous heating of the plasma is nowhere negative and is non-zero in
all fluid elements where the magnetic field’s strength is changing.

21.3. Braginskii MHD

21.3.1. Heat Fluxes

21.3.2. Magnetothermal Instability

Exercise 21.6. HBI.

Exercise 21.7. Magnetoviscous instability.
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21.4. KMHD Energy Principle

The refrain of the KMHD theory is that everything is unstable, on large scales, on small scales,
on even smaller scales, etc. It is an almighty mess caused by plasma’s general unhappiness with,
more or less, anything other than a uniform Maxwellian equilibrium—not really a surprise for the
aficionados of thermodynamics! Everything, therefore, is well-nigh-always turbulent, and what
one really needs is some sort of effective mean-field theory. We do not have that, so we are still
at the stage where we must examine closely the 1001 ways in which unstable configurations can
be unstable, with a hope of integrating all this knowledge one day into some general principles
of kinetic stability.

This section is coming in due course. . .

22. Electrostatic Drift Kinetics

So far I have focused on physical regimes in which the dynamics of the magnetic field
were of natural interest—this gave a special significance to the β � 1 limit, pressure
anisotropies and the associated instabilities. I am now going to explore the extreme
opposite regime—one in whichB does not change at all. Intuitively, this is an appropriate
approximation when β � 1, but I will postpone a careful consideration of exactly when
this electrostatic limit is valid (till §22.7), and instead first explore what kind of wild life
exists in this part of the plasma wood.

So let us assume B = B0ẑ = const and δB = 0 exactly. This implies

∇×E = −1

c

∂B

∂t
= 0 ⇒ E = −∇ϕ , (22.1)

an electrostatic electric field, and so the DK equation (19.107) [or, indeed, its low-flow
version (20.93), where most terms disappear because B does not vary] is

∂f

∂t
+ vE ·∇⊥f + v‖∇‖f +

q

m
E‖

∂f

∂v‖
= 0. (22.2)

Since E‖ = −∇‖ϕ, vE = (c/B0)ẑ ×∇⊥ϕ, and, therefore,

vE ·∇⊥f =
c

B0
ẑ · (∇⊥ϕ×∇⊥f) =

c

B0

(
∂ϕ

∂x

∂f

∂y
− ∂ϕ

∂y

∂f

∂x

)
≡ c

B0
{ϕ, f} , (22.3)

the electrostatic DK equation has the form

∂f

∂t
+

c

B0
{ϕ, f}+ v‖∇‖f −

q

m

(
∇‖ϕ

) ∂f
∂v‖

= 0 . (22.4)

Note that ∇‖ here is, of course, just a synonym of ∂/∂z.
Consider now a static equilibrium with ϕ = 0. This must satisfy

v‖∇‖f0 = 0, (22.5)

so any distribution that has no dependence on z will do. This time, I want to study an
equilibrium that has some profile in space, but is Maxwellian in velocity:

f0(x,w⊥, v‖) =
n0(x)

π3/2v3
th(x)

e−(w2
⊥+v2‖)/v

2
th(x), vth(x) =

√
2T0(x)

m
. (22.6)

This set up is about as simple as it gets, but we shall see that it is nevertheless interesting.
It is, of course, inspired by tokamak physics, where x is the radial variation of the
profiles (hot and dense inside, cold and diffuse outside), but applies in many devices,
real and imaginary (e.g., various pinches; see §16.1.1) or, indeed, generally in stratified



Oxford MMathPhys Lectures: Plasma Kinetics and MHD 305

environments. Obviously, in devices, even if δB might indeed be negligble, B0 is never
perfectly straight and homogeneous, but let us for now assume that it varies on longer
scales than n0(x) or T0(x) (in a torus, that can be the distinction between the major and
minor radii); I shall come back to some important effects of the variation of B0 in §22.4.

As always, one starts with linear physics, so here is (22.4) perturbed around the
equilibrium (22.6):144

∂δf

∂t
+ v‖∇‖δf = −v‖∇‖

qϕ

T
f0 +

ρvth

2

∂f0

∂x

∂

∂y

qϕ

T
, (22.7)

where ρ = cmvth/qB0 is the Larmor radius. This is of course, two equations, one for
electrons and one for ions (assuming a single species thereof). As usual, they are connected
via quasineutrality (19.102), which, as always in KMHD, determines the electric field—in
the electrostatic limit, this means both E‖ and E⊥, as they are both set by ϕ.

22.1. Boltzmann Electrons

Writing (22.7) for electrons immediately gives us something very useful. Assuming that
Te is not hugely smaller than Ti, electrons are much faster than ions, on account of their
small mass:

vthe

vthi
=

√
Temi

Time
� 1. (22.8)

If we look for solutions with ω � k‖vthe, we can neglect all terms in (22.7) except
those ∝ v‖. On the right-hand side, this requires

ρevthe

2

∂f0e

∂x

∂

∂y

eϕ

Te

v‖∇‖
eϕ

Te
f0e

∼ kyρe
k‖Le

� 1, (22.9)

where Le is the characteristic gradient scale length of the variation of the electron density
and/or temperature profiles. This leaves us with

v‖∇‖δfe = v‖∇‖
eϕ

Te
f0e ⇒ δfe =

eϕ

Te
f0e ⇒ δne

ne
=
eϕ

Te
. (22.10)

This is called Boltzmann response for the electons [cf. (1.4)].
This is a moment to pounce: if we treat (22.10) as ϕ being determined by δne, we can

instantly relate that to δni via quasineutrality:

δni
ni

=
δne
ne

=
eϕ

Te
. (22.11)

Thus, if we can solve the ion DK equation (22.7) in terms of ϕ, then we can calculate
δni, which then immediately gives us ϕ via (22.11).

22.2. Fluid ITG Instability

So let us consider now the ion version of the linearised, electrostatic DKE (22.7).
Of course I can (and will, in §22.3) solve it in the usual way (like I did, e.g., for the
mirror instability in §21.1), but, to elicit the key physics, I shall first consider the “fluid
dynamics” of this system, by taking moments of (22.7).

144I will routinely drop the subscript 0 on the equilibrium quantities T and n wherever this
seems aesthetically justified—especially when they also carry a species subscript.
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First, take the density moment,
∫

dw (22.7)i:

∂δni
∂t

+∇‖niu‖i =
ρivthi

2

dni
dx

∂

∂y

qiϕ

Ti
, (22.12)

where qi = Ze (the ion charge). This is, obviously, the continuity equation for the total
density ni(x) + δni: this becomes particularly obvious if one notices that the right-hand
side is just −vEx∂xni, the advection of the mean density by the E ×B flow. Let

− d lnni
dx

=
1

Ln
, −d lnTi

dx
=

1

LT
. (22.13)

be the definitions of the gradient scale lengths of the ion density and temperature
(anticipating the need for the latter). The minus sign is a tokamak convention: the density
and temperature increase towards the toroidal axis, in the negative radial direction. Then
(22.12) becomes

∂

∂t

δni
ni

+∇‖u‖i = −ρivthi

2Ln

∂

∂y

Zeϕ

Ti
. (22.14)

The last term is expressed in terms of the ion density perturbation via the quasineutral-
ity (22.11):

Zeϕ

Ti
=
ZTe
Ti

δni
ni

. (22.15)

Secondly, take the parallel-velocity moment,
∫

dwmiv‖(22.7)i:

∂

∂t
miniu‖i +∇‖δp‖i = −∇‖

Zeϕ

Ti
pi, (22.16)

assuming no mean parallel flow. This is the parallel momentum equation, featuring the
parallel pressure force and the parallel electric force (−∇‖Zeniϕ). Since pi = niTi =
miniv

2
thi/2 and δp‖i = Tiδni + niδT‖i, this becomes

∂u‖i

∂t
= −v

2
thi

2
∇‖
(
δni
ni

+
δT‖i

Ti
+
Zeϕ

Ti

)
. (22.17)

Finally, to get an equation for δT‖i, take the parallel-pressure moment,
∫

dwmiv
2
‖(22.7)i:

∂δp‖i

∂t
+∇‖δq‖i =

ρivthi

2

dpi
dx

∂

∂y

Zeϕ

Ti
, (22.18)

where δq‖i is the parallel heat flux [defined in the same way as q‖ was in (21.65)].
Dividing through by pi = niTi, using the definition of the temperature gradient scale
length (22.13), and subtracting the density equation (22.14), we get

∂

∂t

δT‖i

Ti
+
∇‖δq‖i
pi

= ∇‖u‖i −
ρivthi

2LT

∂

∂y

Zeϕ

Ti
. (22.19)

The perturbed temperature evolves due to the heat flux, the compressional heating (the
first term on the right-hand side), and the advection of the mean temperature profile by
the E ×B flow (−vEx∂xTi, the last term; Fig. 89).

It is the last effect that turns out to be responsible for the injection of (free) energy
from the mean temperature profile into the fluctuations, so let us focus on it. The heat
flux can be neglected if we assume

ω � k‖vthi, (22.20)
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Figure 89. Advection of the mean temperature profile by E ×B flow creates temperature
perturbation.

and so then can be compressional heating, because ∇‖u‖i ∼ k‖vthiMa. Let us as-
sume (22.20) and worry later whether it is satisfied by the solution that we get. Note
that this amounts to taking the fluid limit: δq‖i was the only quantity in our equations
that still required δfi to be calculated. Now that it is gone, we have a closed system!
Physically, this means we are neglecting the ion Landau damping, because it rate would
be ∝ e−(ω/k‖vthi)

2 � 1, by the same approximation as I made when deriving the ion-
acoustic waves in §3.8.

So, using also (22.15), (22.19) is now

∂

∂t

δT‖i

Ti
≈ −ZTe

Ti

ρivthi

2LT

∂

∂y

δni
ni
. (22.21)

A frequency has emerged in the right-hand side, called the drift frequency:

ω∗T =
ZTe
Ti

kyρivthi

2LT
. (22.22)

We shall see shortly that (22.20) will be satisfied if

ω∗T � ω, (22.23)

and, therefore,

δT‖i/Ti

δni/ni
∼ ω∗T

ω
� 1. (22.24)

This comes handy in dealing with the parallel-velocity equation (22.17), where only the
temperature perturbation’s contribution needs retaining under this approximation:

∂u‖i

∂t
≈ −v

2
thi

2
∇‖

δT‖i

Ti
. (22.25)

Finally, the density equation remains unscathed,(
∂

∂t
+
ZTe
Ti

ρivthi

2Ln

∂

∂y

)
δni
ni

= −∇‖u‖i, (22.26)

provided, a priori, that the drift frequency associated with the density gradient is ordered
as

ω∗n ≡
ZTe
Ti

kyρivthi

2Ln
∼ ω, (22.27)

requiring, for consistency with (22.23), that

ηi ≡
Ln
LT
� 1, (22.28)

i.e., that the density gradient be much less steep than the temperature one.
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Combining (22.26), (22.25), and (22.21), and Fourier-transforming the lot (in t, z, and
y, but not, technically, in x), we get the fluid ITG dispersion relation

ω2 (ω − ω∗n) =
k2
‖v

2
thi

2
ω∗T . (22.29)

The simplest case is one where ω∗n � ω, i.e., the density gradient is even weaker than
anticipated in (22.27). Then the dispersion relation (22.29) becomes

ω3 =
k2
‖v

2
thi

2
ω∗T ⇒ ω =

(
k2
‖v

2
thi

2
|ω∗T |

)1/3(
−1

2
sgn ky +

√
3

2
i

)
. (22.30)

One of the three roots, which is the one written above, is unstable. This is called the
ion-temperature-gradient (ITG) instability, which is the main culprit behind turbulent
transport in tokamaks. Note that

ω

k‖vthi
∼
(
ω∗T
k‖vthi

)1/3

� 1 and
ω

ω∗T
∼
(
k‖vthi

ω∗T

)2/3

� 1, (22.31)

as per (22.20) and (22.23), respectively.

Physically, the instability feedback loop is easy to grasp. E × B advection of the
mean temperature gradient creates δT‖i via (22.19), or (22.21). This temperature per-
turbation has −∇‖δT‖i, a parallel pressure gradient, which drives a parallel ion flow u‖i
via (22.25). A parallel compression/rarefaction associated with this flow, ∇‖u‖i, cre-
ates δni via (22.26). This ion density perturbation immediately results in an electron
density perturbation δne via the quasineutrality (22.11). Electrons stream along the
field lines and have to be balanced by a parallel electric field, as per the Boltzmann
response (22.10). But, in an electrostatic plasma, a parallel electric field implies also a
perpendicular electric field, which drives an E ×B flow, completing the self-reinforcing
cycle. Voilà.

Exercise 22.1. Drift waves. Consider a different limit, where 1/LT = 0 and ω∗n � k‖vthi.
Work out, mathematically and physically, what happens. In constructing a physics cartoon, you
might be helped by Parra (2019b).

Yet again, we have found an instability whose growth rate increases without bound as

the wave number is increased, γ ∝ k
2/3
‖ k

1/3
y . We shall worry about the ky dependence

later, but the k‖ dependence is something that we can do something about right away: the
fastest-growing modes will break the fluid approximation (22.20), so we must do kinetic
theory after all. Let us rewind to the ion kinetic equation (22.7) and solve it properly.

22.3. Kinetic ITG Instability

The solution of (22.7) for ions (q = Ze) is

δfi =
1

k‖v‖ − ω

{
−k‖v‖ +

kyρivthi

2

[
d lnni

dx
+

(
w2
⊥ + v2

‖

v2
thi

− 3

2

)
d lnTi

dx

]}
Zeϕ

Ti
f0i,

(22.32)
for the Maxwellian equilibrium (22.6). Substituting the Boltzmann response and
quasineutrality (22.11), as well as the definitions of the gradient scale lengths (22.13),
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(a) (b)

Figure 90. (a) Frequency and (b) growth rate of the ITG instability.

then integrating the above equation over velocities, gets us a disersion relation:

1 = −
∫

dv‖
1

k‖v‖ − ω

[
ZTe
Ti

k‖v‖ + ω∗n + ω∗T

(
v2
‖

v2
thi

− 1

2

)]
e−v

2
‖/v

2
thi

√
πvthi

. (22.33)

Replacing in the above k‖v‖ = k‖v‖ − ω + ω to separate a non-resonant piece of the
density response, then changing the integration variable to u = v‖/vthi and denoting, as
usual, ζi = ω/|k‖|vthi, ζ∗n = ω∗n/|k‖|vthi, and ζ∗T = ω∗T /|k‖|vthi, we get

1 +
ZTe
Ti

= −
∫

du
1

u− ζi

[
ZTe
Ti

ζi + ζ∗n + ζ∗T

(
u2 − 1

2

)]
e−u

2

√
π
. (22.34)

All integrals are expressible in terms of the plasma dispersion function (3.83); in the term
multiplying ζ∗T , this is accomplished by writing u2 = u2− ζ2

i + ζ2
i = (u− ζi)(u+ ζi) + ζ2

i

and integrating out the non-resonant bit, giving ζi + ζ2
i Z(ζi). The result is the kinetic

ITG dispersion relation:

1 +
ZTe
Ti

+ ζ∗T ζi +

[
ζ∗n + ζ∗T

(
ζ2
i −

1

2

)
+
ZTe
Ti

ζi

]
Z(ζi) = 0 . (22.35)

Please do not confuse Z the dimensionless ion charge with Z the plasma dispersion
function!

Exercise 22.2. Recover (22.29) from (22.35) in the fluid limit (22.20) (i.e., for ζi � 1).

Exercise 22.3. What physics does (22.35) describe when ω∗n = ω∗T = 0?

The unstable solution of (22.35) is easy to get numerically. It generally looks like
the sketch in Fig. 90. There is a very easy trick that allows one to obtain the stability
boundary exactly: on the stability boundary, γ = 0, so ζi is real; therefore, the imaginary
part of (22.35) only contains terms that are proportional to Z(ζi):

ζ∗n + ζ∗T

(
ζ2
i −

1

2

)
+
ZTe
Ti

ζi = 0, (22.36)

whence also

1 +
ZTe
Ti

+ ζ∗T ζi = 0 ⇒ ζi = −
(

1 +
ZTe
Ti

)
ζ−1
∗T . (22.37)

Substituting this into (22.36), we get

ζ∗T

(
ζ∗n −

1

2
ζ∗T

)
+ 1 +

ZTe
Ti

= 0. (22.38)
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From this, we can extract the largest unstable parallel wave number:

|k‖|vthi

ω∗n
=

√
ηi(ηi − 2)

2(1 + ZTe/Ti)
, (22.39)

where ηi = ω∗T /ω∗n = Ln/LT is the ratio of the gradients, already defined in (22.28).
The instability exists for ηi > 2, i.e., for temperature gradients above a critical value set
by the density gradient:

LT > L−1
T c = 2L−1

n . (22.40)

By dimensional analysis, the peak growth rate is γmax ∝ ω∗nF (ηi) ∝ ky. Yet again, we
find unstable perturbations that grow ever faster as ky →∞, so yet again drift kinetics
is inadequate and one must access finite kyρi to capture the fastest-growing ITG mode.

It is actually not a coincidence that we keep finding that microinstabilities in drift kinetics
explode at small scales. Drift kinetics is scale-invariant because it contains no microscales that
can pin the peak growth down. The resulting UV catastrophes can be regularised either by
including finite-Larmor-radius (FLR) physics (§23) or perpendicular dissipation terms, physical
(which is, in fact, a subset of FLR physics) or artificial (as is often done in numerical simulations).

22.4. Curvature ITG Instability

If you like exercises in complex analysis, and want to know how to derive and solve exact
dispersion relations for collisionless drift kinetics with magnetic drifts, read Ivanov & Adkins
(2023).

22.5. Zonal Flows

22.6. Turbulent Heat Transport

22.7. Nature of Electrostatic Limit

As I promised at the beginning of §22, I now come back to the question of how to
justify setting δB = 0, or, rather, to show that doing so was a consistent choice. To
do that, one must ask whether, if δB 6= 0 is allowed, the electrostatic solution that we
have obtained is likely to produce any magnetic perturbations that would break the
approximation under which we obtained it. The KMHD system for a two-species plasma
consists of 5 equations: the two DK equations for the electrons and ion, the quasineutrality
equation to determine E‖, the induction equation for δB (equivalently, Faraday’s law),
and the momentum equation for u, or, really, vE (equivalently, E⊥), if u‖ is absorbed
into the kinetic variable v‖. The electrostatic ansatz, δB = 0 and E = −∇ϕ, solved
Faraday’s law identically and linked E‖ and E⊥ (and, therefore, vE) to a single scalar
field ϕ. Quasineutrality and the electron DKE then gave us an expression for this field in
terms of ion density, i.e., of the solution of the ion DKE. The only KMHD equation that
remained unused was the perpendicular momentum equation. But since the perpendicular
velocity vE is already known via E⊥ = −∇⊥ϕ, the perpendicular momentum equation
gives us a way to assess the size of the magnetic field and, therefore, the quality of the
approximation whereby the inductive part of the electric field is neglected.
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23. Gyrokinetics
A comprehensive review of gyrokinetics in a torus is Abel et al. (2013), but as a first read, I

recommend the simpler exposition by Howes et al. (2006), done for a homogeneous Maxwellian
equilibrium with a straight magnetic field.

24. Electron Drift Kinetics

24.1. Electron Drift-Kinetic Equation

24.2. ETG Instability

Adkins et al. (2022). . .

24.3. Kinetic Alfvén Waves

24.4. Thermo-Alfvénic Instability

Adkins et al. (2022). . .

24.5. Collisionless Tearing Mode

Zocco & Schekochihin (2011). . .

Exercise 24.1. Semicollisional tearing mode.
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dents who took the course, amongst them T. Adkins, A. Brown, R. Cooper, R. Ewart,
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back at me some sense of whether I was succeeding in communicating a modicum of
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Kulsrud (published as Kulsrud 2005) and the UCLA ones by Steve Cowley (Cowley
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heavily on Felix Parra’s lecture notes for his Oxford course on collisionless plasma physics
(Parra 2019b).
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