
Statistical and Thermal Physics

xford

hysics

Second year physics course

Dr A. A. Schekochihin and Prof. A. T. Boothroyd

(with thanks to Prof. S. J. Blundell)

Problem Set 4

Some useful constants

Boltzmann’s constant kB 1.3807× 10−23 JK−1

Proton rest mass mp 1.6726× 10−27 kg
Avogadro’s number NA 6.022× 1023 mol−1

Standard molar volume 22.414× 10−3 m3 mol−1

Molar gas constant R 8.315 Jmol−1 K−1

1 pascal (Pa) 1Nm−2

1 standard atmosphere 1.0132× 105 Pa (N m−2)
1 bar (= 1000 mbar) 105Nm−2



PROBLEM SET 4: Basic Thermodynamics

Problem set 4 can be covered in 2 tutorials (or 1 class and 1 tutorial) held during Weeks 7–8
of Michaelmas Term

Expansions, cycles and heat engines

4.1 Two thermally insulated cylinders, A and B, of equal volume, both equipped with pis-
tons, are connected by a valve. When open, the valve allows unrestricted flow. Initially
A has its piston fully withdrawn and contains a perfect monatomic gas at temperature
Ti, while B has its piston fully inserted, and the valve is closed. The thermal capacity
of the cylinders is to be ignored. The valve is fully opened and the gas slowly drawn
into B by pulling out the piston B; piston A remains stationary. Show that the final
temperature of the gas is Tf = Ti/2

2/3.

4.2 A possible ideal-gas cycle operates as follows:
(i) From an initial state (p1, V1) the gas is cooled at constant pressure to (p1, V2);
(ii) The gas is heated at constant volume to (p2, V2);
(iii) The gas expands adiabatically back to (p1, V1).
Assuming constant heat capacities, show that the thermal efficiency is

1− γ
(V1/V2)− 1

(p2/p1)− 1
.

(You may quote the fact that in an adiabatic change of an ideal gas, pV γ stays constant,
where γ = Cp/CV .)

4.3 Show that the efficiency of the standard Otto cycle (shown below) is 1 − r1−γ, where
r = V1/V2 is the compression ratio.
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4.4 An ideal gas is changed from an initial state (p1, V1, T1) to a final state (p2, V2, T2) by the
following quasi-static processes shown in the figure: (i) 1A2 (ii) 1B2 and (iii) 1C2. What
is the increase in internal energy ∆U for 1 → 2? For each process, obtain the work that
must be done on the system and the heat that must be added, and hence show that ∆U
is path independent. (Assume that the heat capacity CV is constant.)

4.5 A building is maintained at a temperature T by means of an ideal heat pump which uses
a river at temperature T0 as a source of heat. The heat pump consumes power W , and
the building loses heat to its surroundings at a rate α(T − T0). Show that T is given by

T = T0 +
W

2α

(
1 +

√
1 + 4αT0/W

)
.

Entropy Changes

4.6 In a free expansion of a perfect gas (also called a Joule expansion), we know U does not
change, and no work is done. However, the entropy must increase because the process
is irreversible. How are these statements compatible with dU = TdS − pdV ?

4.7 A mug of tea has been left to cool from 90◦C to 18◦C. If there is 0.2 kg of tea in the
mug, and the tea has specific heat capacity 4200 JK−1 kg−1, show that the entropy of
the tea has decreased by 185.7 JK−1. How is this result compatible with an increase in
entropy of the Universe?

4.8 Calculate the changes in entropy of the Universe as a result of the following processes:

(a) A copper block of mass 400 g and heat capacity 150 JK−1 at 100◦C is placed in a
lake at 10◦C;

(b) The same block, now at 10◦C, is dropped from a height of 100m into the lake;

(c) Two similar blocks at 100◦C and 10◦C are joined together (hint: save time by first
realising what the final temperature must be, given that all the heat lost by one block
is received by the other, and then re-use previous calculations);
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(d) A capacitor of capacitance 1µF is connected to a battery of e.m.f. 100V at 0◦C.
(NB think carefully about what happens when a capacitor is charged from a battery.);

(e) The capacitor, after being charged to 100V, is discharged through a resistor at 0◦C;

(f) One mole of gas at 0◦C is expanded reversibly and isothermally to twice its initial
volume;

(g) One mole of gas at 0◦C is expanded adiabatically to twice its initial volume;

(h) The same expansion as in (f) is carried out by opening a valve to an evacuated
container of equal volume.

4.9 A block of lead of heat capacity 1 kJK−1 is cooled from 200K to 100K in two ways:

(a) It is plunged into a large liquid bath at 100K;

(b) The block is first cooled to 150K in one bath and then to 100K in another bath.

Calculate the entropy changes in the system consisting of block plus baths in cooling
from 200K to 100K in these two cases. Prove that in the limit of an infinite number of
intermediate baths the total entropy change is zero.

4.10 Two identical bodies of constant heat capacity Cp at temperatures T1 and T2 respectively
are used as reservoirs for a heat engine. If the bodies remain at constant pressure, show
that the amount of work obtainable is

W = Cp (T1 + T2 − 2Tf) ,

where Tf is the final temperature attained by both bodies. Show that if the most
efficient engine is used, then T 2

f = T1T2. Calculate W for reservoirs containing 1 kg of
water initially at 100◦C and 0◦C, respectively. (Ans: 32.7 kJ.)
(Specific heat capacity of water = 4,200 JK−1 kg−1).

4.11∗ Three identical bodies are at temperatures 300K, 300K and 100K. If no work or heat is
supplied from outside, what is the highest temperature to which any one of these bodies
can be raised by the operation of heat engines?1

(Ans: 400K)

Thermodynamic Calculus

4.12 In polar coordinates, x = r cos θ and y = r sin θ. The definition of x implies that

∂x

∂r
= cos θ =

x

r
. (1)

But we also have x2 + y2 = r2, so differentiating with respect to r gives

2x
∂x

∂r
= 2r =⇒ ∂x

∂r
=

r

x
. (2)

But equations 1 and 2 imply that
∂x

∂r
=

∂r

∂x
. What’s gone wrong?

1If you set this problem up correctly you may have to solve a cubic equation. This looks hard to solve but
in fact you can deduce one of the roots [hint: what is the highest temperature of the bodies if you do nothing
to connect them?]
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4.13 [This question is just some bookwork practice and should only take a couple of minutes.]

(a) Using the first law dU = TdS−pdV to provide a reminder, write down the definitions
of the four thermodynamic potentials U , H, F , G for a simple p-V system (in terms of
U , S, T , p, V ), and give dU, dH, dF, dG in terms of T, S, p, V and their derivatives.
(b) Derive all the Maxwell relations.

4.14 (a) Derive the following general relations

(i)

(
∂T

∂V

)
U

= − 1

CV

[
T

(
∂p

∂T

)
V

− p

]
(ii)

(
∂T

∂V

)
S

= − 1

CV

T

(
∂p

∂T

)
V

(iii)

(
∂T

∂p

)
H

=
1

Cp

[
T

(
∂V

∂T

)
p

− V

]

In each case the quantity on the left hand side is the appropriate thing to consider for
a particular type of expansion. State what type of expansion each refers to.

(b) Using these relations, verify that for an ideal gas
(
∂T
∂V

)
U
= 0 and

(
∂T
∂p

)
H

= 0, and

that
(
∂T
∂V

)
S
leads to the familiar relation pV γ = constant along an isentrope.

4.15 Use the First Law of Thermodynamics to show that(
∂U

∂V

)
T

=
Cp − CV

V βp

− p

where βp is the coefficient of volume expansivity and the other symbols have their usual
meanings.
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