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Introductory Note

Lectures

I will not be following any single book, so I advise you to attend lectures and take notes (a
very useful skill to learn). My hand-written notes (prepared in 2012) are available via the
course webpage, http://www-thphys.physics.ox.ac.uk/people/AlexanderSchekochihin/A1/,
but they are just that—lecture notes—and so come with no guarantee of legibility or book-level
transparency of structure. This year, by popular demand, I intend to produce a LaTeX’ed ver-
sion of these Notes. The current version of this write-up will always be linked from the course
webpage; it will accrete sections as we proceed. I will be very grateful for your feedback: com-
ments, error corrections, views etc. I do of course hope that you might find these Notes helpful,
but whether you do or don’t, you must not regard them as the sole source to learn from.

Oxford has 99 libraries and you are missing out if you have not yet become an avid explorer
of the world of books. Learning a subject and making sense of it from a variety of sources is
an essential part of higher education—and indeed it is part of the thrill of one’s intellectual
formation to find oneself free to decide whom to believe and what does and doesn’t make sense.
I will give you reading suggestions, both specific ones based on the Reading List, and others,
designed for you to explore the subject laterally or in more depth—but don’t stop there, you do
not want to be intellectual clones of me, so make your own decisions what to read!

Of the books on the Reading List, I particularly like Blundell & Blundell, Pauli, Schrödinger,
and Landau & Lifshitz. The first two are on the undergraduate level, the third does not deal with
Kinetic Theory and will become relevant in HT, and “Landaushitz”—Vol. 10 does everything
on a very high level of analytical sophistication, so reading it will be a challenge and you should
not despair if you find it hard. If you prefer a much more ponderous and meticulously precise
mathematical treatment in the old Cambridge style, Chapman & Cowling can be your bible of
Kinetic Theory. This said, I’ll do it all largely my way.

The course will be quite mathematical, possibly more so than you have so far experienced. But
Physics has been a mathematical subject since Newton and we would be moving backwards if
we did it A-level style. Learning to describe and predict Nature mathematically is one of the
most impressive achievements of our civilisation. So become civilised!

Please ask questions during the lectures or by email (to a.schekochihin1@physics.ox.ac.uk).
I will appreciate real-time feedback.

Problem Sets

Problem Set 3 covers the material of Lectures 1-3. Start working on it at the end of Week 6.

Problem Set 4 will cover the rest of Kinetic Theory and is intended as vacation work.

Questions that may prove difficult (more so than anything you are likely to face in an exam)
or that deal with lateral issues are marked with (∗). Skip them if you must, although I do hope
you will relish the challenge rather than seek the minimum-energy state.
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Some Useful Constants

Boltzmann’s constant kB 1.3807× 10−23 J K−1

Proton rest mass mp 1.6726× 10−27 kg
Avogadro’s number NA 6.022× 1023 mol−1

Standard molar volume 22.414× 10−3 m3 mol−1

Molar gas constant R 8.315 J mol−1 K−1

1 pascal (Pa) 1 N m−2

1 standard atmosphere 1.0132× 105 Pa (N m−2)
1 bar (= 1000 mbar) 105 N m−2

Stefan–Boltzmann constant σ 5.67× 10−8 Wm−2K−4
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PROBLEM SET 3: Particle Distributions

Calculating Averages

3.1 a) If θ is a continuous random variable which is uniformly distributed between 0 and π,
write down an expression for p(θ). Hence find the value of the following averages:

(i) 〈θ〉
(ii) 〈θ − π

2
〉

(iii) 〈θ2〉
(iv) 〈θn〉 (for the case n ≥ 0)

(v) 〈cos θ〉

(vi) 〈sin θ〉
(vii) 〈| cos θ|〉
(viii) 〈cos2 θ〉
(ix) 〈sin2 θ〉
(x) 〈cos2 θ + sin2 θ〉

Check that your answers are what you expect.

b) If particle velocities are distributed isotropically, how are their angles distributed?
Is the angle between the velocity vector and a fixed axis (chosen by you) distributed
uniformly? Why? Answer these questions for the case of a 2- and 3-dimensional world.

3.2 a) Consider an isotropic distribution of particle velocities: f(v) = f(v), where v = |v|
is the particle speed. In 3D, what is the distribution of the speeds, f̃(v)?

Please note that the notation I use is different from Blundell & Blundell: f(v)d3v is
velocity distribution in 3D, normalised to 1; when it is isotropic, f(v) = f(v) (same
letter used, f , although if I had been more mathematically fastidious, I would have used
a different letter); the speed distribution is f̃(v)dv. In contrast, Blundell & Blundell use
f(v) for the speed distribution and g(v) for velocity distribution.

b) Calculate the following averages of velocity components in terms of averages of speed
(〈v〉, 〈v2〉, etc.)

(i) 〈vi〉, where i = x, y, z

(ii) 〈|vi|〉, where i = x, y, z

(iii) 〈v2i 〉, where i = x, y, z

(iv) 〈vivj〉, where i, j = x, y, z (any index can designate any of the components)

(v) 〈vivjvk〉, where i, j = x, y, z

You can do them all by direct integration with respect to angles, but think carefully
whether this is necessary in all cases. You may be able to obtain the answers in a
quicker way by symmetry considerations (being lazy often spurs creative thinking).

Hint for (iv). Here is a smart way of doing this. 〈vivj〉 is a symmetric rank-2 tensor (i.e.,
a tensor, or matrix, with two indices). Since the velocity distribution is isotropic, this
tensor must be rotationally invariant (i.e., not change under rotations of the coordinate
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frame). The only symmetric rank-2 tensor that has this property is a constant times
Kronecker delta δij. So it must be that 〈vivj〉 = Cδij, where C can only depend on the
distribution of speeds v (not vectors v). Can you figure out what C is? Is it the same in
2D and in 3D? This is a much simpler derivation than doing velocity integrals directly,
but it is worth checking the result by direct integration to convince yourself that the
symmetry magic works.

c∗) Calculate 〈vivjvkvl〉, where i, j, k, l = x, y, z (any index can designate any of the
components) — in terms of averages of powers of v.

Hint. Doing this by direct integration is a lot of work. Generalise the symmetry argu-
ment given above: see what symmetric rotationally invariant rank-4 tensors (i.e., tensors
with 4 indices) you can cook up: it turns out that they have to be products of Kronecker
deltas, e.g., δijδkl; what other combinations are there? Then 〈vivjvkvl〉 must be a linear
combination of these tensors, with coefficients that depend on some moments (averages)
of v. By examining the symmetry properties of 〈vivjvkvl〉, work out what these coeffi-
cients are (if you have done question b(iv) above, you’ll know what to do). How does
the answer depend on the dimensionality of the world (2D, 3D)?

3.3 The probability distribution of molecular speeds in a gas in thermal equilibrium is a
Maxwellian: a molecule of mass m will have a velocity in a 3-dimensional interval [vx, vx+
dvx]× [vy, vy + dvy]× [vz, vz + dvz] (denoted d3v) with probability

f(v)d3v ∝ e−v
2/v2thd3v,

where vth =
√

2kBT/m is the “thermal speed,” T temperature, kB Boltzmann’s constant,
and I have used the proportionality sign (∝) because the normalisation constant has been
omitted (work it out by integrating f(v) over all velocities).

a) Given the Maxwellian distribution, what is the distribution of speeds, f̃(v)? Calculate
the mean speed 〈v〉 and the mean inverse speed 〈1/v〉. Show that 〈v〉〈1/v〉 = 4/π.

b) Calculate 〈v2〉, 〈v3〉, 〈v4〉, 〈v5〉.
c∗) Work out a general formula for 〈vn〉. What is larger, 〈v27〉1/27 or 〈v56〉1/56? Do you
understand why that is, qualitatively?

Hint. Consider separately odd and even n. Use
∫∞
−∞ dxe

−x2 =
√
π. [These things are

worked out in Blundell & Blundell, but do try to figure them out yourself!]

d∗) What is the distribution of speeds f̃(v) in an n-dimensional world (for general n)?

Pressure

3.4 Remind yourself how one calculates pressure from a particle distribution function. Let
us consider an anisotropic system, where there exists one (and only one) special direction
in space (call it z), which affects the distribution of particle velocities (an example of
such a situation is a gas of charged particles in a straight magnetic field).

a) How many variables does the distribution function now depend on? (Recall that in
the isotropic case, it depended only on one, v.) Write down the most general form of the
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distribution function under these symmetries — what is the appropriate transformation
of variables from (vx, vy, vz)?

b) What is the expression for pressure p‖ (in terms of averages of those new velocity
variables) that the gas will exert on a wall perpendicular to the z axis? (It is called p‖
because it is due to particles whose velocities have non-zero projections onto the special
direction z.) What is p⊥, pressure on a wall parallel to z?

c) Now consider a wall with a normal n̂ at an angle θ to z. What is the pressure on this
wall in terms of p‖ and p⊥?

Effusion

3.5 a) Show that the number of molecules hitting unit area of a surface per unit time with
speeds between v and v + dv and angles between θ and θ + dθ to the normal is

dΦ̃(v, θ) =
1

2
nvf̃(v)dv sin θ cos θ dθ,

where f̃(v) is the distribution of particle speeds.

b) Show that the average value of cos θ for these molecules is 2
3
.

c) Using the results of Q3.3, show that for a gas obeying the Maxwellian distribution,
the average energy of all the molecules is (3/2)kBT , but the average energy of those
hitting the surface is 2kBT .

3.6 a) A Maxwellian gas effuses through a small hole to form a beam. After a certain
distance from the hole, the beam hits a screen. Let v1 be the most probable speed of
atoms that, during a fixed interval of time, hit the screen. Let v2 be the most probable
speed of atoms situated, at any instant, between the small hole and the screen. Find
expressions for v1 and v2. Why are these two speeds different?

b) You have calculated the most probable speed (v1) for molecules of mass m which
have effused out of an enclosure at temperature T . Now calculate their mean speed 〈v〉.
Which is the larger and why?

3.7 A vessel contains a monatomic gas at temperature T . Use Maxwell’s distribution of
speeds to calculate the mean kinetic energy of the molecules.

Molecules of the gas stream through a small hole into a vacuum. A box is opened for a
short time and catches some of the molecules. Assuming the box is thermally insulated,
calculate the final temperature of the gas trapped in the box.

3.8 This question requires you to think geometrically.

a) A gas effuses into a vacuum through a small hole of area A. The particles are then
collimated by passing through a very small circular hole of radius a, in a screen a distance
d from the first hole. Show that the rate at which particles emerge from the circular hole
is 1

4
nA〈v〉(a2/d2), where n is the particle density and 〈v〉 is the average speed. (Assume

no collisions take place after the gas effuses and that d� a.)

b) Show that if a gas were allowed to leak into an evacuate sphere and the particles
condensed where they first hit the surface they would form a uniform coating.
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3.9 A closed vessel is partially filled with liquid mercury; there is a hole of area A = 10−7 m2

above the liquid level. The vessel is placed in a region of high vacuum at T = 273 K
and after 30 days is found to be lighter by ∆M = 2.4 × 10−5 kg. Estimate the vapour
pressure of mercury at 273 K. (The relative molecular mass of mercury is 200.59.)

3.10 A gas is a mixture of H2 and HD in the proportion 7000:1. As the gas effuses through
a small hole from a vessel at constant temperature into a vacuum, the composition of
the remaining mixture changes. By what factor will the pressure in the vessel have
fallen when the remaining mixture consists of H2 and HD in the proportion 700:1.
(H=hydrogen, D=deuterium)

3.11 (∗) In the previous question, you worked out a differential equation for the time evolution
of the number density of the gas in the container and then solved it (if that is not
what you did, go back and think again). The container was assumed to have constant
temperature. Now consider instead a thermally insulated container of volume V with a
small hole of area A, containing a gas with molecular mass m. At time t = 0, the density
is n0 and temperature is T0. As gas effuses out through a small hole, both density and
temperature inside the container will drop. Work out their time dependence, n(t) and
T (t) in terms of the quantities given above.

Hint. Temperature is related to the total energy of the particles in the container. Same
way you calculated the flux of particles through the hole (leading to density decreasing),
you can now also calculate the flux of energy, leading to temperature decreasing. As a
result, you will get two differential (with respect to time) equations for two unknowns,
n and T . Derive and then integrate these equations (here you will have to brush up on
what learned in your 1-st year maths course).

Thermodynamic Limit

3.12 (∗) Consider a large system of volume V containing N non-interacting particles. Take
some fixed subvolume V � V . Calculate the probability to find N particles in volume
V . Now assume that both N and V tend to ∞, but in such a way that the particle
number density is fixed: N /V → n = const.

a) Show that in this limit, the probability pN to find N particles in volume V (both N
and V are fixed, N � N ) tends to the Poisson distribution whose average is 〈N〉 = nV .

Hint. This involves proving Poisson’s limit theorem. You will find inspiration or possibly
even the solution in standard probability texts, e.g., Ya. G. Sinai, Probability Theory:
An Introductory Course (Springer 1992).

b) Prove that
〈(N − 〈N〉)2〉1/2

〈N〉
=

1√
〈N〉

(so fluctuations around the average are very small as 〈N〉 � 1).

c) Show that, if 〈N〉 � 1, pN has its maximum at N ≈ 〈N〉 = nV ; then show that in
the vicinity of this maximum,

pN ≈
1√

2πnV
e−(N−nV )2/2nV .
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Hint. Use Stirling’s formula for N ! (look it up if you don’t know what that is). Taylor-
expand ln pN around N = nV .

The result of (a) is, of course, intuitively obvious, but it is nice to be able to prove it
mathematically and even to know with what precision it holds (b) — another demonstra-
tion that the world is constructed in a sensible way.
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PROBLEM SET 4: Collisions and Transport

This Problem Set is vacation work and so is longer than usual;
it contains some revision problems (at the end).

Mean Free Path

4.1 Consider a gas that is a mixture of two species of molecules: type-1 with diameter d1,
mass m1 and mean number density n1 and type-2 with diameter d2, mass m2 and mean
number density n2. If we let them collide with each other for a while (for how long?
answer this after you have solved the rest of the problem), they will eventually settle
into a Maxwellian equilibrium and the temperatures of the two species will be the same.

a) What will be the rms speeds of the two species?

b) Show that the combined pressure of the mixture will be p = p1 + p2 (Dalton’s law).

c) What is the cross-section for the collisions between type-1 and type-2 molecules?

d) What is the mean collision rate of type-1 molecules with type-2 molecules? (here
you will need to find the mean relative speed of the two types of particles, a calculation
analogous to one in the lecture notes)

Hint. You will find the answers in Pauli’s book, but do try to figure them out on your
own.

4.2 Consider particles in a gas of mean number density n and collisional cross-section σ,
moving with speed v (let us pretend they all have exactly the same speed).

a) What is the probability P (t) for a particle to experience no collisions up to time t?
Therefore, what is the mean time until it experiences a collision?

Hint. Work out the probability for a particle not to have a collision between t and t+dt.
Hence work out P (t+ dt) in terms of P (t) and the relevant parameters of the gas. You
should end up with a differential equation for P (t), which you can then solve. [You will
find this derivation in Blundell & Blundell, but do try to figure it out yourself!]

b) What is the the probability P (x) for a particle to travel a distance x before having
a collision? Show that the root mean square free path is given by

√
2λmfp where λmfp is

the mean free path.

c) What is the most probable free path length?

d) What percentage of molecules travel a distance greater than (i) λmfp, (ii) 2λmfp, (iii)
5λmfp?

4.3 Given that the mean free path in a gas at standard temperature and pressure (S.T.P.)
is about 103 atomic radii, estimate the highest allowable pressure in the chamber of an
atomic beam apparatus 10−1 m long (if one does not want to lose an appreciable fraction
of atoms through collisions).
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4.4 A beam of silver atoms passing through air at a temperature of 0◦C and a pressure of
1 Nm−2 is attenuated by a factor 2.72 in a distance of 10−2 m. Find the mean free path
of the silver atoms and estimate the effective collision radius.

4.5 (∗) Recall the example (discussed in the lecture notes) of billiard balls sensitive to the
gravitational pull of a passerby. Consider now a room filled with air. Work out how
long it will take for the trajectories of the molecules to be completely altered by the
gravitational interaction with a stray electron appearing out of nowhere at the edge of
the Universe (ignore all non-A-level physics involved).

Conductivity, Viscosity, Diffusion

4.6 a) Obtain an expression for the thermal conductivity of a classical ideal gas. Show that
it depends only on temperature and the properties of individual gas molecules.

b) The thermal conductivity of argon (atomic weight 40) at S.T.P. is 1.6×10−2 Wm−1K−1.
Use this to calculate the mean free path in argon at S.T.P. Express the mean free path
in terms of an effective atomic radius for collisions and find the value of this radius.
Solid argon has a close packed cubic structure, in which, if the atoms are regarded as
hard spheres, 0.74 of the volume of the structure is filled. The density of solid argon is
1.6 g cm−3. Compare the effective atomic radius obtained from this information with
the effective collision radius. Comment on the result.

4.7 a) Define the coefficient of viscosity. Use kinetic theory to show that the coefficient of
viscosity of a gas is given, with suitable approximations, by

η = Kρ〈v〉λmfp

where ρ is the density of the gas, λmfp is the mean free path of the gas molecules, 〈v〉 is
their mean speed, and K is a number which depends on the approximations you make.

b) In 1660 Boyle set up a pendulum inside a vessel which was attached to a pump which
could remove air from the vessel. He was surprised to find that there was no observable
change in the rate of damping of the swings of the pendulum when the pump was set
going. Explain the observation in terms of the above formula.

Make a rough order of magnitude estimate of the lower limit to the pressure which Boyle
obtained; use reasonable assumptions concerning the apparatus which Boyle might have
used. [The viscosity of air at atmospheric pressure and at 293 K is 18.2 µN s m−2.]

Explain why the damping is nearly independent of pressure despite the fact that fewer
molecules collide with the pendulum as the pressure is reduced.

4.8 Two plane disks, each of radius 5 cm, are mounted coaxially with their adjacent sur-
faces 1 mm apart. They are in a chamber containing Ar gas at S.T.P. (viscosity
2.1×10−5 N s m−2) and are free to rotate about their common axis. One of them ro-
tates with an angular velocity of 10 rad s−1. Find the couple which must be applied to
the other to keep it stationary.
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4.9 Measurements of the viscosity η of argon gas (40Ar) over a range of pressures yield the
following results at two temperatures:

at 500 K η ≈ 3.5× 10−5 kg m−1 s−1

at 2000 K η ≈ 8.0× 10−5 kg m−1 s−1

The viscosity is found to be approximately independent of pressure. Discuss the extent
to which these data are consistent with (i) simple kinetic theory, and (ii) the diameter of
the argon atom (0.34 nm) deduced from the density of solid argon at low temperatures.

4.10 a) Argue qualitatively or show from elementary kinetic theory that the coefficient of
self-diffusion D, the thermal conductivity κ and the viscosity η of a gas are related via

D ∼ κ

cV
∼ η

ρ
,

where cV is the heat capacity per unit volume (3nkB/2 for ideal monatomic gas) and ρ
is the mass density of the gas.

b∗) Starting from the kinetic equation for the distribution function F ∗(t, r,v) of some
labelled particle admixture in a gas, derive the self-diffusion equation

∂n∗

∂t
= D

∂2n∗

∂z2

for the number density n∗(t, z) =
∫
d3vF ∗(t, z,v) of the labelled particles (which we

assume to change only in the z direction). Derive also the expression for the self-diffusion
coefficient D, given that
—the molecular mass of the labelled particles is m∗,
—the temperature of the unlabelled ambient gas is T (assume it is uniform),
—collision frequency of the labelled particles with the unlablelled ones is ν∗c .
Assume that the ambient gas is static (no mean flows), that the density of the labelled
particles is so low that they only collide with the unlabelled particles (and not each
other) and that the frequency of these collisions is much larger than the rate of change
of any mean quantities. Use the Krook collision operator, assuming that collisions relax
the distribution of the labelled particles to a Maxwellian F ∗M with density n∗ and the
same velocity (zero) and temperature (T ) as the ambient unlabelled gas.

Hint. Is the momentum of the labelled particles conserved? You should discover that
self-diffusion is related to the mean velocity u∗z of the labelled particles (you can assume
u∗z � vth). You can calculate this velocity either directly from δF ∗ = F ∗ − F ∗M or from
the momentum equation for the labelled particles.

c∗) Derive the momentum equation for the mean flow of the labelled particles and obtain
the result you have known since school: friction force (collisional drag exerted on labelled
particles by the ambient population) is proportional to the mean velocity (of the lablelled
particles). What is the proportionality coefficient? This, by the way, is the “Aristotelian
equation of motion” — Aristotle thought force was generally proportional to velocity. It
took a while for another man to figure out the more general formula.

Show from the momentum equation you have derived that the flux of labelled particles
is proportional to their pressure gradient: n∗u∗z = −(1/m∗ν∗c )∂p∗/∂z.
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Heat Diffusion Equation

4.11 a) A cylindrical wire of thermal conductivity κ, radius a and resistivity ρ uniformly
carries a current I. The temperature of its surface is fixed at T0 using water cooling.
Show that the temperature T (r) inside the wire at radius r is given by

T (r) = T0 +
ρI2

4π2a4κ
(a2 − r2).

b) The wire is now placed in air at temperature Tair and the wire loses heat from its
surface according to Newton’s law of cooling (so that the heat flux from the surface of
the wire is given by α(T (a)− Tair) where α is a constant. Find the temperature T (r).

4.12 A microprocessor has an array of metal fins attached to it, whose purpose is to remove
heat generated within the processor. Each fin may be represented by a long thin cylindri-
cal copper rod with one end attached to the processor; heat received by the rod through
this end is lost to the surroundings through its sides.

The internal energy density ε of the rod is related to its temperature T via ε = ρcmT ,
where ρ is mass density, cm the specific (i.e., per unit mass) heat capacity of the metal
(not 3kB/2m; you will learn what it is later in the course). Show that the temperature
T (x, t) at location x along the rod at time t obeys the equation

ρcm
∂T

∂t
= κ

∂2T

∂x2
− 2

a
R(T ),

where a is the radius of the rod, and R(T ) is the rate of heat loss per unit area of surface
at temperature T .

The surroundings of the rod are at temperature T0. Assume that R(T ) has the form
(Newton’s law of cooling)

R(T ) = A(T − T0).
In the steady state:

(a) obtain an expression for T as a function of x for the case of an infinitely long rod
whose hot end has temperature Tm;

(b) show that the heat that can be transported away by a long rod of radius a is
proportional to a3/2, provided that A is independent of a.

In practice the rod is not infinitely long. What length does it need to have for the results
above to be approximately valid? The radius of the rod is 1.5 mm.

[The thermal conductivity of copper is 380 W m−1 K−1. The cooling constant A =
250 W m−2 K−1.]

4.13 One face of a thick uniform layer is subject to a sinusoidal temperature variation of
angular frequency ω. Show that damped sinusoidal temperature oscillations propagate
into the layer and give an expression for the decay length of the oscillation amplitude.

A cellar is built underground covered by a ceiling which is 3 m thick made of limestone.
The outside temperature is subject to daily fluctuations of amplitude 10◦C and annual
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fluctuations of 20◦C. Estimate the magnitude of the daily and annual temperature vari-
ations within the cellar. Assuming that January is the coldest month of the year, when
will the cellar’s temperature be at its lowest?

[The thermal conductivity of limestone is 1.6 Wm−1K−1, and the heat capacity of lime-
stone is 2.5× 106JK−1m−3.]

Pressure, Energy, Effusion (revision)

4.14 Consider an insulated cylindrical vessel filled with monatomic ideal gas, closed on one
side and plugged by a piston on the other side. The piston is very slowly pulled out (its
velocity u is much smaller than the thermal velocity of the gas molecules). Show using
kinetic theory, not thermodynamics, that during this process the pressure p of the gas
inside the vessel and its volume V are related by pV 5/3 =const.

Hint. Consider how the energy of a gas particle changes after each collision with the
piston and hence calculate the rate of change of the internal energy of the gas inside the
vessel.

4.15 Consider two chambers of equal volume separated by an insulating wall and containing an
ideal gas maintained at two distinct temperatures T1 = 225 K and T2 = 400 K. Initially
the two chambers are connected by a long tube whose diameter is much larger than the
mean free path in either chamber and equilibrium is established (while maintaining T1
and T2). Then the tube is removed, the chambers are sealed, but a small hole is opened
in the insulating wall, with diameter d� λmfp (for either gas).

a) In what direction will the gas flow through the hole: 1→ 2 or 2→ 1?

b) If the total mass of the gas in both chambers is M , what is the mass ∆M of the gas
that will be transferred through the hole from one chamber to the other before a new
equilibrium is established?

Answer. You should find that

∆M =

√
T1T2

T1 + T2

√
T2 −

√
T1√

T1 +
√
T2
M.
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