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Equipartition Theorem

This theorem applies to classical systems with continuous energy levels.

Let the energy E of a particular system be given by E = αx2, where α is a positive constant
and x is some dynamical variable. Let us also assume that x could in principle take any value
with equal probability. The probability P (x) for the system to have a particular energy αx2

is proportional to the Boltzmann factor e−βαx2
, so that after normalizing we have

P (x) =
e−βαx2∫∞

−∞ e−βαx2 dx
, (1)

and the mean energy is

⟨E⟩ =
∫ ∞

−∞
E P (x) dx =

∫∞
−∞ αx2e−βαx2

dx∫∞
−∞ e−βαx2 dx

=
1

2β
=

1

2
kBT. (2)

We can easily extend this treatment to the case where the energy contains a sum of n inde-
pendent quadratic terms: ⟨E⟩ = n× 1

2
kBT . This result is expressed as

the Equipartition theorem: If the energy of a classical system is the sum of n quadratic
terms, and the system is in contact with a heat reservoir at temperature T , the mean energy
of the system is given by 1

2
nkBT .

The equipartition theorem expresses the fact that energy is ‘equally partitioned’ between all
the separate modes of the system, each mode having a mean energy of precisely 1

2
kBT .

Examples

• Ideal monatomic gas

E =
1

2
m(ẋ2 + ẏ2 + ż2)

→ ⟨E⟩ = U =
3

2
kBT per atom (3)

• Simple harmonic oscillator in 1D

E =
1

2
kx2 +

1

2
mẋ2

→ U = kBT per atom (4)

• Heat capacity of a 3D solid: Solid contains N atoms in total. Assume that for each
atom the bond strength is same along the x, y and z directions, and that the amplitude
of oscillations is small compared to inter-atomic distances.

E =
N∑
i=1

1

2
ki(x

2
i + y2i + z2i ) +

1

2
mi(ẋ

2 + ẏ2 + ż2)

→ U = 3NkBT per atom (5)

Heat capacity: CV =
(
∂U
∂T

)
V
= 3NkB = 3R per mole — Dulong & Petit’s law.
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Einstein’s model for the heat capacity of a solid

The measured heat capacity of solids deviates below the prediction of Dulong & Petit, and
tends to zero as T tends to zero. Einstein assumed that all atoms vibrate at a single angular
frequency ω, and treated the system as 3N independent, quantized, harmonic oscillators in
3D. Each oscillator has quantized energy levels En = (n+ 1

2
)h̄ω. The partition function is

Z = Z3N(1), (6)

where,

Z(1) =
∞∑
n=0

e−β(n+ 1
2
)h̄ω

= e−βh̄ω/2
∞∑
n=0

xn [x = e−βh̄ω]

=
e−βh̄ω/2

1− e−βh̄ω
. (7)

Here we have used the sum of an infinite geometric series,
∑∞

n=0 x
n = 1/(1 − x). Hence, the

internal energy is

U = {n(ω) + 1

2
}h̄ω, where n(ω) = ⟨n⟩ = 1

eβh̄ω − 1
. (8)

The expression for n(ω) defines the Planck distribution, which gives the mean number of
energy quanta in each harmonic oscillator at temperature T (the same expression applies to
Black-body radiation). The heat capacity is

CV = 3NkB(ΘE/T )
2 eΘE/T

(eΘE/T − 1)2
, (9)

where ΘE = h̄ω/kB.

The molar heat capacity Cp (≈ CV )
of diamond (data points) compared
with the curve calculated from the
Einstein model eqn (9) with ΘE =
1325K. Note the units: 1 calorie (cal)
= 4.2 J, so 3R = 5.94 calK−1mol−1.
The deviation from the theoretical
curve at low temperature is due to
the assumption that all atoms vi-
brate at the same frequency, which is
not the case in reality. A refinement
of the theory by P. Debye gives bet-
ter agreement at low temperatures.
This figure is adapted from Einstein’s
original paper: A. Einstein, Annalen
der Physik, 22 (1907) 180–190.
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Gas of heteronuclear diatomic molecules

We restrict ourselves to heteronuclear diatomic molecules (i.e. both atoms that make up the
molecule are different, e.g. CO, HD). Homonuclear diatomic molecules (e.g. H2, N2, O2) have
additional quantum mechanical constraints imposed on them by exchange symmetry.

We assume that the translational, rotational and vibrational motions are independent, which
is valid providing the characteristic energy scales of each degree of freedom are distinct. With
this assumption, one can write

Z = ZtransZrotZvib, (10)

and hence U = Utrans + Urot + Uvib. Consider each degree of freedom in turn:

• From the equipartition theorem, Utrans =
3
2
RT per mole, so Ctrans

V = 3
2
R.

• Treat the vib. part as N SHOs. This means that eqn (9) applies but with N instead of
3N in the prefactor. When T ≫ ΘE, C

vib
V → R per mole.

• Treat the rot. motion as a rigid rotor. The energy levels are quantized:

El =
h̄2

2I
l(l + 1), (I = µR2), (11)

where l is an integer (l ≥ 0), I is the moment of inertia of the molecule, µ = m1m2/(m1+
m2) is its reduced mass, and R is the separation of the atoms. Each energy level is
(2l + 1)-fold degenerate, so that the single-molecule partition function is

Zrot(1) =
∞∑
l=0

(2l + 1) e−β h̄2

2I
l(l+1)

= 1 + 3e−2
Θrot
T + 5e−6

Θrot
T + . . . , (12)

where Θrot = h̄2/(2IkB). When T ≫ Θrot,

Zrot(1) ≈
∫ ∞

0
(2l + 1) e−

Θrot
T

l(l+1) dl =
T

Θrot

, (13)

Hence, Crot
V → R per mole.

The molar heat capacity CV

of an ideal gas of heteronu-
clear diatomic molecules.
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