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Some Useful Constants

Boltzmann’s constant kB 1.3807× 10−23 J K−1

Proton rest mass mp 1.6726× 10−27 kg
Avogadro’s number NA 6.022× 1023 mol−1

Standard molar volume 22.414× 10−3 m3 mol−1

Molar gas constant R 8.315 J mol−1 K−1

1 pascal (Pa) 1 N m−2

1 standard atmosphere 1.0132× 105 Pa (N m−2)
1 bar (= 1000 mbar) 105 N m−2



PROBLEM SET 3: Foundations of Statistical Mechanics

Maximising Entropy

3.1 Loaded die. Imagine throwing a die and attempting to determine the probability dis-
tribution of the outcomes. There are 6 possible outcomes: α = 1, 2, 3, 4, 5, 6; their
probabilities are pα.

a) If we know absolutely nothing and believe in maximising entropy as a guiding princi-
ple, what should be our a priori expectation for pα? What then do we expect the average
outcome 〈α〉 to be?

b) Suppose someone has performed very many throws and informs us that the average
is in fact 〈α〉 = 3.667. Use the principle of maximum entropy to determine all pα.

Hint. You will find the answer (not the solution) in J. Binney’s lecture notes. This is a
good opportunity to verify your solution. To find the actual probabilities, you may have
to find the root of a transcendental equation — this is easily done on the computer or
even on an advanced calculator.

c∗) What (according to Shannon) is the information content of the distribution you have
obtained?

3.2 a) Use your calculator to work out ln 15! Compare your answer with the simple version
of Stirling’s formula (N ! ≈ N lnN −N). How big must N be for the simple version of
Stirling’s formula to be correct to within 2%?

b) We needed Stirling’s formula to find the free energy of the classical ideal gas. What
did we need it for and how good was the assumption justifying its use?

c∗) Stirling’s formula was also useful when we established the connection between Shan-
non’s information content function and Gibbs entropy. What was it needed for and what
were the key assumptions that justified its use?

3.3 Gibbs Distribution.

a) Maximise the entropy of a generic system subject to its mean energy being U and
derive the Gibbs distribution and the expression for the partition function. How is
temperature determined in this procedure?

b) Now suppose the energies of all microstates are the same, Eα = E. What is the
distribution then? (∗) What is the information content of this distribution?

3.4 A hypothetical system contains 16 particles which can occupy nondegenerate equally
spaced energy levels of spacing ε. The system is set up so that it has a total energy of
18ε. When measured, it is found in its most probable macrostate, which is shown below:

Energy 0 ε 2ε 3ε 4ε 5ε 6ε · · ·
7 4 2 2 1 0 0
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a) Based on this information, make a rough estimate of the temperature of the system
in units of ε/kB.

b) If the temperature were very low, kBT � ε, what distribution would we find? What
if the temperature were very high, kBT � 18ε? (∗) Which of these distributions has
higher information content?

3.5 Macroscopic Motions, Thermal and Mechanical Equilibrium, Stability. Consider a sys-
tem isolated from the world and so conserving its total energy, momentum and angular
momentum. Let us subdivide it into very many small but macroscopic subsystems, in-
dexed by i, each with total energy Ei, momentum pi, mass mi and located at a fixed
position ri within the big system. Note that the total energy Ei comprises both the
internal energy of the subsystem i and the kinetic energy p2i /2mi of its macroscopic
motion.

a) The total entropy of the system can be expressed in terms of the entropies of the
subsystems as follows:

S =
∑
i

Si

(
Ei −

p2i
2mi

)
.

Why is this correct? Why, in particular, is the entropy Si of each subsystem a func-
tion only of its internal energy Ei − p2i /2mi (total energy minus kinetic energy of the
macroscopic motion) and not just of the total energy Ei?

b) Using the method of Lagrange multipliers, maximise the entropy subject to the three
conservation laws (vary Ei’s and pi’s, but not masses mi or positions ri, which are
assumed fixed). Hence show that in equilibrium, the temperatures of all subsystems
must be the same and that the system can only move as whole, at constant velocity,
and/or rotate as a rigid body, with constatnt angular velocity (i.e., there can be no
internal macroscopic motions of its parts — this makes sense if you recall that whenever
you had velocity gradients in a gas, viscosity acted to iron them out, pushing the system
towards global equilibrium).

Hint. You will find the solution in Landau & Lifshitz, but, as usual, I urge you to try
and do it yourself.

c) Generalise this argument a little further and allow the subsystems to have different
volumes, but the total cumulative volume of the system must be conserved. Show that
in equilibrium, all subsystems must be at the same pressure. In this calculation, for
simplicity, consider the subsystems to be static (all pi = 0).

d∗) Strictly speaking, in part (b), we only extremised entropy, but did not show that
the extremum was indeed a maximum and not a minimum. Show that it is indeed a
maximum if temperature and heat capacity are positive: T > 0 and CV > 0 (for each
subsystem). Note that Landau & Lifshitz give only a hand-wavy argument for T > 0,
but this can actually be formalised — which is what I am asking you to do here. If you
find the calculation involving momenta pi difficult, solve a simpler problem: assume all
pi = 0 and just work out the condition for thermal stability (CV > 0).

3.6 Heat Capacity, Thermal Stability and Fluctuations.
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a) Derive the general expression for heat capacity at constant volume, CV , in terms of
derivatives of the partition function Z(β) with respect to β = 1/kBT . Hence show that
CV ≥ 0 (so thermal stability, derived in part (d) of the previous question is not in peril).

b) In the above, you should have obtained an expression that relates CV to mean square
deviation (or variance, or fluctuation) of the exact energy of the system from its mean
value, 〈∆E2〉 = 〈(Eα − U)2〉. Now use it to show that 〈∆E2〉/U2 → 0 as the size of the
system →∞ (this is called “the thermodynamic limit”).

Classical Ideal Gas

3.7 Consider a classical ideal monatomic gas of N spinless particles of mass m in a volume
V at a temperature T .

a) Find a formula for its partition function. Show that if particles in the gas were
distinguishable, the entropy would be a non-extensive (non-additive) function. Why is
this a problem? Show that if indistinguishability is properly accounted for, this problem
disappears. Under what assumption is it OK to use a simple 1/N ! compensating factor
to account for indistinguishability?

b) Consider two equal volumes containing two classical ideal gases at the same temper-
ature and pressure. Find the entropy change on mixing the two gases (i) when the gases
are identical, and (ii) when they are different. If the answers for these two cases are
different (or otherwise), explain why that makes physical sense.

c) Consider an adiabatic process (entropy S = const). Show that for an ideal monatomic
gas undergoing such a process, PV 5/3 = const.

3.8 Relativistic Ideal Gas.

a) Show that the equation of state of an ideal gas is still PV = NkBT even when the
gas is heated to such a high temperature that the particles are moving at relativistic
speeds. Why is it unchanged?

b) Although the equation of state does not alter when the particles in a monatomic
ideal gas start to move at relativistic speeds, show that in the formula for an adiabat,
PV γ = const, the exponent γ in the relativistic limit is 4

3
, rather than 5

3
as in the non-

relativistic case (see previous question, part (c)). You can assume that the particles are
ultrarelativistic, i.e., their rest energy is negligible compared to their kinetic energy.

c) Show that for such a gas, pressure p = ε/3, where ε is the internal energy density. Is
it different than for a non-relativistic gas? Why?

3.9 Density of States.

a) Consider a particle living in a two-dimensional “box”. What is the density of states
g(k) for it? What is g(k) for a particle in a one-dimensional “box”?

b∗) Calculate the density of states in d dimensions.

Hint. You will need to calculate the area of a unit sphere in d dimensions (the full solid
angle in d dimensions). You can look it up somewhere (e.g., in Kardar’s book) or figure
it out yourself.
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