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Some useful constants

Boltzmann’s constant kB 1.3807× 10−23 JK−1

Proton rest mass mp 1.6726× 10−27 kg
Bohr magneton µB 9.274× 10−24 JT−1

Avogadro’s number NA 6.022× 1023 mol−1

Standard molar volume 22.414× 10−3 m3 mol−1

Molar gas constant R 8.315 Jmol−1 K−1

1 pascal (Pa) 1Nm−2

1 standard atmosphere 1.0132× 105 Pa (N m−2)
1 bar (= 1000 mbar) 105Nm−2



PROBLEM SET 5: Statistical Mechanics and Thermodynamics of
Simple Systems

Problem set 5 can be set partly as vacation work and covered in 2 tutorials (or 1 class and 1
tutorial) held during Weeks 1–2 of Hilary Term

Heat Diffusion Equation
The theory needed for this question was covered in the Mathematical Methods lectures

5.1 One face of a thick uniform layer is subject to a sinusoidal temperature variation of
angular frequency ω. Show that damped sinusoidal temperature oscillations propagate
into the layer and give an expression for the decay length of the oscillation amplitude.

A cellar is built underground covered by a ceiling which is 3m thick made of limestone.
The outside temperature is subject to daily fluctuations of amplitude 10◦C and annual
fluctuations of 20◦C. Estimate the magnitude of the daily and annual temperature vari-
ations within the cellar. Assuming that January is the coldest month of the year, when
will the cellar’s temperature be at its lowest?

[The thermal conductivity of limestone is 1.6Wm−1K−1, and the heat capacity of lime-
stone is 2.5× 106JK−1m−3.]

Thermodynamics of non p–V systems

5.2 For a stretched rubber band, it is observed experimentally that the tension f is propor-
tional to the temperature T if the length L is held constant. Prove that:

(a) the internal energy U is a function of temperature only;

(b) adiabatic stretching of the band results in an increase in temperature;

(c) the band will contract if warmed while kept under constant tension.

[You may assume that
(

∂L
∂f

)
T
> 0.]

5.3 A simple microscopic model for rubber and other polymers consists of a chain of links,
each of length a, with each link equally likely to be directed to the right or left along
the chain. Show that the number of microstates corresponding to a chain of N links of
total length L is given by

Ω(L,N) =
2N !(

N
2
− L

2a

)
!
(
N
2
+ L

2a

)
!
.

Hence, show that the tension of the system is given by f = LkBT/(Na2) when L ≪ Na.

[Hint: Show that
(
∂f
∂T

)
L
= −

(
∂S
∂L

)
T
and integrate assuming f(T = 0) = 0.]
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5.4 For a fixed surface area, the surface tension of water varies linearly with temperature from
75× 10−3Nm−1 at 5◦C to 70× 10−3Nm−1 at 35◦C. Calculate the surface contributions
to the entropy per unit area and the internal energy per unit area at 5◦C.

[Ans:
(
∂S
∂A

)
T
= 0.167× 10−3 JK−1m−2,

(
∂U
∂A

)
T
= 121.3× 10−3 Jm−2]

An atomizer produces water droplets of diameter 0.1µm. A cloud of droplets at 35◦C
coalesces to form a single drop of water of mass 1 g. Estimate the temperature of the
drop assuming no heat exchange with the surroundings. What is the increase in entropy
in this process? (Specific heat capacity of water cp = 4, 200 JK−1 kg−1.)

[Ans: ∆T = 1.73K, ∆S = 13.6× 10−3 JK−1]

5.5 The magnetization M of a paramagnetic material is given by M = χB/µ0, where B is
the magnetic flux density and the susceptibility χ follows Curie’s law χ = C/T with C
a constant.

If the heat capacity per unit volume at constant M is CM = a/T 2, show that the heat
capacity per unit volume at constant B is

CB =
a

T 2

(
1 +

B2C

µ0a

)
.

If a sample is initially at temperature T1 in an applied field of flux density B1, show that
the temperature after adiabatic reduction of the field to zero is

T2 =
T1(

1 +
B2

1C

µ0a

)1/2
.

Calculation of thermodynamic quantities from the partition function

5.6 Consider an array of N localised spin–1
2
paramagnetic atoms. In the presence of a

magnetic field, B, the two degenerate spin states split by ±µBB, where µB is the Bohr
magneton.

(i) Derive the single particle partition function for the system.

(ii) Show that the heat capacity CB can be written as

CB =

(
∂U

∂T

)
B

= NkB

(
θ

T

)2
eθ/T

(eθ/T + 1)2
, (1)

and find the value of the constant θ. Show that CB has a maximum at a temperature
Tmax = AµBB/kB where A is a numerical constant. Determine A.

(iii) Given that the largest static magnetic field that can easily be produced in the
laboratory is of order 10 Tesla, estimate the temperature at which the magnetic heat
capacity of such a system will be largest.

(iv) Show that in the limits of high and low temperatures the heat capacity is propor-
tional to 1/T 2 as T → ∞ and proportional to e−θ/T/T 2 as T → 0.

5.7 Given that the energy spectrum of a simple harmonic oscillator (SHO) is En = (n+ 1
2
)~ω,

derive an expression for the single-particle partition function. What is the specific heat of
an array of N distinguishable SHOs? Find expressions for the high and low temperature
limits of C.
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5.8 An array of N 1D simple harmonic oscillators is set up with an average energy per
oscillator of (m+ 1

2
)~ω. Show that the entropy per oscillator is given by

S

NkB
= (1 +m) ln(1 +m)−m lnm. (2)

Comment on the value of the entropy when m = 0.

5.9 An assembly of N particles per unit volume, each having angular momentum J , is
placed in a magnetic field. The field splits the level into 2J + 1 different energies, given
by mJgJµBB, where mJ runs from −J to +J . gJ is known as the Landé g-factor, which
you will presently meet in atomic physics.

(i) Show that the single-particle partition function ZMag of the magnetic system can be
written as

ZMag =
sinh[(J + 1

2
)C]

sinh(C/2)
. (3)

where C = gJµBB/kBT .

(ii) Show that the susceptibility, χ, (defined as µ0M/B as B → 0) is given by

χ =
µ0Ng2µ2

BJ(J + 1)

3kBT
. (4)

[N.B. In the limit of small x, cothx ≈ 1/x+ x/3] Prove that this is consistent with the
result derived in the lectures for a spin–1

2
paramagnet.

(iii) Let us define ZSHO(~ω) to be the partition function of a simple harmonic oscillator
with an energy interval ~ω between successive levels. Show that the partition function
that you have derived for this magnetic system can be written as the ratio of the two
simple harmonic oscillator partition functions:

ZMag =
ZSHO(gJµBB)

ZSHO([2J + 1]gJµBB)
. (5)

Why does this work?

(iv) By considering eqn (5), show that the specific heat of the magnetic system can be
written as the difference in the specific heats of two simple harmonic oscillators, one
oscillator having effective frequency gJµBB/h, and the other [2J +1]gJµBB/h. Plot the
specific heat as a function of temperature (in units of gJµBB/kB) for J = 1/2, 3/2, and
J → ∞. Comment on the form of the specific heat and show that simply by measuring
the specific heat of a magnetic system as a function of temperature it is possible to
deduce the angular momentum J of the system.

5.10 (i) Show that the thermodynamic properties of an assembly of N three-dimensional har-
monic oscillators are the same as those of an assembly of 3N one -dimensional oscillators.

(ii) In the Einstein model, each atom in a solid acts acts as a three-dimensional simple
harmonic oscillator. An atom in a crystal of copper has a typical vibrational frequency
of ν = 5.2 × 1012Hz. What is its specific heat at room temperature expressed as a
percentage of its maximum specific heat?

(iii) The vibrational frequency of the carbon atoms in diamond is ν ≈ 3.12 × 1013Hz.
What would the Einstein model predict for its heat capacity at room temperature?
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Diatomic Gases

5.11 Comment on the following values of molar heat capacity in JK−1mol−1, all measured
at constant pressure at 298 K.

Al 24.35
Ar 20.79
Au 25.42
Cu 24.44
He 20.79
H2 28.82
Fe 25.10

Pb 26.44
Ne 20.79
N2 29.13
O2 29.36
Ag 25.53
Xe 20.79
Zn 25.40

[Hint: express them in terms of R; which of the substances is a solid and which is
gaseous?]

5.12 Experimental data for the molar heat capacity of N2 as a function of temperature are
shown in the table below.

T (Kelvin) 170 500 770 1170 1600 2000 2440
CV /R 2.5 2.57 2.76 3.01 3.22 3.31 3.4

(i) Estimate the frequency of vibration of the N2 molecule.

(ii) By making a rough estimate of the separation of the atoms in the molecule, comment
on the possibility of reducing the heat capacity of nitrogen to 3R/2 per mole.

5.13 According to quantum mechanics, the molecules of a diatomic gas have quantized rota-
tional energy levels given by

EJ =
~2

2I
J(J + 1), J = 0, 1, 2, . . . ,

where I is a moment of inertia and the level EJ is (2J +1)-fold degenerate. Write down
an expression for the partition function of the rotational motion, and hence find the
molar rotational heat capacity (i) at low temperature, kBT ≪ ~2/2I, and (ii) at high
temperature, kBT ≫ ~2/2I.
For carbon monoxide (CO) I = 1.3 × 10−46 kgm2. What is the molar rotational heat
capacity of CO at room temperature?

5.14 Show that for a diatomic molecule at a temperature, T , such that θrot ≪ T ≪ θvib, where
θrot and θvib are its characteristic temperatures of rotation and vibration respectively,
Zsp ∝ V T 5/2 and thus that along an adiabat pV 7/5 is a constant.
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