
Handout 12

Chemical potential

Definition

The chemical potential controls the flow of particles between different parts of a system,
just like temperature controls the flow of heat. It is defined by
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In lectures, we considered a pV system made up of two parts in contact such that the two
parts can exchange internal energy, volume and particles. We applied the entropy maximum
statement of the Second Law to show that, in equilibrium,(
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From the definitions of T , p and µ [the latter in eqn. (1)], these conditions may be expressed

T1 = T2, p1 = p2, µ1 = µ2.

Thermodynamic potentials

When there is a variable number of particles of a single type, the First Law takes the form

dU = TdS − pdV + µdN. (3)

The Helmholtz and Gibbs functions follow:

dF = −SdT − pdV + µdN (4)

dG = −SdT + V dp+ µdN. (5)

Hence,
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. (6)

G is extensive and may be written G = Ng(p, T ). Therefore, from (6),

G = µN. (7)

If more than one type of particle is present, eqs. (3)–(7) generalise to

dU = TdS − pdV +
∑
i

µidNi etc, and G =
∑
i

µiNi (8)

1



Gibbs–Duhem equation

Differentiating (7) and equating to (5), we obtain

dµ = −sdT + vdp, (9)

where s = S/N and v = V/N are the entropy and volume per particle, respectively. Eqn. (9)
relates the intensive variables of a system and is known as the Gibbs–Duhem equation.
The generalisation to many components is∑

i

xidµi = −sdT + vdp, (10)

where xi = Ni/N .

Phase equilibrium

It can be shown that for a two-component system, equilibrium is reached when µ1 = µ2. This
is true for any constraints imposed on the system. Consider the phase boundary in the p− T
plane for a discontinuous phase transition, e.g. liquid–vapour or solid–liquid. All along the
phase boundary µ1 = µ2, so if two nearby points on the phase boundary are separated by
intervals dp and dT , then dµ1 = dµ2. Therefore, from (9),

dp

dT
=

s2 − s1
v2 − v1

=
L

T∆V
. (11)

This is the Clausius–Clapeyron equation. Here, L = T∆S is the latent heat. Note that
L and ∆V must both be normalised consistently, e.g. both per mole, or both per unit mass.

The Clausius–Clapeyron equation can be integrated to obtain the equation of the phase bound-
ary in the p− T plane. For the liquid–vapour phase boundary the result is

p ≈ p0e
− L

RT (12)

assuming L is a constant and pVvap = RT . On the liquid–solid phase boundary the result is

p ≈ p0 +
L

∆V
ln(

T

T0

) (13)

assuming L and ∆V are constant.

In general, L is only approximately constant. For
the liquid–vapour phase boundary, the tempera-
ture dependence of L is approximately

L(T ) = ∆CpT + L0, (14)

where ∆Cp = Cpvap − Cpliq . Equation (14) follows
from eqn. (11) assuming (i) that the vapour is an
ideal gas, (ii) that Vvap >> Vliq, and (iii) that the
heat capacities of the two phases are independent
of temperature. ∆Cp would usually be negative
since L → 0 as T → Tc.
The figure shows the temperature dependence of
L for water. The observed linear variation with
negative gradient is consistent with (14).
[Figure courtesy of S.J. Blundell & K.M. Blundell, Concepts

in Thermal Physics, (OUP, 2006)]
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