Basic Thermodynamics

Handout 4

Thermodynamics potentials

Define the **enthalpy** H = U + PV

Define the **Helmholtz function** F = U - TS (sometimes called Helmholtz free energy)

Define the **Gibbs function** G = H - TS (sometimes called the Gibbs free energy).

These are all functions of state, so that one can write down the following **exact differentials**:

$$dU = TdS - pdV$$

$$dH = TdS + Vdp$$

$$dF = -SdT - pdV$$

$$dG = -SdT + Vdp$$

Note that each thermodynamic potential has a pair of independent variables:

$$U = U(S, V);$$
 $H = H(S, p);$ $F = F(T, V);$ $G = G(T, p)$

These can be used to immediately write down various expressions such as

$$S = -\left(\frac{\partial F}{\partial T}\right)_{V}, \qquad p = -\left(\frac{\partial F}{\partial V}\right)_{T}$$

This can be used to derive expressions such as:

$$U = F + TS = F - T \left(\frac{\partial F}{\partial T}\right)_{V} = -T^{2} \left(\frac{\partial}{\partial T}\right)_{V} \frac{F}{T}$$

Maxwell's relations

The **Maxwell relations** follow straightforwardly from the exact differentials:

$$\begin{pmatrix} \frac{\partial T}{\partial V} \end{pmatrix}_{S} = -\left(\frac{\partial p}{\partial S}\right)_{V} \\
\left(\frac{\partial T}{\partial p}\right)_{S} = \left(\frac{\partial V}{\partial S}\right)_{p} \\
\left(\frac{\partial S}{\partial V}\right)_{T} = \left(\frac{\partial p}{\partial T}\right)_{V} \\
\left(\frac{\partial S}{\partial p}\right)_{T} = -\left(\frac{\partial V}{\partial T}\right)_{p}$$

(Don't memorize them, remember how to derive them!)

Thermodynamic equilibrium

Consider a p-V system in contact with a large reservoir which is in equilibrium at temperature T_0 and pressure p_0 . The **availability** is defined by

$$A = U - T_0 S + p_0 V \tag{1}$$

The equilibrium state of the system is achieved by minimizing A.

For the following particular cases, minimizing A corresponds to

- \bullet system is thermally isolated and has fixed V maximize S
- \bullet system has fixed T and V minimize F
- system has fixed T and p minimize G

Useful maths

Partial derivatives: Consider x as a function of two variables y and z. This can be written x = x(y, z) and we have that

$$dx = \left(\frac{\partial x}{\partial y}\right)_z dy + \left(\frac{\partial x}{\partial z}\right)_y dz. \tag{2}$$

But rearranging x = x(y, z) can lead to having z as a function of x and y so that z = z(x, y) in which case

$$dz = \left(\frac{\partial z}{\partial x}\right)_y dx + \left(\frac{\partial z}{\partial y}\right)_x dy. \tag{3}$$

Substituting (3) into (2) gives

$$dx = \left(\frac{\partial x}{\partial z}\right)_{y} \left(\frac{\partial z}{\partial x}\right)_{y} dx + \left[\left(\frac{\partial x}{\partial y}\right)_{z} + \left(\frac{\partial x}{\partial z}\right)_{y} \left(\frac{\partial z}{\partial y}\right)_{x}\right] dy.$$

The terms multiplying dx give the **reciprocal theorem**:

$$\left(\frac{\partial x}{\partial z}\right)_y = \frac{1}{\left(\frac{\partial z}{\partial x}\right)_y}$$

and the terms multiplying dz give the **reciprocity theorem**:

$$\left[\left(\frac{\partial x}{\partial y} \right)_z \left(\frac{\partial y}{\partial z} \right)_x \left(\frac{\partial z}{\partial x} \right)_y = -1. \right]$$

ATB

Michaelmas 2011