Basic Thermodynamics

Handout 4

Thermodynamics potentials

Define the enthalpy ’H =U+ PV‘

Define the Helmholtz function ’F =U-TS ‘ (sometimes called Helmholtz free energy)

Define the Gibbs function ’G =H-TS ‘ (sometimes called the Gibbs free energy).

These are all functions of state, so that one can write down the following exact differentials:

AU = TdS — pdV
dH = TdS + Vdp
dF = —SdT — pdV
dG = —SdT + Vdp

Note that each thermodynamic potential has a pair of independent variables:
U=U(S,V); H = H(S,p); F=FT,V) G =G(T,p)

These can be used to immediately write down various expressions such as
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This can be used to derive expressions such as:
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Maxwell’s relations

The Maxwell relations follow straightforwardly from the exact differentials:
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(Don’t memorize them, remember how to derive them!)



Thermodynamic equilibrium

Consider a p—V system in contact with a large reservoir which is in equilibrium at temperature
Ty and pressure pg. The availability is defined by

A:U—TQS+]?QV (1)

The equilibrium state of the system is achieved by minimizing A.

For the following particular cases, minimizing A corresponds to

e system is thermally isolated and has fixed V' — maximize S
e system has fixed 7" and V' — minimize F

e system has fixed T" and p — minimize G

Useful maths

Partial derivatives: Consider x as a function of two variables y and z. This can be written
x = z(y, z) and we have that
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But rearranging x = x(y, z) can lead to having z as a function of x and y so that z = z(z,y)
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Substituting (3) into (2) gives
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The terms multiplying dz give the reciprocal theorem:
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and the terms multiplying dz give the reciprocity theorem:
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