Basic Thermodynamics

Handout 3

Entropy

 dQ_{rev}/T is an exact differential, so

$$dS = dQ_{rev}/T$$

where S is a function of state which we call **entropy**.

In general, from Clausius' theorem,

$$\mathrm{d}S \geq \frac{\mathrm{d}Q}{T},$$

which means that for a thermally isolated system (dQ = 0)

$$dS \ge 0$$

and so entropy either increases (irreversible processes) or stays the same (reversible processes).

Application to the Universe:

First Law: The energy of the Universe is a constant.

Second Law: The entropy of the Universe can only increase.

The entropy form of the First Law:

For a p-V system,

$$dU = T dS - p dV$$

Note that:

dU = dW + dQ always true

dW = -p dV only true for reversible changes

dQ = T dS only true for reversible changes

dU = TdS - p dV always true

For irreversible changes:

$$dQ < T dS$$
, $dW > -p dV$

A **Joule expansion** is an example of an irreversible process. In a Joule expansion, a gas expands irreversibly from a volume V_1 into a volume V_2 (initially a vacuum), so that the total volume of the gas after expansion is $V_1 + V_2$. The system is thermally isolated and no external work is done on the gas, so $\Delta U = 0$.

The entropy change in a Joule expansion is (for 1 mole),

$$\Delta S_{\rm gas} = R \ln \left(\frac{V_1 + V_2}{V_1} \right).$$