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Some Useful Constants

Boltzmann’s constant kB 1.3807× 10−23 J K−1

Proton rest mass mp 1.6726× 10−27 kg
Avogadro’s number NA 6.022× 1023 mol−1

Standard molar volume 22.414× 10−3 m3 mol−1

Molar gas constant R 8.315 J mol−1 K−1

1 pascal (Pa) 1 N m−2

1 standard atmosphere 1.0132× 105 Pa (N m−2)
1 bar (= 1000 mbar) 105 N m−2

Stefan–Boltzmann constant σ 5.67× 10−8 Wm−2K−4



PROBLEM SET 5: Foundations of Statistical Mechanics

If you want to try your hand at some practical calculations first, start with the Ideal Gas questions

Maximum Entropy Inference

5.1 Factorials. a) Use your calculator to work out ln 15! Compare your answer with the
simple version of Stirling’s formula (lnN ! ≈ N lnN − N). How big must N be for the
simple version of Stirling’s formula to be correct to within 2%?

b∗) Derive Stirling’s formula (you can look this up in a book). If you figure out this
derivation, you will know how to calculate the next term in the approximation (after
N lnN −N) and therefore how to estimate the precision of lnN ! ≈ N lnN −N for any
given N without calculating the factorials on a calculator. Check the result of (a) using
this method.

5.2 Tossing coins and assigning probabilities. This example illustrates the scheme for as-
signment of a priori probabilities to microstates, discussed in the lectures.

Suppose we have a system that only has two states, α = 1, 2, and no further information
about it is available. We will assign probabilities to these states in a fair and balanced
way: by flipping a coin N � 1 times, recording the number of heads N1 and tails N2

and declaring that the probabilities of the two states are p1 = N1/N and p2 = N2/N .

a) Calculate the number of ways, W , in which a given outcome {N1,N2} can happen,
find its maximum and prove therefore that the most likely assignment of probabilities
will be p1 = p2 = 1/2. What is the Gibbs entropy of this system?

b) Show that for a large number of coin tosses, this maximum is sharp. Namely, show
that the number of ways W (m) in which you can get an outcome with N /2−m heads
(where N � m� 1) is

W (m)

W (0)
≈ exp

(
−2m2/N

)
,

where W (0) corresponds to the most likely situation found in (a) and so the relative
width of this maximum is δp = m/N ∼ 1/

√
N .

Hint. Take logs and use Stirling formula.

5.3 Loaded die. Imagine throwing a die and attempting to determine the probability dis-
tribution of the outcomes. There are 6 possible outcomes: α = 1, 2, 3, 4, 5, 6; their
probabilities are pα.

a) If we know absolutely nothing and believe in maximising entropy as a guiding princi-
ple, what should be our a priori expectation for pα? What then do we expect the average
outcome 〈α〉 to be?

b) Suppose someone has performed very many throws and informs us that the average
is in fact 〈α〉 = 3.667. Use the principle of maximum entropy to determine all pα.
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Hint. You will find the answer (not the solution) in J. Binney’s lecture notes. This is a
good opportunity to verify your solution. To find the actual probabilities, you may have
to find the root of a transcendental equation — this is easily done on the computer or
even on an advanced calculator.

Canonical Ensemble

5.4 Heat Capacity, Thermal Stability and Fluctuations.

a) Derive the general expression for heat capacity at constant volume, CV , in terms of
derivatives of the partition function Z(β) with respect to β = 1/kBT .

b) Use the partition function of the monatomic ideal gas to check that this leads to the
correct expression for its heat capacity.

c) From the result of (a), show that CV ≥ 0 (so thermal stability, derived in Lecture
Notes §10.5.1, is not in peril).

d) In (c), you should have obtained an expression that relates CV to mean square devia-
tion (or variance, or fluctuation) of the exact energy of the system from its mean value,
〈∆E2〉 = 〈(Eα − U)2〉. Show that 〈∆E2〉/U2 → 0 as the size of the system →∞.

5.5 Elastic chain. A very simplistic model of an elastic chain is illustrated above. This is a
1D chain consisting of N segments, each of which can be in one of two (non-degenerate)
states: horizontal (along the chain) or vertical. Let the length of the segment be a when
it is horizontal and 0 when it is vertical. Let the chain be under fixed tension γ and so
let the energy of each segment be 0 when it is horizontal and γa when it is vertical. The
temperature of the chain is T .

a) What are the microstates of the chain? Treating the chain using the canonical en-
semble, work out the single-segment partition function and hence the partition function
of the entire chain.

b) Work out the relationship between mean energy U and mean length L of the chain and
hence calculate the mean length as a function of γ and T . Under what approximation
do we obtain Hooke’s law: L = L0 + Aγ/T , where L0 and A are constants?

c) Calculate the heat capacity for this chain and sketch it as a function of temperature
(pay attention to what quantity is held constant for the calculation of the heat capacity).
Why physically does the heat capacity vanish both at small and large temperatures?

d) Negative temperature. If you treat the mean energy U of the chain as given and
temperature as the quantity to be found, you will find that temperature can be negative!
Sketch T as a function of U and determine under what conditions T < 0. Why is this
possible in this system and not, say, for the ideal gas? Why does the stability argument
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from Lecture Notes §10.5.2 not apply here? Where else in this problem set have you
encountered negative temperature and why was it OK there?

e∗) Superfluous constraints. This example illustrates that if you have more measurements
and so more constraints, you do not necessarily get a different statistical mechanics (so
the maximum entropy principle is less subjective than it might seem; this is discussed
in Lecture Notes §12.5).

So far we have treated our chain as a canonical ensemble, i.e., we assumed that the
only constraint on probabilities would be the mean energy U . Suppose now that we
have both a thermometer and a ruler and so wish to maximise entropy subject to two
constraints: the mean energy is U and also the mean length of the chain is L. Do this
and find the probabilities of the microstates α of the chain as functions of their energies
Eα and corresponding chain lengths `α. Show that the maximisation problem only has
a solution when U and L are in a specific relationship with each other — so the new
constraint is not independent and does not bring in any new physics. Show that in this
case one of the Lagrange multipliers is arbitrary (and so can be set to 0 — e.g., the one
corresponding to the constraint of fixed L; this constraint is superfluous so we are back
to the canonical ensemble).

Classical Monatomic Ideal Gas

5.6 Consider a classical ideal monatomic gas of N spinless particles of mass m in a volume
V at a temperature T .

a) Derive the formula for its partition function. Show that if particles in the gas were
distinguishable, the entropy would be a non-extensive (non-additive) function. Why is
this a problem? Show that if indistinguishability is properly accounted for, this problem
disappears. Under what assumption is it OK to use a simple 1/N ! compensating factor
to account for indistinguishability?

b) Consider two equal volumes containing two classical ideal gases at the same tem-
perature and pressure. Using the Sackur-Tetrode equation, find the entropy change on
mixing the two gases (i) when the gases are identical, and (ii) when they are different.
If the answers for these two cases are different (or otherwise), explain why that makes
physical sense.

c) Using the explicit expression for the entropy of the classical ideal monatomic gas in
equilibrium, show that for such a gas undergoing an adiabatic process, PV 5/3 = const.

5.7 Relativistic Ideal Gas.

a) Show that the equation of state of an ideal gas is still PV = NkBT even when the
gas is heated to such a high temperature that the particles are moving at relativistic
speeds. Why is it unchanged?

b) Although the equation of state does not change when the particles in a monatomic
ideal gas start to move at relativistic speeds, show, by explicit calculation of the expres-
sion for the entropy, that in the formula for an adiabat, PV γ = const, the exponent γ in
the relativistic limit is 4

3
, rather than 5

3
as in the non-relativistic case. You can assume
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that the particles are ultrarelativistic, i.e., their rest energy is negligible compared to
their kinetic energy.

c) Show that for an ultra-relativistic gas, pressure p = ε/3, where ε is the internal energy
density. Is it different than for a non-relativistic gas? Why?

5.8 Density of States.

a) Consider a particle living in a 2D box. What is the density of states g(k) for it? What
is g(k) for a particle in a 1D box? (The 3D case was done in the Lectures.)

b∗) Calculate the density of states in a d-dimensional box.

Hint. You will need to calculate the area of a unit sphere in d dimensions (the full solid
angle in d dimensions). You have done it before (Q3.3d, last term). You can look it up
somewhere (e.g., in Kardar’s book) or figure it out yourself.
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PROBLEM SET 6: Statistical Mechanics of Simple Systems

This Problem Set can be attempted during Weeks 4 and 5 of Hilary Term, with the tutorial
or class on this material held at the end of Week 5 or later.

Calculation of thermodynamic quantities from the partition function

6.1 Consider an array of N localised spin–1
2

paramagnetic atoms. In the presence of a
magnetic field of flux density B, the two degenerate spin states split by ±µBB, where
µB is the Bohr magneton.

(i) Derive the single-particle partition function for the system.

(ii) Show that the heat capacity CB can be written as

CB =

(
∂Qrev

∂T

)
B

= NkB

(
θ

T

)2
eθ/T

(eθ/T + 1)2
. (1)

Show that CB has a maximum at a temperature Tmax = AµBB/kB where A is a numerical
constant. Determine A, and sketch CB as a function of θ/T .

(iii) Given that the largest static magnetic field that can easily be produced in the
laboratory is of order 10 Tesla, estimate the temperature at which the magnetic heat
capacity of such a system will be largest.

6.2 An array of N 1D simple harmonic oscillators is set up with an average energy per
oscillator of (m+ 1

2
)~ω. Show that the entropy per oscillator is given by

S

NkB
= (1 +m) ln(1 +m)−m lnm. (2)

Comment on the value of the entropy when m = 0.

6.3 An assembly of N particles per unit volume, each having angular momentum J , is
placed in a magnetic field. The field splits the level into 2J + 1 different energies, given
by mJgJµBB, where mJ runs from −J to +J . gJ is known as the Landé g-factor, which
you will presently meet in atomic physics.

(i) Show that the single-particle partition function Zmag of the magnetic system can be
written as

Zmag =
sinh[(J + 1

2
)y]

sinh(y/2)
. (3)

where y = gJµBB/kBT .

(ii) Show that the susceptibility, χ, (defined as µ0M/B as B → 0) is given by

χ =
µ0Ng

2
Jµ

2
BJ(J + 1)

3kBT
. (4)

Prove that this is consistent with the result derived in lectures for a spin–1
2

paramagnet.
[N.B. In the limit of small x, cothx ≈ 1/x+ x/3]
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Diatomic gases and the equipartition theorem

6.4 Comment on the following values of molar heat capacity at constant pressure Cp in
J K−1 mol−1, all measured at 298 K.

Al 24.35
Ar 20.79
Au 25.42
Cu 24.44
He 20.79
H2 28.82
Fe 25.10

Pb 26.44
Ne 20.79
N2 29.13
O2 29.36
Ag 25.53
Xe 20.79
Zn 25.40

[Hint: express the values in terms of R, and compare them with the predictions of the
equipartition theorem. Which substance is a solid and which is gaseous?]

6.5 Experimental data for the molar heat capacity of N2 as a function of temperature are
shown in the table below.

T (Kelvin) 170 500 770 1170 1600 2000 2440
CV /R 2.5 2.57 2.76 3.01 3.22 3.31 3.4

(i) Estimate the frequency of vibration of the N2 molecule.

(ii) By making a rough estimate of the moment of inertia of the molecule, comment on
the possibility of quenching the rotational degrees of freedom and hence reducing the
heat capacity of nitrogen to 3R/2 per mole.

6.6 Show that for a diatomic molecule at a temperature, T , such that θrot � T � θvib, where
θrot and θvib are its characteristic temperatures of rotation and vibration respectively,
the partition function satisfies Z ∝ V T 5/2. Hence show that pV 7/5 is a constant along
an adiabat.

Grand canonical ensemble and chemical potential

6.7 Classical Ideal Gas.

a) Starting from the grand canonical distribution, prove that the equation of state for a
classical ideal gas is P = nkBT , where n = N/V is the mean number density.

b) Find the chemical potential µ as a function of pressure P and temperature T for a
diatomic classical ideal gas whose rotational levels are excited but vibrational ones are
not. The mass of each of the two atoms in the molecule is m, the separation between
them is r.
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6.8 Rotating Gas. A cylindrical container of radius R is filled with ideal gas at temperature
T and rotating around the axis with angualar velocity Ω. The molecular mass is m.
The mean density of the gas without rotation is n̄. Assuming the gas is in isothermal
equilibrium, what is the gas density at the edge of the cylinder, n(R)? Discuss the high
and low temperature limits of your result.

Hint. You should be able to write the centrifugal force in terms of a potential, which
then tells you what the energy levels of molecular motion in a rotating gas are.

6.9 Particle Number Distribution. Consider a volume V of classical ideal gas with mean
number density n = N/V , where N is the mean number of particles in this volume.
Starting from the grand canonical distribution, show that the probability to find exactly
N particles in this volume is a Poisson distribution (thus, you will have recovered the
result you proved in PS-3 by a different method).

Multispecies systems

6.10 Ionisation-Recombination Equlibrium. Consider hydrogen gas at high enough tempera-
ture that ionisation and recombination are occurring (i.e., we are dealing with a partially
ionised hydrogen plasma). The reaction is

H ⇔ p+ + e−

(hydrogen atom becomes a proton + an electron or vice versa). Our goal is to find,
as a function of density and temperature (or pressure and temperature), the degree of
ionisation χ = np/n, where np is proton number density, n = nH + np is total number
density of hydrogen, ionised or not, and nH is the number density of the un-ionised H
atoms. Note that n is fixed (conservation of nucleons). Assume overall charge neutrality
of the system.

a) What is the relation between chemical potentials of the H, p and e gases if the system
is in chemical equlibrium?

b) Treating all three species as classical ideal gases, show that in equlibrium

nenp
nH

=

(
mekBT

2π~2

)3/2

e−R/kBT ,

where R = 13.6 eV (1 Rydberg) is the ionisation energy of hydrogen. This formula is
known as the Saha Equation.

Hint. Remember that you have to include the internal energy levels into the partition
function for the hydrogen atom. You may assume that only the ground state energy
level −R matters (i.e., neglect all excited states).

c) Hence find the degree of ionisation χ = np/n as function of n and T . Does χ
go up or down as density is decreased? Why? Consider a cloud of hydrogen with
n ∼ 1 cm−3. Roughly at what temperature would it be mostly ionised? These are
roughly the conditions in the so called “warm” phase of the interstellar medium — the
stuff that much of the Galaxy is filled with (although the law of mass action is not
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thought to be a very good approximation for interstellar medium, because it is not
exactly in equilibrium).

d) Now find an expression for χ as a function of total gas pressure p and temperature T .
Sketch χ as a function of T at several constant values of p.

Other Ensembles

6.11 Microcanonical Ensemble Revisited. Derive the grand canonical distribution starting
from the microcanonical distribution (i.e., by considering a small subsystem exchanging
particles and energy with a large, otherwise isolated system).

Hint. This is a generalisation of the derivation in Lecture Notes §12.3. If you can’t figure
it out on your own, you will find the solution in Blundell & Blundell’s or Kittel’s books.

6.12 (∗) Pressure Ensemble. Throughout this course, we have repeatedly discussed systems
whose volume is not fixed, but allowed to come to some equilibrium value under pressure.
Yet, in both canonical and grand canonical ensembles, we treated volume as an external
parameter, not as a quantity only measurable in the mean. In this question, your
objective is to construct an ensemble in which the volume is not fixed.

a) Consider a system with (discrete) microstates α to each of which corresponds some
energy Eα and some volume Vα. Maximise Gibbs entropy subject to measured mean
energy being U and the mean volume V , whereas the number of particles N is exactly
fixed and find the probabilities pα. Show that the (grand) partition function for this
ensemble can be defined as

Z =
∑
α

e−βEα−σVα ,

where β and σ are Lagrange multipliers. How are β and σ determined?

b) Show that if we demand that the Gibbs entropy SG for those probabilities be equal
to S/kB, where S is the thermodynamic entropy, then the Lagrange multiplier arising
from the mean-volume constraint is σ = βP = P/kBT , where P is pressure. Thus, this
ensemble describes a system under pressure set by the environment.

c) Prove that dU = TdS − PdV .

d) Show that −kBT lnZ = G, where G is the Gibbs free energy defined in the usual
way. How does one calculate the equation of state for this ensemble?

e) Calculate the partition function Z for classical monatomic ideal gas in a container
of changeable volume but impermeable to particles (e.g., a balloon made of inelastic
material). You will find it useful to consider microstates of an ideal gas at fixed volume
V and then sum up over all possible values of V . This sum (assumed discrete) can be
converted to an integral via

∑
V =

∫∞
0
dV/∆V , where ∆V is the “quantum of volume.”

You will also need to use the formula
∫∞
0
dxxNe−x = N !

f) Calculate G and find what conditions ∆V must satisfy in order for the resulting
expression to coincide with the standard formula for the ideal gas (derived in the lectures
and Q6.7) and be independent of ∆V (assume N � 1).

g) Show that the equation of state is P = nkBT , where n = N/V .
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PROBLEM SET 7: Quantum Gases

This Problem Set can be attempted during Weeks 6 and 7 of Hilary Term, with the tutorial
or class on this material held in Week 7 or later. Some of the questions (1, 2, 5-7, 8, 9)

require quite long calculations, so start working on this Problem Set early! Note that gaining
good command of these techniques is crucial both for your understanding of this course and

for several 3rd-year papers.

Basic Calculations for Quantum Gases

7.1 Ultrarelativistic Quantum Gas. Consider an ideal quantum gas (Bose or Fermi) in the
ultrarelativistic limit.

(a) Find the equation that determines its chemical potential (implicitly) as a function
of density n and temperature T .

(b) Calculate the energy U and grand potential Φ and hence prove that the equation of
state can be written as

PV =
1

3
U,

regardless of whether the gas is in the classical limit, degenerate limit or in between.

(c) Consider an adiabatic process with the number of particles held fixed and show that

PV 4/3 = const

for any temperature and density (not just in the classical limit).

(d) Show that in the hot, dilute limit (large T , small n), eµ/kBT � 1. Find the specific
condition on n and T that must hold in order for the classical limit to be applicable.
Hence derive the condition for the gas to cease to be classical and become degener-
ate. Estimate the minimum density for which an electron gas can be simultaneously
degenerate and ultrarelativistic.

(e) Find the Fermi energy εF of an ultrarelativistic electron gas and show that when
kBT � εF , its energy density is 3nεF/4 and its heat capacity is

CV = NkBπ
2kBT

εF

(it is not terribly essential that you can calculate the π2 numerical factor in this formula,
so if you prefer qualitative calculations to quantitative ones, simply give a qualitative
argument showing that CV ∼ Nk2BT/εF ).

Sketch the heat capacity of an ultrarelativistic electron gas as a function of temperature,
from T � εF/kB to T � εF/kB.

Note: The calculations you are asked to do here are precisely analogous to the calcu-
lations in the Lectures, which were done for the non-relativistic limit and so used a
different relationship ε(k) between energy and wave number. This relationship is the
only difference for the ultra-relativistic case — you will have to track down through the
standard calculation how things are modified as a result.
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7.2 Degenerate Bose Gas in 2D.

(a) Show that Bose condensation does not occur in 2D.

Hint. The integral you will get when you write the formula for N is doable in elementary
functions. You should find that that N ∝ ln(1− eβµ).

(b) Calculate the chemical potential as a function of n and T in the limit of small T .
Sketch µ(T ) from small to large T .

(c) Show that the heat capacity (at constant area) is C ∝ T at low temperatures and
sketch C(T ) from small to large T .

Note: The 2D calculations you are asked to do here are again precisely analogous to the
3D calculations in the lectures. The challenge is to track down how the switch from 3D
to 2D affects things and so figure out why the condensation phenomenon does not occur
(to do this, it will be useful also to work through the 3D calculation to see why in does
occur in 3D).

Non-relativistic Fermi Gases at Zero Temperature

7.3 Calculate the Fermi energies εF (in units of eV) and the corresponding Fermi tempera-
tures TF for:

(a) Liquid 3He (density 0.0823 g cm−3).

(b) Electrons in aluminium (valence 3, density 2.7 g cm−3).

(c) Neutrons in the nucleus of 16O. The radius r of a nucleus scales roughly as r ≈
1.2A1/3 × 10−15 m, where A is the atomic mass number.

7.4 (i) Consider a system where N electrons are constrained to move in two dimensions in a
region of area A. What is the density of states for such a system? Obtain an expression
for the Fermi energy of such a system as a function of the surface density n = N/A.

(ii) The electrons in a GaAs/AlGaAs heterostructure (this just means they act as though
they are in 2D!) have a density of 4× 1011 cm−2. The electrons act as free particles, but
their interaction with the lattice means that they “appear” to have a mass of only 15%
of their normal mass (don’t worry about this — this property is something you will come
across in the Solid State course). What is the Fermi energy of the electrons?

(iii) Derive an expression for the density of states and Fermi energy for electrons confined
in 1D.

(iv) There are certain long-chain molecules which contain mobile electrons. The electrons
can move freely along the chain, and the system is a 1D organic conductor, with n
electrons per unit length. A typical molecule of this type has a spacing of 2.5Å between
the atoms that donate electrons, and “on average” each atom donates 0.5 electrons.
What is the Fermi energy of this system?
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Stability of Stars

7.5 A solar-mass star (M� = 2 × 1030 kg) will eventually run out of nuclear fuel (all the
fusion processes stop). At this point it will collapse into a white dwarf, and comprise a
degenerate electron gas (i.e. one that obeys quantum statistics) with the nuclei neutral-
izing the charge and providing the gravitational attraction. The radius of the star can
be found by balancing the gravitational energy with the energy of the electrons. The
electrons can, to a good approximation, be treated as though T = 0 (because, as we
shall find, the Fermi energy is very large). The real calculation of this problem is quite
sophisticated, and we are only going to use a very crude method to illustrate the basic
physics.

(i) Assume a star of mass M and radius R is of uniform density (clearly this will not
be the case in reality — and the next best method uses a pressure balance equation —
but we are going to do the easiest calculation that gets answers in the right ball park).
Show that the gravitational potential energy of the star is

Ugrav = −3GM2

5R
, (5)

where G is the gravitational constant. [Hint: “build” the star up out of spherical shells].

(ii) Assume that the star contains equal numbers of electrons, protons, and neutrons. If
the electrons can be treated as being non-relativistic, show that the total energy of the
degenerate electrons is given by

Uelectrons = 0.0088
h2M5/3

mem
5/3
p R2

, (6)

where the mass of a neutron or proton is mp.

(iii) The white dwarf will have a radius, R, that minimizes the total energy. Sketch Utotal

as a function of R, and derive an expression for the equilibrium radius R(M).

(iv) Show that the equilibrium radius for a solar-mass white dwarf is of order the radius
of the earth.

(v) Evaluate the Fermi energy. Do you think we were correct in treating the electrons
as being non-relativistic?

7.6 (i) If the electrons in the white dwarf considered in the previous question were relativistic,
show that the total energy of the electrons in the star would scale as R−1 rather than
R−2 as in the non-relativistic case.

(ii) If the electrons are relativistic, the star is no longer stable and will collapse further.
This will happen when the average energy of an electron is of order its rest mass. Above
what mass would you expect a white dwarf to be unstable? (This limit is called the
Chandrasekhar limit, and was first derived by him when he was aged 19, during his
voyage from India to England — it was published in 1931).
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7.7 A white dwarf with a mass above the Chandrasekhar limit collapses to such a high
density that the electrons and protons react to form neutrons (+neutrinos): the star
comprises neutrons only, and is called a neutron star.

(i) Using the same methods as in the two previous questions, find the mass-radius rela-
tionship of a neutron star, assuming the neutrons are non-relativistic.

(ii) What is the radius of a neutron star of 1 solar mass?

(iii) Again, if the average energy of the neutrons becomes relativistic, the star will be
unstable. When a neutron star collapse occurs, a black hole is formed. Make an estimate
of the critical mass of a neutron star.

Further Applications of Quantum Statistics

7.8 Pair Production. At relativistic temperatures, the number of particles can stop being a
fixed number, with production and annihilation of electron-positron pairs providing the
number of particles required for thermal equilibrium. The reaction is

e+ + e− ⇔ photon(s).

(a) What is the condition of “chemical” equilibrium for this system?

(b) Assume that the numbers of electrons and positrons are the same (i.e., ignore the
fact that there is ordinary matter and, therefore, a surplus of electrons). This allows you
to assume that the situation is fully symmetric and the chemical potentials of electrons
and positrons are the same. What are they equal to? Hence calculate the densitiy of
electrons and positrons n± as a function of temperature, assuming kBT � mec

2. You
will need to know that ∫ ∞

0

dx x2

ex + 1
=

3

2
ζ(3), ζ(3) ≈ 1.202

(see, e.g., Landau & Lifshitz §58 for the derivation of this formula).

(c) To confirm an a priori assumption you made in (b), show that at ultrarelativistic
temperatures, the density of electrons and positrons you have obtained will always be
larger than the density of electrons in ordinary matter. This will require you to come
up with a simple way of estimating the upper bound for the latter.

(d∗) Now consider the non-relativistic case, kBT � mec
2, and assume that temperature

is also low enough for the classical (non-degenerate) limit to apply. Let the density
of electrons in matter, without the pair production, be n0. Show that the density of
positrons due to spontaneous pair production, in equilibrium, is exponentially small:

n+ ≈ 4

n0

(
mekBT

2π~2

)3

e−2mec
2/kBT .

Hint. Use the law of mass action. Note that you can no longer assume that pairs are
more numerous than ordinary electrons. Don’t forget to reflect in your calculation the
fact that the energy cost of producing an electron or a positron is mec

2.
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7.9 (∗) Paramagnetism of a Degenerate Electron Gas (Pauli Magnetism). Consider a fully
degenerate non-relativistic electron gas in a weak magnetic field. Since the electrons
have two spin states (up and down), take the energy levels to be

ε(k) =
~2k2

2m
± µBB,

where µB = e~/2mec is the Bohr magneton (in cgs-Gauss units). Assume the field to be
sufficiently weak so that µBB � εF .

(a) Show that the magnetic susceptibility of this system is

χ =

(
∂M

∂B

)
B=0

=
31/3

4π4/3

e2

mec2
n1/3,

where M is the magnetisation (total magnetic moment per unit volume) and n density
(the first equality above is the definition of χ, the second is the answer you should get).

Hint. Express M in terms of the grand potential Φ. Then use the fact that energy enters
the Fermi statistics in combination ε − µ with the chemical potential µ. Therefore, in
order to calculate the individual contributions from the spin-up and spin-down states to
the integrals over single-particle states, we can use the unmagnetised formulae with µ
replaced by µ± µBB, viz., the grand potential, for example, is

Φ(µ,B) =
1

2
Φ0(µ+ µBB) +

1

2
Φ0(µ− µBB),

where Φ0(µ) = Φ(µ,B = 0) is the grand potential in the unmagnetised case. Make sure
to take full advantage of the fact that µBB � εF .

(b) Show that in the classical (non-degenerate) limit, the above method recovers Curie’s
law. Sketch χ as a function of T , from very low to very high temperature.

(c∗) Show that at T � ε/kB, the finite-temperature correction to χ is quadratic in T
and negative (i.e., χ goes down as T increases).

Thermal radiation

7.10 Thermal radiation can be treated thermodynamically as a gas with internal energy U =
u(T )V , pressure p = u/3 and chemical potential µ = 0. Starting from the fundamental
equation dU = TdS − pdV + µdN , show that

(i) the energy density u ∝ T 4,

(ii) the temperature T ∝ V −1/3 in an adiabatic expansion.

The Universe is filled uniformly with radiation called the cosmic microwave background
(CMB) which is left over from an early stage of development when the Universe contained
a hot dense plasma of electrons and baryons. The CMB became thermally decoupled from
the plasma when the Universe was very young, and since then has expanded adiabatically.
The temperature of the CMB is currently 2.73 K, and the cosmic scale factor which
describes the relative expansion of the Universe is approximately 1,100 times larger
today than it was at the time of decoupling. Determine the temperature of the Universe
at the time of decoupling.
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7.11 Outline the steps leading to the formula for the number of photons with angular fre-
quencies between ω and ω + dω in blackbody radiation at a temperature T :

n(ω)dω = 2× V

2π2c3
ω2 dω

e~ω/kBT − 1
.

Show that n(ω) has a peak at a frequency given by ω = 1.59kBT/~. Show further that the
spectral energy densities uλ and uω peak at λmax = hc/(4.97kBT ) and ωmax = 2.82kBT/~,
respectively.

7.12 (i) The gas pressure at the centre of the Sun is 4×1011 atmospheres, and the temperature
is 2 × 107 K. Estimate the radiation pressure and show that it is very small compared
with the gas pressure.

(ii) The surface temperature of the Sun is 5,700 K, and the spectrum of radiation it
emits has a maximum at a wavelength of 510 nm. Estimate the surface temperature of
the North Star, for which the corresponding maximum is 350 nm.

(iii) Assuming the Sun (radius 6.955× 108 m) emits radiation as a black body, calculate
the solar power incident on a thin black plate of area 1 m2 facing the Sun and at a
distance of 1 Astronomical Unit (= 1.496×1011 m) from it. Find the temperature of the
plate given that it emits radiation from both surfaces. Neglect any radiation incident
on the surface of the plate facing away from the Sun.
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PROBLEM SET 8: Real Gases, Expansions and Phase Equilibria

Problem set 8 can be covered in 1 tutorial. The relevant material will be done in lectures by
the end of week 8 of Hilary Term. Starred questions (*) are harder. Revision questions are
designed to build on the understanding of Statistical Mechanics developed in the two previous
problem sets.

Real gases

8.1 A gas obeys the equation p(V − b) = RT and has CV independent of temperature. Show
that (a) the internal energy is a function of temperature only, (b) the ratio γ = Cp/CV
is independent of temperature and pressure, (c) the equation of an adiabatic change has
the form p(V − b)γ = constant.

8.2 Dieterici’s equation of state for 1 mole is

p(V − b) = RT e−a/RTV . (7)

(a) Show that the critical point is specified by

Tc = a/4Rb; Vc = 2b; pc = a/4e2b2.

(b) Show that equation (7) obeys a law of corresponding states, i.e. show that it can be
written in reduced units as

p̃(2Ṽ − 1) = T̃ exp

[
2

(
1− 1

T̃ Ṽ

)]
,

where p̃ = p/pc, T̃ = T/Tc, Ṽ = V/Vc.

Real gas expansions

8.3 Explain why enthalpy is conserved in a Joule–Kelvin process. Show that the Joule–
Kelvin coefficient may be written

µJK =

(
∂T

∂p

)
H

=
1

Cp

[
T

(
∂V

∂T

)
p

− V

]
.

The equation of state for helium gas may be expressed as a virial expansion

pV = RT

(
1 +

B

V
+ · · ·

)
in which B is a function of temperature only. The table below gives some values of B
for 1 mole of helium. Determine the Boyle temperature and the inversion temperature.
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Temperature (K) 10 20 30 40 50 60 70
B (cm3 mol−1) −23.3 −4.0 2.4 5.6 7.6 8.9 9.8

8.4 For a van der Waals gas, show that

lim
p→0

µJK =
1

Cp

(
2a

RT
− b
)

and Tmax
i =

2a

Rb
,

where Tmax
i is the maximum inversion temperature.

8.5* Prove that the equation of the inversion curve of a Dieterici gas is, in reduced units,

p̃ = (8− T̃ ) exp

(
5

2
− 4

T̃

)
,

and sketch it in the p̃–T̃ plane. Hence, show that the maximum inversion temperature
is Tmax

i = 2a/(Rb).

Phase equilibria

8.6 When lead is melted at atmospheric pressure the melting point is 327.0◦C, the density
decreases from 11.01×103 to 10.65×103 kg m−3 and the latent heat is 24.5 kJ kg−1.
Estimate the melting point of lead at a pressure of 100 atm.

8.7 Some tea connoisseurs claim that a good cup of tea cannot be brewed with water at a
temperature less than 97◦C. Assuming this to be the case, is it possible for an astronomer,
working on the summit of Mauna Kea in Hawaii (elevation 4194 m) where the air pressure
is 615 mbar, to make a good cup of tea without the aid of a pressure vessel?

[Latent heat of vaporisation of water = 40.7 kJ mol−1.]

8.8 (a) Show that the temperature dependence of the latent heat of vapourisation L of an
incompressible liquid is given by the following expression:

dL

dT
=
L

T
+ ∆Cp −

L

Vvap

(
∂Vvap
∂T

)
p

,

where ∆Cp = Cp,vap − Cp,liq.
(b) Treating the vapour as an ideal gas, and assuming ∆Cp is independent of tempera-
ture, show that L = ∆CpT + L0.

(c) Show further that when the saturated vapour is expanded adiabatically, some liquid
condenses out if

Cp,liq + T
d

dT

(
L

T

)
< 0.

[Hint: For condensation, what is the condition on
(
∂p
∂T

)
S

in relation to the gradient of
the liquid–vapour phase boundary in the p–T plane?]
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REVISION QUESTIONS on Statistical Mechanics

The purpose of these questions is not to provide an exam- or collection-style experience (for
which you can use past exam papers) but to give you an opportunity to try your hand at some
new calculations and thus find out whether you have a working understanding of the physics

and the techniques that we have learned.

R.1 Heat Capacity of Metals. The objective of this question is to find at what temperature the
heat capacity of the electron gas in a metal dominates over the heat capacity associated
with the vibrations of the crystal lattice.

(a) Calculate the heat capacity of electrons in aluminium as a function of temperature
for T � TF .

(b) To estimate the heat capacity due to the vibrations of the lattice, you will need to
use the so-called Debye model. Derive it from the results you obtained in PS-7 via the
following assumptions.

The vibrations of the lattice can be modelled as sound waves propagating through the
metal. These in turn can be thought of as massless particles (“phonons”) with energies
ε = ~ω and frequencies ω = csk, where cs is the speed of sound in a given metal and k
is the wave number (allowed wave numbers are set by the size of the system, as usual).
Thus, the statistical mechanics for the phonons is the same as for photons, with two
exceptions: (i) they have 3 possible polarisations in 3D (1 longitudinal, 2 transverse)
and (ii) the wave number cannot be larger, roughly, than the inverse spacing of the
atoms in the lattice (do you see why this makes sense?).

Given these assumptions,

— derive an expression for the density of states g(ε) (or g(ω));

— derive an expression for the mean energy of a slab of metal of volume V ;

— figure out the condition on temperature T that has to be satisfied in order for it to
be possible to consider the maximum wave number effectively infinite;

— calculate the heat capacity in this limit as a function of T (you may need to use the
fact that

∫∞
0
dxx3/(ex − 1) = π4/15)

Hint. You already did all the required maths in Q7.1, so all you need is to figure out
how to modify it to describe the phonon gas.

(c) Roughly at what temperature does the heat capacity of the electrons in aluminium
become comparable to that of the lattice?

[You may need the density of atoms and alectrons in Al — see Q7.3(b). The speed
of sound in Al is cs ≈ 6000 m/s. You may find it convenient to define the Debye
temperature ΘD = ~cs(6π2n)1/3/kB, where n is the number density of the metal. This is
the temperature associated with the maximal wave number in the lattice, which Debye
defined by stipulating that the total number of possible phonon modes was equal to 3
times the number of atoms:

∫ kmax

0
dkg(k) = 3N . For Al, ΘD = 394 K.]
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R.2 Low Energy Levels in Degenerate Bose Gas. In a degenerate Bose gas, the lowest energy
level (particle energy ε0 = 0) is macroscopically occupied, in the sense that its occupation
number n0 is comparable with the total number of particles N . Is the first energy level
(particle energy ε1, the next one above the lowest) also macroscopically occupied? In
order to answer this question, estimate the occupation number of the first level and show
that n1 ∝ N2/3. Comment on the significance of this result: do the particles in the first
level require special consideration as a condensate the same way the zeroth-level ones
did?

R.3 Paramagnetism of Degenerate Bose Gas. Consider bosons with spin 1 in a weak magnetic
field, with energy levels

ε(k) =
~2k2

2m
− 2µBszB, sz = −1, 0, 1,

where µB = e~/2mec is the Bohr magneton (in cgs-Gauss units).

(a) Derive an expression for the magnetic susceptibility of this system. Show that Curie’s
law (χ ∝ 1/T ) is recovered in the classical limit.

(b) What happens to χ(T ) as the temperature tends to the critical Bose-Einstein con-
densation temperature from above (T → Tc + 0)? Sketch χ(T ).

(c) At T < Tc and for a given B, which quantum state will be macroscopically occupied?
Taking B → +0 (i.e., infinitesimally small), calculate the spontaneous magnetisation of
the system, M0(n, T ) = limB→0M(n, T,B), as a function of n and T . Explain why the
magnetisation is non-zero even though B is vanishingly small. Does the result of (b)
make sense in view of what you have found?

R.4 Creation/Annihilation of Matter. When the number of particles N in an ideal gas is
fixed, its chemical potential µ is determined implicitly from an equation that relates N
to µ, the gas volume V , its temperature T , and the spin s and mass m of the particles.
Now, instead of fixing the number of particles, let us include them into the energy budget
of our system (energy cost of making a particle is mc2). How must the formula for N
be modified?

Using the equation you have obtained, calculate the number density of an ideal gas in
equilibrium, at room temperature. Does this result adequately describe the room you
are sitting in? If not, why do you think that is?

R.5 (∗) Entropy of Fermi and Bose Gases out of Equilibrium. In this question, we will learn
how to construct the statistical mechanics for quantum ideal gases directly in terms
of occupation numbers. In the spirit of Gibbs, consider an ensemble of N copies of
our system (gas in a box). Let Ni be the number of particles that are in the single-
particle microstate i across this entire set of copies. Then the average occupation num-
ber of i per copy is ni = Ni/N . The (Boltzmann) entropy of the whole ensemble
of copies associated with a given assignment (N1, N2, . . . , Ni, . . . ) of particles to mi-
crostates is SB = ln ΩN (N1, N2, . . . ), where ΩN is the number of ways in which such
an assignment can be achieved. Then the Gibbs entropy of the set of occupation num-
bers (n1, n2, . . . , ni, . . . ) will be SG(n1, n2, . . . ) = SB/N in the limit N → ∞ and all
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Ni → ∞ while keeping ni constant. This is very similar to the construction in the
Lectures (§8.1.3) of the Gibbs entropy of a set of probabilities of microstates, except we
now have different rules about how many particles can be in any given microstate i:

— for fermions, each copy of the system in the ensemble can have only one or none of
the Ni particles available for each state i;

— for bosons, the Ni particles in each state i can be distributed completely arbitrarily
between the N copies.

(a) Prove that the Gibbs entropy, as defined above, will be

SG = −
∑
i

[ni lnni ± (1∓ ni) ln(1∓ ni)] ,

where the upper sign is for fermions and the lower for bosons.

Hint. Observe that ΩN (N1, N2, . . . ) = ΠiΩi, where Ωi is the number of ways to asign
the Ni particles available for the microstate i to the N copies in the ensemble.

Note that this formula certainly holds for Fermi and Bose gases in equilibrium as derived
in the Lectures (convince yourself that this is the case), but you have shown now is that
it also holds out of equilibrium, i.e., for arbitrary occupation numbers.

(b) Considering a system with fixed average energy and number of particles and max-
imising SG, derive from the above the Fermi-Dirac and Bose-Einstein formulae for the
mean occupation numbers in equilibrium.

(c) Devise a way to treat a classical gas by the same method.
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