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Some general remarks:
These notes aim to be self-contained. Homework questions are marked in red, and are placed at appro-

priate positions in the text, i.e. to work them out you will require only the preceeding material. Passages
marked in blue give details on derivations we don’t have time to go through in the lectures, or present ma-
terial that goes beyond the core of the course. In some cases this material will be very useful for particular
homework problems. All of the material covered in the course can be found in some form or other in a
variety of books. These is no book that covers everything. Some useful references are

• Many-particle QM

R.P. Feynman, Statistical Mechanics: A Set of Lectures, Westview Press.

A. Altland and B.D. Simons, Condensed Matter Field Theory, Cambridge.

• Landau Theory of Phase Transitions

M. Kardar, Statistical Physics of Fields, Cambridge.

Part I

Many-Particle Quantum Mechanics

In the basic QM course you encountered only quantum systems with very small numbers of particles. In
the harmonic oscillator problem we are dealing with a single QM particle, when solving the hydrogen atom
we had one electron and one nucleus. Perhaps the most important field of application of quantum physics
is to systems of many particles. Examples are the electronic degrees of freedom in solids, superconductors,
trapped ultra-cold atomic gases, magnets and so on. The methods you have encountered in the basic QM
course are not suitable for studying such problems. In this part of the course we introduce a framework,
that will allow us to study the QM of many-particle systems. This new way of looking at things will also
reveal very interesting connections to Quantum Field Theory.

1 Second Quantization

The formalism we develop in the following is known as second quantization.

1.1 Systems of Independent Particles

You already know from second year QM how to solve problems involving independent particles

H =
N∑
j=1

Hj (1)
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where Hj is the Hamiltonian on the j’th particle, e.g.

Hj =
p̂2
j

2m
+ V (r̂j) = − ~2

2m
∇2
j + V (r̂j). (2)

The key to solving such problems is that [Hj , Hl] = 0. We’ll now briefly review the necessary steps,
switching back and forth quite freely between using states and operators acting on them, and the position
representation of the problem (i.e. looking at wave functions).

• Step 1. Solve the single-particle problem

Hj |l〉 = El|l〉 . (3)

The corresponding wave functions are
φl(rj) = 〈rj |l〉. (4)

The eigenstates form an orthonormal set

〈l|m〉 = δl,m =

∫
dDrj φ

∗
l (rj)φm(rj). (5)

• Step 2. Form N -particle eigenfunctions as products N∑
j=1

Hj

φl1(r1)φl2(r2) . . . φlN (rN ) =

 N∑
j=1

Elj

φl1(r1)φl2(r2) . . . φlN (rN ) . (6)

This follows from the fact that in the position representation Hj is a differential operator that acts
only on the j’th position rj . The corresponding eigenstates are tensor products

|l1〉 ⊗ |l2〉 ⊗ · · · ⊗ |lN 〉. (7)

• Step 3. Impose the appropriate exchange symmetry for indistinguishable particles, e.g.

ψ
(±)
l,m (r1, r2) =

1√
2

[φl(r1)φm(r2)± φl(r2)φm(r1)] , l 6= m. (8)

Generally we require
ψ(. . . , ri, . . . , rj , . . . ) = ±ψ(. . . , rj , . . . , ri, . . . ) , (9)

where the + sign corresponds to bosons and the − sign to fermions. This is achieved by taking

ψl1...lN (r1, . . . , rN ) = N
∑
P∈SN

(±1)|P |φlP1
(r1) . . . φlPN (rN ),

(10)

where the sum is over all permutations of (1, 2, . . . , N) and |P | is the number of pair exchanges required
to reduce (P1, . . . , PN ) to (1, . . . , N). The normalization constant N is

N =
1√

N !n1!n2! . . .
, (11)

where nj is the number of times j occurs in the set {l1, . . . , lN}. For fermions the wave functions can
be written as Slater determinants

ψl1...lN (r1, . . . , rN ) =
1√
N !

det

φl1(r1) . . . φl1(rN )
...

...
φlN (r1) . . . φlN (rN )

 . (12)

The states corresponding to (10) are

|l1, . . . , lN 〉 = N
∑
P∈SN

(±1)|P ||lP1〉 ⊗ · · · ⊗ |lPN 〉 .

(13)
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1.1.1 Occupation Number Representation

By construction the states have the symmetry

|lQ1 . . . lQN 〉 = ±|l1 . . . lN 〉 , (14)

where Q is an arbitrary permutation of (1, . . . , N). As the overall sign of state is irrelevant, we can therefore
choose them without loss of generality as

| 1 . . . 1︸ ︷︷ ︸
n1

2 . . . 2︸ ︷︷ ︸
n2

3 . . . 3︸ ︷︷ ︸
n3

4 . . . 〉 ≡ |n1n2n3 . . . 〉. (15)

In (15) we have as many nj ’s as there are single-particle eigenstates, i.e. dimH 1. For fermions we have
nj = 0, 1 only as a consequence of the Pauli principle. The representation (15) is called occupation number
representation. The nj ’s tell us how many particles are in the single-particle state |j〉. By construction the
states {|n1n2n3 . . . 〉|

∑
j nj = N} form an orthonormal basis of our N -particle problem

〈m1m2m3 . . . |n1n2n3 . . . 〉 =
∏
j

δnj ,mj , (16)

where we have defined 〈m1m2m3 . . . |=|m1m2m3 . . . 〉†.

1.2 Fock Space

We now want to allow the particle number to vary. The main reason for doing this is that we will encounter
physical problems where particle number is in fact not conserved. Another motivation is that experimental
probes like photoemission change particle number, and we want to be able to describe these. The resulting
space of states is called Fock Space.

1. The state with no particles is called the vacuum state and is denoted by |0〉.

2. N -particle states are |n1n2n3 . . . 〉 with
∑

j nj = N .

1.2.1 Creation and Annihilation Operators

Given a basis of our space of states we can define operators by specifying their action on all basis states.

• particle creation operators with quantum number l

c†l |n1n2 . . . 〉 =

{
0 if nl = 1 for fermions
√
nl + 1(±1)

∑l−1
j=1 nj |n1n2 . . . nl + 1 . . . 〉 else.

(17)

Here the + (−) sign applies to bosons (fermions).

• particle annihilation operators with quantum number l

cl|n1n2 . . . 〉 =
√
nl(±1)

∑l−1
j=1 nj |n1n2 . . . nl − 1 . . . 〉 .

(18)

We note that (18) follows from (17) by

〈m1m2 . . . |c†l |n1n2 . . . 〉∗ = 〈n1n2 . . . |cl|m1m2 . . . 〉 . (19)

1Note that this is different from the particle number N .
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The creation and annihilation operators fulfil canonical (anti)commutation relations

[cl, cm] = 0 = [c†l , c
†
m] , [cl, c

†
m] = δl,m bosons,

(20)

{cl, cm} = clcm + cmcl = 0 = {c†l , c
†
m} , {cl, c†m} = δl,m fermions.

(21)

Exercise 1: Proof of the anticommutations relations

Let us see how to prove these in the fermionic case. For l < m we have

c†l cm| . . . nl . . . nm . . . 〉 = c†l
√
nm(−1)

∑m−1
j=1 nj | . . . nl . . . nm − 1 . . . 〉

=
√
nl + 1

√
nm(−1)

∑m−1
j=l nj | . . . nl + 1 . . . nm − 1 . . . 〉. (22)

Similarly we have

cmc
†
l | . . . nl . . . nm . . . 〉 =

√
nl + 1

√
nm(−1)1+

∑m−1
j=l nj | . . . nl + 1 . . . nm − 1 . . . 〉. (23)

This means that for any basis state |n1n2 . . . 〉 we have

{c†l , cm}|n1n2 . . . 〉 = 0 , if l > m. (24)

This implies that
{c†l , cm} = 0 , if l > m. (25)

The case l < m works in the same way. This leaves us with the case l = m. Here we have

c†l cl| . . . nl . . . nm . . . 〉 = c†l
√
nl(−1)

∑l−1
j=1 nj | . . . nl − 1 . . . 〉 = nl| . . . nl . . . 〉. (26)

clc
†
l | . . . nl . . . 〉 =

{
cl
√
nl + 1(−1)

∑l−1
j=1 nj | . . . nl + 1 . . . 〉 if nl = 0 ,

0 if nl = 1 ,

=

{
| . . . nl . . . 〉 if nl = 0 ,

0 if nl = 1 ,
(27)

Combining these we find that

{c†l , cl}| . . . nl . . . 〉 = | . . . nl . . . 〉 , (28)

and as the states | . . . nl . . . 〉 form a basis this implies

{c†l , cl} = 1. (29)

Note that here 1 really means the identity operator 1.

1.2.2 Basis of the Fock Space

We are now in a position to write down our Fock space basis in a very convenient way.

• Fock vacuum (state without any particles)
|0〉. (30)
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• Single-particle states
|0 . . . 0 1︸︷︷︸

l

0 . . . 〉 = c†l |0〉 . (31)

• N -particle states

|n1n2 . . . 〉 =
∏
j

1√
nj !

(
c†j

)nj
|0〉 . (32)

1.3 Homework Questions 1-3

Question 1. Consider a fermion ‘system’ with just one single-particle orbital, so that the only states of the
system are |0〉 (unoccupied) and |1〉 (occupied). Show that we can represent the operators a and a† by the
matrices

a† =

(
0 0
C 0

)
, a =

(
0 C∗

0 0

)
.

You can do this by checking the values of aa, a†a† and a†a+ aa†. What values may the constant C take?

Question 2. A quantum-mechanical Hamiltonian for a system of an even number N of point unit masses
interacting by nearest-neighbour forces in one dimension is given by

H =
1

2

N∑
r=1

(
p2
r + (qr+1 − qr)2

)
,

where the Hermitian operators qr, pr satisfy the commutation relations [qr, qs] = [pr, ps] = 0, [qr, ps] = iδrs, and
where qr+N = qr. New operators Qk, Pk are defined by

qr =
1√
N

∑
k

Qke
ikr and pr =

1√
N

∑
k

Pke
−ikr,

where k = 2πn/N with n = −N/2 + 1, . . . , 0, . . . , N/2.

Show that:

(a) Qk =
1√
N

N∑
s=1

qse
−iks and Pk = 1√

N

∑N
s=1 pse

iks

(b) [Qk, Pk′ ] = iδkk′

(c) H = 1
2

(∑
k PkP−k + ω2QkQ−k

)
, where ω2 = 2(1− cos k).

Similarly to the treatment of the simple harmonic oscillator in QM I we then define annihilation operators ak by

ak =
1

(2ωk)1/2
(ωkQk + iP−k).

Show that the Hermitian conjugate operators are

a†k =
1

(2ωk)1/2
(ωkQ−k − iPk),

and determine the canonical commutation relations for ak and a†p. Construct the Fock space of states and de-
termine the eigenstates and eigenvalues of H.

Question 3. Bosonic creation operators are defined through their action on basis states in the occupation
number representation as

c†l |n1n2 . . . 〉 =
√
nl + 1|n1n2 . . . nl + 1 . . . 〉 , (33)
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a) Deduce from this how bosonic annihilation operators act.
b) Show that the creation and annihilation operators fulfil canonical commutation relations

[cl, cm] = 0 = [c†l , c
†
m] , [cl, c

†
m] = δl,m. (34)

1.3.1 Change of Basis

The Fock space is built from a given basis of single-particle states

single-particle states |l〉
−→

N-particle states |n1n2 . . . 〉 −→
Fock Space

. (35)

You know from second year QM that it is often convenient to switch from one basis to another, e.g. from
energy to momentum eigenstates. This is achieved by a unitary transformation

{|l〉} −→ {|α〉} , (36)

where
|α〉 =

∑
l

〈l|α〉︸︷︷︸
Ulα

|l〉. (37)

By construction ∑
α

UlαU
†
αm =

∑
α

〈l|α〉〈α|m〉 = 〈l|m〉 = δlm. (38)

We now want to “lift” this unitary transformation to the level of the Fock space. We know that

|l〉 = c†l |0〉 ,
|α〉 = d†α|0〉 . (39)

On the other hand we have
|α〉 =

∑
l

Ulα|l〉 =
∑
l

Ulαc
†
l |0〉. (40)

This suggests that we take

d†α =
∑
l

Ulαc
†
l ,

(41)

and this indeed reproduces the correct transformation for N -particle states. Taking the hermitian conjugate
we obtain the transformation law for annihilation operators

dα =
∑
l

U †αlcl.

(42)

We emphasize that these transformation properties are compatible with the (anti)commutation relations (as
they must be). For fermions

{dα, d†β} =
∑
l,m

U †αlUmβ {cl, c
†
m}︸ ︷︷ ︸

δl,m

=
∑
l

U †αlUlβ = (U †U)αβ = δα,β. (43)

1.4 Second Quantized Form of Operators

In the next step we want to know how observables such as H, P , X etc act on the Fock space.
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1.4.1 Occupation number operators

These are the simplest hermitian operators we can build from cl and c†m. They are defined as

n̂l ≡ c†l cl. (44)

From the definition of cl and c†l it follows immediately that

n̂l|n1n2 . . . 〉 = nl|n1n2 . . . 〉. (45)

1.4.2 Single-particle operators

When acting on N -particle states single-particle operators can be written in the form

Ô =
∑
j

ôj , (46)

where the operator ôj acts only on the j’th particle. Examples are kinetic and potential energy operators

T̂ =
∑
j

p̂2
j

2m
, V̂ =

∑
j

V (x̂j). (47)

In terms of tensor-products (46) means that

Ô =

N∑
j=1

1⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
j−1

⊗ô⊗ 1⊗ · · · ⊗ 1 . (48)

We want to represent Ô on the Fock space built from single-particle eigenstates |α〉. We do this in two
steps:

• Step 1: We first represent Ô in a basis of the Fock space built from the eigenstates of ô

ô|l〉 = λl|l〉 = λlc
†
l |0〉. (49)

Then, when acting on an N -particle state (13), we have

Ô|l1, l2, . . . , lN 〉 =

 N∑
j=1

λj

 |l1, l2, . . . , lN 〉. (50)

This is readily translated into the occupation number representation

Ô|n1n2 . . . 〉 =

[∑
k

nkλk

]
|n1n2 . . .〉. (51)

As |n1n2 . . . 〉 constitute a basis, this together with (45) imply that we can represent Ô in the form

Ô =
∑
k

λkn̂k =
∑
k

λkc
†
kck. (52)

• Step 2: Now that we have a representation of Ô in the Fock space basis built from the single-particle
states |l〉, we can use a basis transformation to {|α〉} to obtain a representation in a general basis.
Using that 〈k|Ô|k′〉 = δk,k′λk we can rewrite (52) in the form

Ô =
∑
k,k′

〈k′|Ô|k〉c†k′ck. (53)
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Then we apply our general rules for a change of single-particle basis of the Fock space

c†k =
∑
α

〈α|l〉d†α. (54)

Substituting (54) and the analogous relation for annihilation operators into (53) we have

Ô =
∑
α,β

∑
k′

(
〈α|k′〉〈k′|

)
︸ ︷︷ ︸

〈α|

Ô
∑
k

|k〉〈k|β〉
)

︸ ︷︷ ︸
|β〉

d†αdβ. (55)

This gives us the final result

Ô =
∑
α,β

〈α|Ô|β〉 d†αdβ.

(56)

We now work out a number of explicit examples of Fock space representations for single-particle operators.

1. Momentum Operators P in the infinite volume:

(i) Let us first consider P in the single-particle basis of momentum eigenstates

P̂|k〉 = k|k〉 , 〈p|k〉 = (2π~)3δ(3)(p− k). (57)

Aside 1: Remark

These are shorthand notations for

P̂a|kx, ky, kz〉 = ka|kx, ky, kz〉 , a = x, y, z. (58)

and
〈px, py, pz|kx, ky, kz〉 = (2π~)3δ(kx − px)δ(ky − py)δ(kz − pz) . (59)

Using our general result for representing single-particle operators in a Fock space built from their
eigenstates (52) we have

P̂ =

∫
d3p

(2π~)3
pc†(p)c(p) , [c†(k), c(p)} = (2π~)3δ(3)(p− k). (60)

Here we have introduced a notation

[c(k), c†(p)} =

{
c(k)c†(p)− c†(p)c(k) for bosons

c(k)c†(p) + c†(p)c(k) for fermions.
(61)

(ii) Next we want to represent P̂ in the single-particle basis of position eigenstates

X̂|x〉 = x|x〉 , 〈x|x′〉 = δ(3)(x− x′). (62)

Our general formula (56) gives

P̂ =

∫
d3xd3x′ 〈x′|P̂|x〉c†(x′)c(x) . (63)

We can simplify this by noting that

〈x′|P̂|x〉 = −i~∇x′δ
(3)(x− x′), (64)

which allows us to eliminate three of the integrals

P̂ =

∫
d3xd3x′

[
−i~∇x′δ

(3)(x− x′)
]
c†(x′)c(x) =

∫
d3xc†(x) (−i~∇x) c(x). (65)
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2. Single-particle Hamiltonian:

H =
N∑
j=1

p̂2
j

2m
+ V (x̂j). (66)

(i) Let us first consider H in the single-particle basis of energy eigenstates H|l〉 = El|l〉, |l〉 = c†l |0〉.
Our result (52) tells us that

H =
∑
l

Elc
†
l cl. (67)

(ii) Next we consider the position representation, i.e. we take position eigenstates |x〉 = c†(x)|0〉 as a
basis of single-particle states. Then by (56)

H =

∫
d3xd3x′ 〈x′|H|x〉 c†(x′)c(x). (68)

Substituting (66) into (68) and using

〈x′|V (x̂)|x〉 = V (x)δ(3)(x− x′) , 〈x′|p̂2|x〉 = −~2∇2δ(3)(x− x′) , (69)

we arrive at the position representation

H =

∫
d3x c†(x)

[
−~2∇2

2m
+ V (x)

]
c(x).

(70)

(iii) Finally we consider the momentum representation, i.e. we take momentum eigenstates |p〉 =
c†(p)|0〉 as a basis of single-particle states. Then by (56)

H =

∫
d3pd3p′

(2π~)6
〈p′|H|p〉 c†(p′)c(p). (71)

Matrix elements of the kinetic energy operator are simple

〈p′|p̂2|p〉 = p2〈p′|p〉 = p2(2π~)3δ(3)(p− p′). (72)

Matrix elements of the potential can be calcuated as follows

〈p′|V̂ |p〉 =

∫
d3xd3x′ 〈p′|x′〉〈x′|V̂ |x〉〈x|p〉 =

∫
d3xd3x′ 〈x′|V̂ |x〉︸ ︷︷ ︸

V (x)δ(3)(x−x′)

e
i
~p·x−

i
~p
′·x′

=

∫
d3x V (x)e

i
~ (p−p′)·x = Ṽ (p− p′), (73)

where Ṽ (p) is essentially the three-dimensional Fourier transform of the (ordinary) function V (x).
Hence

H =

∫
d3p

(2π~)3

p2

2m
c†(p)c(p) +

∫
d3pd3p′

(2π~)6
Ṽ (p− p′)c†(p′)c(p).

(74)
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1.4.3 Two-particle operators

These are operators that act on two particles at a time. A good example is the interaction potential V (r̂1, r̂2)
between two particles at positions r1 and r2. For N particles we want to consider

V̂ =
N∑
i<j

V (r̂i, r̂j). (75)

In the Fock space basis built from single-particle position eigenstates this is represented as

V̂ =
1

2

∫
d3rd3r′ c†(r)c†(r′)V (r, r′)c(r′)c(r).

(76)

Note that when writing down the first quantized expression (75), we assumed that the operators acts
specifically on states with N particles. On the other hand, (76) acts on the Fock space, i.e. on states where
the particle number can take any value. The action of (76) on N -particle states (where N is fixed but
arbitrary) is equal to the action of (75).

Aside 2: Derivation of (76)

Let us concentrate on the fermionic case. The bosonic case can be dealt with analogously. We start
with our original representation of N -particle states (13)

|r1, . . . , rN 〉 = N
∑
P∈SN

(−1)|P ||r1〉 ⊗ . . . |rN 〉 . (77)

Then

V̂ |r1, . . . , rN 〉 =
∑
i<j

V (ri, rj)|r1, . . . , rN 〉 =
1

2

∑
i 6=j

V (ri, rj)|r1, . . . , rN 〉 . (78)

On the other hand we know that

|r1, . . . , rN 〉 =

N∏
j=1

c†(rj)|0〉. (79)

Now consider

c(r)|r1, . . . , rN 〉 = c(r)
N∏
j=1

c†(rj)|0〉 = [c(r),
N∏
j=1

c†(rj)}|0〉 , (80)

where is the last step we have used that c(r)|0〉 = 0, and [A,B} is an anticommutator if
both A and B involve an odd number of fermions and a commutator otherwise.
In our case we have a commutator for even N and an anticommutator for odd N .
By repeatedly adding and subtracting terms we find that

[c(r),
N∏
j=1

c†(rj)} = {c(r), c†(r1)}
N∏
j=2

c†(rj)− c†(r1){c(r), c†(r2)}
N∏
j=3

c†(rj)

+ . . .+ (−1)N−1
N−1∏
j=1

c†(rj){c(r), c†(rN )}. (81)
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Using that {c(r), c†(rj)} = δ(3)(r− rj) we then find

c(r)|r1, . . . , rN 〉 =
N∑
n=1

(−1)n−1δ(3)(r− rn)
N∏
j 6=n

c†(rj)|0〉 =
N∑
n=1

(−1)n−1δ(3)(r− rn)|r1 . . .

missing︷︸︸︷
rn . . . rN 〉.

(82)
Hence

c†(r′)c(r′)︸ ︷︷ ︸
number op.

c(r)|r1, . . . , rN 〉 =
N∑
n=1

(−1)n−1δ(3)(r− rn)
N∑

m 6=n
δ(3)(r′ − rm) |r1 . . .

missing︷︸︸︷
rn . . . rN 〉, (83)

and finally

c†(r)c†(r′)c(r′)c(r)|r1, . . . , rN 〉 =
N∑
n=1

δ(3)(r− rn)
N∑

m6=n
δ(3)(r′ − rm) |r1 . . . rn . . . rN 〉. (84)

This implies that

1

2

∫
d3rd3r′ V (r, r′) c†(r)c†(r′)c(r′)c(r)|r1, . . . , rN 〉 =

1

2

∑
n6=m

V (rn, rm)|r1, . . . , rN 〉. (85)

As {|r1, . . . , rN 〉} form a basis, this establishes (76).

Using our formula for basis transformations (41)

c†(r) =
∑
l

〈l|r〉 c†l , (86)

we can transform (76) into a general basis. We have

V̂ =
1

2

∑
ll′mm′

∫
d3rd3r′ V (r, r′)〈l|r〉〈l′|r′〉〈r′|m′〉〈r|m〉c†l c

†
l′cm′cm . (87)

We can rewrite this by using that the action of V̂ on two-particle states is obtained by taking N = 2 in
(75), which tells us that V̂ |r〉 ⊗ |r′〉 = V (r, r′)|r〉 ⊗ |r′〉. This implies

V (r, r′)〈l|r〉〈l′|r′〉〈r′|m′〉〈r|m〉 = V (r, r′)
[
〈l| ⊗ 〈l′|

] [
|r〉 ⊗ |r′〉|

] [
〈r| ⊗ 〈r′|

] [
|m〉 ⊗ |m′〉|

]
=

[
〈l| ⊗ 〈l′|

]
V̂
[
|r〉 ⊗ |r′〉|

] [
〈r| ⊗ 〈r′|

] [
|m〉 ⊗ |m′〉|

]
(88)

Now we use that ∫
d3rd3r′

[
|r〉 ⊗ |r′〉

] [
〈r| ⊗ 〈r′|

]
= 1 (89)

to obtain

V̂ =
1

2

∑
l,l′,m,m′

[
〈l| ⊗ 〈l′

]
|V̂ |
[
m〉 ⊗ |m′〉

]
c†l c
†
l′cm′cm. (90)

Finally we can express everything in terms of states with the correct exchange symmetry

|mm′〉 =
1√
2

[
|m〉 ⊗ |m′〉 ± |m′〉 ⊗ |m〉

]
(m 6= m′). (91)
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in the form

V̂ =
∑

(ll′),(mm′)

〈ll′|V̂ |mm′〉c†l c
†
l′cm′cm .

(92)

Here the sums are over a basis of 2-particle states. In order to see that (90) is equal to (92) observe that∑
m,m′

[|m〉 ⊗ |m′〉]cm′cm =
1

2

∑
m,m′

[|m〉 ⊗ |m′〉 ± |m′〉 ⊗ |m〉]cm′cm =
1√
2

∑
m,m′

|mm′〉 cm′cm (93)

Here the first equality follows from relabelling summation indices m↔ m′ and using the (anti)commutation
relations between cm and cm′ to bring them back in the right order. The second equality follows from the
definition of 2-particle states |mm′〉. Finally we note that because |mm′〉 = ±|m′m〉 (the minus sign is for
fermions) we have

1√
2

∑
m,m′

|mm′〉 cm′cm =
√

2
∑

(mm′)

|mm′〉 cm′cm, (94)

where the sum is now over a basis of 2-particle states with the appropriate exchange symmetry. The
representation (92) generalizes to arbitrary two-particle operators O.

1.5 Homework Question 4

Question 4. Consider the N -particle interaction potential

V̂ =
N∑
i<j

V (r̂i, r̂j),

where V (r̂i, r̂j) = V (r̂j , r̂i). Show that in second quantization it is expressed as

V̂ =
1

2

∫
d3rd3r′ V (r, r′) c†(r)c†(r′)c(r′)c(r).

To do so consider the action of V̂ on a basis of N -particle position eigenstates

|r1 . . . rN 〉 =
1√

N !n1!n2! . . .

∑
P

(±1)|P ||r1〉 ⊗ |r2〉 ⊗ |rN 〉 =
1√

n1!n2! . . .

N∏
j=1

c†(rj)|0〉 ,

where nj is the occupation number of the jth single-particle state. Argue that in an arbitrary basis of single-particle
eigenstates |l〉 V̂ can be expressed in the form

V̂ =
∑
ll′mm′

〈ll′|V̂ |mm′〉c†l c
†
l′cm′cm.

2 Application I: The Ideal Fermi Gas

Consider an ideal gas of spin-1/2 fermions. The creation operators in the momentum representation (in the
infinite volume) are

c†σ(p) , σ =↑, ↓ . (95)

They fulfil canonical anticommutation relations

{cσ(p), cτ (k)} = 0 = {c†σ(p), c†τ (k)} , {cσ(p), c†τ (k)} = δσ,τ (2π~)3δ(3)(k− p). (96)
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The Hamiltonian, in the grand canonical ensemble, is

H − µN̂ =

∫
d3p

(2π~)3

[
p2

2m
− µ

]
︸ ︷︷ ︸

ε(p)

∑
σ=↑,↓

c†σ(p)cσ(p). (97)

Here µ > 0 is the chemical potential. As c†σ(p)cσ(p) = n̂σ(p) is the number operator for spin-σ fermions
with momentum p, we can easily deduce the action of the Hamiltonian on states in the Fock space:[

H − µN̂
]
|0〉 = 0 ,[

H − µN̂
]
c†σ(p)|0〉 = ε(p) c†σ(p)|0〉 ,[

H − µN̂
] n∏
j=1

c†σj (pj)|0〉 =

[
n∑
k=1

ε(pk)

]
n∏
j=1

c†σj (pj)|0〉 . (98)

2.1 Quantization in a large, finite volume

In order to construct the ground state and low-lying excitations, it is convenient to work with a discrete set
of momenta. This is achieved by considering the gas in a large, periodic box of linear size L. Momentum
eigenstates are obtained by solving the eigenvalue equation e.g. in the position representation

p̂ψk(r) = −i~∇ψk(r) = kψk(r). (99)

The solutions are plane waves

ψk(r) = e
i
~k·r. (100)

Imposing periodic boundary conditions (ea is the unit vector in the a direction)

ψk(r + Lea) = ψk(r) for a = x, y, z, (101)

gives quantization conditions for the momenta k

e
i
~Lka = 1⇒ ka =

2π~na
L

, a = x, y, z. (102)

To summarize, in a large, periodic box the momenta are quantized as

k =
2π~
L

nxny
nz

 (103)

Importantly, we can now normalize the eigenstates to 1, i.e.

ψk(r) =
1

L
3
2

e
i
~k·r. (104)

Hence

〈k|k′〉 =

∫
d3rψ∗k(r)ψk′(r) = δk,k′ . (105)

As a consequence of the different normalization of single-particle states, the anticommutation relations of
creation/annihilation operators are changed and now read

{cσ(p), cτ (k)} = 0 = {c†σ(p), c†τ (k)} , {c†σ(p), cτ (k)} = δσ,τδk,p. (106)

The Hamiltonian is

H − µN̂ =
∑
p

ε(p)
∑
σ=↑,↓

c†σ(p)cσ(p).

(107)

We define a Fermi momentum by
p2
F

2m
= µ. (108)
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2.1.1 Ground State

Then the lowest energy state is obtained by filling all negative energy single-particle states, i.e.

|GS〉 =
∏

|p|<pF ,σ

c†σ(p)|0〉.

(109)

The ground state energy is

EGS =
∑
σ

∑
|p|<pF

ε(p). (110)

This is extensive (proportional to the volume) as expected. You can see the advantage of working in a finite
volume: the product in (109) involves only a finite number of factors and the ground state energy is finite.
The ground state momentum is

PGS =
∑
σ

∑
|p|<pF

p = 0. (111)

The ground state momentum is zero, because is a state with momentum p contributes to the sum, then so
does the state with momentum −p.

(p)

p

ε

Figure 1: Ground state in the 1 dimensional case. Blue circles correspond to “filled” single-particle states.

2.1.2 Excitations

• Particle excitations
c†σ(k)|GS〉 with |k| > pF . (112)

Their energies and momenta are

E = EGS + ε(k) > EGS , P = k. (113)

• Hole excitations
cσ(k)|GS〉 with |k| < pF . (114)

Their energies and momenta are

E = EGS − ε(k) > EGS , P = −k. (115)

• Particle-hole excitations
c†σ(k)cτ (p)|GS〉 with |k| > pF > |p|. (116)

Their energies and momenta are

E = EGS + ε(k)− ε(p) > EGS , P = k− p. (117)
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(p)

p

ε (p)

p

ε (p)

p

ε

Figure 2: Some simple excited states: (a) particle (b) hole (c) particle-hole.

2.1.3 Density Correlations

Consider the single-particle operator
o = |r〉〈r| (118)

It represents the particle density at position |r〉 as can be seen by acting on position eigenstates. In second
quantization it is

ρ(r) =
∑
σ

∫
d3r′d3r′′ 〈r′|o|r′′〉 c†σ(r′)cσ(r′′) =

∑
σ

c†σ(r)cσ(r). (119)

1. One-point function.

We now want to determine the expectation value of this operator in the ground state

〈GS|ρ(r)|GS〉 =
∑
σ

〈GS|c†σ(r)cσ(r)|GS〉. (120)

A crucial observation is that the ground state has a simple description in terms of the Fock space built
from momentum eigenstates. Hence what we want to do is to work out the momentum representation
of ρ(r). We know from our general formula (42) that

cσ(r) =
∑
p

〈r|p〉︸ ︷︷ ︸
L−3/2e

i
~p·r

cσ(p). (121)

Substituting this as well as the analogous expression for the creation operator into (120), we obtain

〈GS|ρ(r)|GS〉 =
∑
σ

1

L3

∑
p,p′

e
i
~ (p−p′)·r〈GS|c†σ(p′)cσ(p)|GS〉. (122)

For the expectation value 〈GS|c†σ(p′)cσ(p)|GS〉 to be non-zero, we must have that c†σ(p′)cσ(p)|GS〉
reproduces |GS〉 itself. The only way this is possible is if |p| < pF (so that the c pokes a hole in the
Fermi sea) and p′ = p (so that the c† precisely fills the hole made by the c). By this reasoning we
have

〈GS|c†σ(p′)cτ (p)|GS〉 = δσ,τδp,p′θ(pF − |p′|). (123)

Similarly we can show that

〈GS|cσ(p′)c†τ (p)|GS〉 = δσ,τδp,p′θ(|p| − pF ),

〈GS|cσ(p′)cτ (p)|GS〉 = 0 = 〈GS|c†σ(p′)c†τ (p)|GS〉. (124)

Substituting (123) back into (122) we find

〈GS|ρ(r)|GS〉 =
∑
σ

1

L3

∑
p,p′

e
i
~ (p−p′)·rδp,p′ θ(pF − |p|) = 2︸︷︷︸

spin

1

L3

∑
p

θ(pF − |p|) =
N

L
. (125)
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So our expectation value gives precisely the particle density. This is expected because our system is
translationally invariant and therefore 〈GS|ρ(r)|GS〉 cannot depend on r.

2. Two-point function.

Next we want to determine the two-point function

〈GS|ρ(r)ρ(r′)|GS〉 =
∑
σ,τ

1

L6

∑
p,p′

∑
k,k′

e
i
~ (p−p′)·re

i
~ (k−k′)·r′〈GS|c†σ(p′)cσ(p)c†τ (k′)cτ (k)|GS〉. (126)

The difficulty in calculating the ground state expectation value is that the cσ(p) (c†σ(p)) annihilate
the ground state only for |p| > pF (|p| < pF ). A way around this is to define new annihilation and
creation operators by

dσ(p) = θ(|p| − pF )cσ(p) + θ(pF − |p|)c†σ(p) , d†σ(p) =
(
dσ(p)

)†
. (127)

These fulfil canonical anticommutation relations

{dσ(p), d†τ (k)} = δσ,τδk,p , {dσ(p), dτ (k)} = 0 , (128)

and by construction we have
〈GS|c†σ(p) = 0 = cσ(p)|GS〉. (129)

This is an example of a so-called particle-hole transformation. We may now use the inverse transfor-
mation

cσ(p) = θ(|p| − pF )dσ(p) + θ(pF − |p|)d†σ(p) (130)

to replace the creation and annihilation operators in (126) by the dσ(p), d†σ(p). After that we simply
apply the anticommutation relations (128) to move all annihilation operators to the right, and finally
use (129). The result is

〈GS|c†σ(p′)cσ(p)c†τ (k′)cτ (k)|GS〉 = δk,k′δp,p′θ(pF − |p|)θ(pF − |k|)
+δσ,τδp,k′δk,p′θ(|k′| − pF )θ(pF − |k|). (131)

Observe that by virtue of (123) and (124) this can be rewritten in the form

〈GS|c†σ(p′)cσ(p)|GS〉〈GS|c†τ (k′)cτ (k)|GS〉+ 〈GS|c†σ(p′)cτ (k)|GS〉〈GS|cσ(p)c†τ (k′)|GS〉 . (132)

The fact that the 4-point function (131) can be written as a sum over products of two-point functions
is a reflection of Wick’s theorem for noninteracting spin-1/2 fermions. This is not part of the syllabus
and we won’t dwell on it, but apart from extra minus signs, this says that 2n-point functions are
given by the sum over all possible “pairings”, giving rise to a product of two-point functions. In our
particular case this gives

〈c†σ(p′)cσ(p)c†τ (k′)cτ (k)〉 = 〈c†σ(p′)cσ(p)〉〈c†τ (k′)cτ (k)〉 − 〈c†σ(p′)c†τ (k′)〉〈cσ(p)cτ (k)〉
+ 〈c†σ(p′)cτ (k)〉〈cσ(p)c†τ (k′)〉, (133)

and using that the two point function of two creation or two annihilation operators is zero we obtain
(132). Substituting (131) back in to (126) gives

〈GS|ρ(r)ρ(r′)|GS〉 =
∑
σ,σ′

1

L6

∑
k,p

θ(pF − |k|)θ(pF − |p|)

+
∑
σ

1

L6

∑
k,k′

θ(|k| − pF )θ(pF − |k′|)e
i
~ (k−k′)·(r−r′)

= (〈GS|ρ(r)|GS〉)2 +
2

L3

∑
|k|>pF

e
i
~k·(r−r

′) 1

L3

∑
|k′|<pF

e−
i
~k
′·(r−r′). (134)

In the limit L→∞ we can simplify this expression further.
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Aside 3: Evaluating k-sums

Evaluting the k sums for large L: The idea is to turn sums into integrals

1

L3

∑
|k|<pF

e
i
~k·R →

∫
d3k

(2π~)3
θ(pF − |k|)e

i
~k·R =

∫ ∞
0

dpp2

∫ π

0
dϑ sinϑ

∫ 2π

0
dϕ

θ(pF − ~p)
(2π)3

eip|R| cosϑ

=

∫ pF /~

0

dp

(2π)2

2p sin(p|R|)
|R|

=
sin(pF |R|)− pF |R| cos(pF |R|)

2π2|R|3
≡ h(|R|). (135)

Here we have introduced spherical polar coordinates such that the z-axis of our co-ordinate system is
along the R direction, and

kx = ~p sinϑ cosϕ ,

ky = ~p sinϑ sinϕ ,

kz = ~p cosϑ. (136)

The other sum works similarly

1

L3

∑
|k|>pF

e
i
~k·R =

1

L3

∑
k

e
i
~k·R − 1

L3

∑
|k|<pF

e
i
~k·R. (137)

The second part is evaluated above, while the first part is

1

L3

∑
k

e
i
~k·R = δ(3)(R). (138)

The equality can be proved by multiplying both sides by a test-function f(R)
and then integrating over R:∫

d3R
1

L3

∑
k

e
i
~k·Rf(R) =

1

L3

∑
k

∫
d3Re

i
~k·Rf(R) =

1

L3

∑
k

f̃k = f(0). (139)

Here we have used standard definitions for Fourier series, cf Riley/Hobson/Bence 12.7.

Using these simplifications for large L we arrive at our final answer

〈GS|ρ(r)ρ(r′)|GS〉 = 〈GS|ρ(r)|GS〉2 + 〈GS|ρ(r)|GS〉δ(3)(r− r′)− 2
[
h(|r− r′|)

]2
.

(140)

The first two terms are the same as for a classical ideal gas, while the third contribution is due to the
fermionic statistics (Pauli exclusion: “fermions don’t like to be close to one another”).

2.2 Connection with Quantum Field Theory

Using our general result (70) we can express the Hamiltonian of the free Fermi gas in the position represen-
tation

H =
∑
σ

∫
d3x c†σ(x)

[
−~2∇2

2m
− µ

]
cσ(x). (141)
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Aside 4: Schrödinger vs Heisenberg pictures and Heisenberg equation of motion

Let us consider time evolution in a system with time-independent Hamiltonian. In the Schrödinger
picture one takes the states to be time-dependent and operators to be time-independent. Time
evolution is governed by the time dependent Schrödinger equation

i~
d|ψ(t)〉
dt

= H|ψ(t)〉 . (142)

This is formally solved by

|ψ(t)〉 = e−
i
~Ht|ψ(0)〉 . (143)

Measurable quantities are related to matrix elements of observables O

〈φ(t)|O|ψ(t)〉 = 〈φ(0)| e
i
~HtOe−

i
~Ht︸ ︷︷ ︸

O(t)

|ψ(0)〉 (144)

We see that we can calculate these in an alternative way: we can fix a basis of states at t = 0
and calculate all matrix elements in this basis, while time evolution is now moved to the operators.
This formulation of Quantum mechanics is known as Heisenberg picture. For a time-independent
Hamiltonian the time evolution of operators is then governed by the Heisenberg equation of motion

dO
dt

=
i

~
[H,O(t)] . (145)

The Heisenberg equations of motion for cσ(x, t) are

∂cσ(x, t)

∂t
= − i

~

[
−~2∇2

2m
− µ

]
cσ(x, t). (146)

These correspond to the Euler-Lagrange equations

∂t
δL

δ∂tc
†
σ(x, t)

= −
∑
a

∂a
δL

δ∂ac
†
σ(x, t)

+
δL

δc†σ(x, t)
(147)

obtained from the following Lagrangian

L =
∑
σ

∫
d3x c†σ(x, t)

[
i~
∂

∂t
+

~2∇2

2m
+ µ

]
cσ(x, t) , (148)

which describes a non-relativistic Quantum Field Theory for the fermionic fields cσ(x).

2.3 “Emergent” relativistic description at low energies

Let us now for simplicity consider the case D = 1. We have seen above that the low-energy degrees of
freedom “live” in the vicinities of the Fermi momenta ±pF . The expansion of cσ(x) in terms of momentum
modes reads

cσ(x) =
1√
L

∑
p

cσ(p) e
i
~px . (149)

Let us now imagine that we probe our Fermi system only in ways that involve very small energy transfers
to the system. This kind of situation is in fact often encountered when doing experiments on solids. Such
experimental probes are sensitive only to states that have an energy close to that of the ground state. Let
us thus “project” our theory to low-energy degrees of freedom only: this amounts to retain only momentum
modes in small intervals around the Fermi points

|p± pF | < Λ� pF . (150)
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Figure 3: The low-energy degrees of freedom (particle/hole excitations with small excitation energies) involve
only momenta close to the Fermi points ±pF .

Here Λ is a momentum cutoff. This gives

cσ(x) −→ e
i
~pF x

1√
L

∑
|p|<Λ

cσ(pF + p) e
i
~px

︸ ︷︷ ︸
Rσ(x)

+ e−
i
~pF x

1√
L

∑
|p|<Λ

cσ(−pF + p) e
i
~px

︸ ︷︷ ︸
Lσ(x)

. (151)

The low-energy projection of our Hamiltonian is

H − µN −→ Hlow =
∑
|p|<Λ,σ

ε(pF + p)c†σ(pF + p)cσ(pF + p) + ε(−pF + p)c†σ(−pF + p)cσ(−pF + p) , (152)

where

ε(±pF + p) =
(±pF + p)2

2m
− µ = ±ppF

m

(
1± p

2pF

)
≈ ±ppF

m
≡ ±vF p. (153)

Here vF is called Fermi velocity. Neglecting the small correction terms to the linear dispersion we have

Hlow ≈
∑
|p|<Λ,σ

vF p
[
c†σ(pF + p)cσ(pF + p)− c†σ(−pF + p)cσ(−pF + p)

]
=

∑
σ

−i~vF
∫
dx
[
R†σ(x)∂xRσ(x)− L†σ(x)∂xLσ(x)

]
. (154)

This Hamiltonian is closely related to the 1+1 dimensional Dirac equation. The Lagrangian density of the
Dirac field is

LD = i~Ψ̄
[
γ0∂t − cγ1∂1

]
Ψ−mc2Ψ̄Ψ , (155)

Here c is the speed of light, γ0 = σx and γ1 = −iσy are gamma matrices in two dimensions, Ψ̄ = Ψ†γ0 and
Ψ itself is a two dimensional spinor

Ψ(x) =

(
R(x)
L(x)

)
. (156)

Writing (155) out in components we have

LD = i~
[
R†∂tR+ L†∂tL

]
+ ic

[
R†∂xR− L†∂xL

]
−mc2

[
R†L+ L†R

]
. (157)

The corresponding Hamiltonian density

HD = −i~c
[
R†∂xR− L†∂xL

]
+mc2

[
R†L+ L†R

]
. (158)
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Comparing (154) to (158) we conclude that at low energies the Fermi gas is described by two copies (one for
each spin projection) of a massless Dirac field. The resulting theory is relativistic apart from the speed of
light being replaced by the Fermi velocity vF . This symmetry was not present in our original problem, but
emerged in the vicinity of a non-trivial ground state. Such emergent descriptions of the low energy degrees
of freedom in terms of relativistic QFTs are fairly common in condensed matter physics. Usually the QFTs
are however strongly interacting!

2.4 Homework Questions 5-6

Question 5. Consider a system of fermions moving freely on a one-dimensional ring of length L, i.e. periodic
boundary conditions are applied between x = 0 and x = L. The fermions are all in the same spin state, so that
spin quantum numbers may be omitted. Fermion creation and annihilation operators at the point x are denoted
by ψ†(x) and ψ(x).
a) Write down the complete set of anticommutation relation satisfied by ψ†(x1) and ψ(x2).
b) Write down the wave-functions of single-particle momentum eigenstates (make sure to take the boundary
conditions into account!). What are the allowed values of momentum? Using this result, derive an expression for

the momentum space creation and annihilation operators Ψ†p and Ψp in terms of ψ†(x) and ψ(x) (hint: use the
general result for basis transformation obtained in the lecture notes).

c) Starting with your expression for the anticommutator {ψ†(x1), ψ(x2)}, evaluate {Ψ†p,Ψq}.
d) Derive an expression for ψ(x) in terms of Ψk.
e) The density operator ρ(x) is defined by ρ(x) = ψ†(x)ψ(x). The number operator is

N =

∫ L

0
dx ρ(x) .

Express ρ(x) in terms of Ψ†p and Ψq, and show from this that

N =
∑
k

Ψ†kΨk .

Let |0〉 be the vacuum state (containing no particles) and define |φ〉 by

|φ〉 = A
∏
k

(uk + vkΨ
†
k)|0〉,

where uk and vk are complex numbers depending on the label k, and A is a normalisation constant.
Evaluate (i) |A|2, (ii) 〈φ|N |φ〉, and (iii) 〈φ|N2|φ〉. Under what conditions is |φ〉 an eigenstate of particle

number?

Question 6. Consider a system of fermions in which the functions ϕ`(x), ` = 1, 2 . . . N , form a complete
orthonormal basis for single particle wavefunctions.
a) Explain how Slater determinants may be used to construct a complete orthonormal basis for n-particle states
with n = 2, 3 . . . N . Calculate the normalisation constant for such a Slater determinant at a general value of n.
How many independent n-particle states are there for each n?
b) Let C†` and C` be fermion creation and destruction operators which satisfy the usual anticommutation relations.
The quantities ak are defined by

ak =

N∑
`=1

Uk`C`,

where Uk` are elements of an N × N matrix, U . Write down an expression for a†k. Find the condition which

must be satisfied by the matrix U in order that the operators a†k and ak also satisfy fermion anticommutation
relations.
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c) Non-interacting spinless fermions move in one dimension in an infinite square-well potential, with position
coordinate 0 ≤ x ≤ L. The normalised single particle energy eigenstates are

ϕ`(x) =

(
2

L

)1/2

sin

(
`πx

L

)
,

and the corresponding fermion creation operator is C†` .
Write down expressions for C†(x), the fermion creation operator at the point x, and for ρ(x), the particle

density operator, in terms of C†` , C` and ϕ`(x).
d) What is the ground state expectation value 〈ρ(x)〉 in a system of n fermions?

In the limit n→∞, L→∞, taken at fixed average density ρ0 = n/L, show that

〈ρ(x)〉 = ρ0

[
1− sin 2πρ0x

2πρ0x

]
.

Sketch this function and comment briefly on its behaviour for x→ 0 and x→∞.

3 Linear Response Theory

Now is a good time to address the question what quantities are of experimental interest.To that end, let
us consider a quantum system described by a time-independent Hamiltonian H0 that initially is in thermal
equilibrium at a temperature T . Expectation values of physical observables are then given by

〈O〉β ≡
1

Z
Tr
[
e−βH0O

]
, (159)

where β = 1/(kBT ) and Z is the partition function

Z = Tr
[
e−βH0

]
. (160)

In terms of energy eigenstates H0|n〉 = En|n〉 we have

〈O〉β =
1

Z

∑
n

e−βEn〈n|O|n〉. (161)

Suppose now that we apply a very weak time-dependent external perturbation V̂ (t) to our system that
drives it out of thermal equilibrium. The time evolution of the system is then governed by the Hamiltonian

H(t) = H0 + V (t) . (162)

The time evolution of states is given by the time-dependent Schrödinger equation

i~
∂

∂t
|ψ(t)〉 = H(t)|ψ(t)〉 . (163)

As the perturbation is very weak it is useful to separate its effects on the time evolution from those of H0.
This gives rise to the so-called interaction picture. We define interaction picture operators by

Aint(t) ≡ e
i
~H0tAe−

i
~H0t . (164)

We then split the time evolution of states into the contribution from H0 and the remainder as follows

|ψ(t)〉 = e−
i
~H0tU(t, t0)e

i
~H0t0 |ψ(t0)〉 . (165)
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Substituting this back into (163) and using that the state is arbitrary then gives an equation for U(t, t0)

i~
∂

∂t
U(t, t0) = e

i
~H0tV (t)e−

i
~H0t U(t, t0)

= Vint(t) U(t, t0) . (166)

The solution of this equation under the conditions that U(t0, t0) = 1 is

U(t, t0) = 1− i

~

∫ t

t0

dt′ Vint(t
′)− 1

~2

∫ t

t0

dt′
∫ t′

t0

dt′′ Vint(t
′)Vint(t

′′) + . . .

= T exp

(
−i
~

∫ t

t0

dt′ Vint(t
′)

)
, (167)

where we have defined a time ordering operation by

T A(t)B(t′) =

{
A(t)B(t′) if t > t′

B(t′)A(t) if t < t′
. (168)

Let us now apply this formalism to the expectation value of an observable O at time t > t0, where we
imagine that our perturbation vanishes for earlier times. Then

〈O(t)〉β ≡ 1

Z

∑
n

e−βEn〈n(t)|O|n(t)〉

=
1

Z

∑
n

e−βEn〈n|U †(t, t0) Oint(t) U(t, t0)|n〉

=
1

Z

∑
n

e−βEn
{
〈n|Oint(t)|n〉 −

i

~

∫ t

t0

dt′〈n|[Oint(t), Vint(t
′)]|n〉+ . . .

}
≈ 〈O〉β −

i

~

∫ t

t0

dt′〈[Oint(t), Vint(t
′)]〉β . (169)

Here we have used that e−
i
~H0t0 |n〉 = e−

i
~E0t0 |n〉. Restricting our discussion to the case V (t) = f(t)V where

f(t) is a time dependent function and taking t0 → −∞ we obtain

〈O(t)〉β − 〈O〉β ≈
∫ ∞
−∞

dt′ χO,V (t, t′) f(t′) , (170)

where χO,V is a retarded correlation function of the operators O and V

χO,V (t, t′) = − i
~
θ(t− t′) 〈[Oint(t), Vint(t

′)]〉β . (171)

It is easy to see (by writing out the average in a basis of eigenstates of H0 and using (164)) that this
correlation function depends only on the time difference t− t′.

Let us now look at an example of this linear response formalism. Let us take the Fermi gas as our system
and perturb it by a time-dependent potential of the form

V =

∫
d3r ρ(r) φext(r, t) , (172)

where ρ(r) is the particle density operator introduced previously. Imposing such a potential is readily done
experimentally. If we then measure the density variation induced by the external potential we find according
to our calculation above

〈ρ(r, t)〉β − 〈ρ(r)〉β ≈
∫ ∞
−∞

dt′
∫
d3r′ φext(r, t

′) χρρ(r, t; r
′, t′). (173)
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Here χρρ is the retarded density-density correlation function

χρρ(r, t; r
′, t′) = − i

~
θ(t− t′) 〈[ρint(r, t), ρint(r

′, t′)]〉β . (174)

This is a particular example of a response function. These are the quantities that are measured in many
kinds of experiments.

4 Application II: Weakly Interacting Bosons

As you know from Statistical Mechanics, the ideal Bose gas displays the very interesting phenomenon of
Bose condensation. This has been observed in systems of trapped Rb atoms and led to the award of the
Nobel prize in 2001 to Ketterle, Cornell and Wiemann. The atoms in these experiments are bosonic, but the
atom-atom interactions are not zero. We now want to understand the effects of interactions in the framework
of a microscopic theory. The kinetic energy operator is expressed in terms of creation/annihilation operators
single-particle momentum eigenstates as

T̂ =
∑
p

p2

2m
c†(p)c(p). (175)

Here we have assumed that our system in enclosed in a large, periodic box of linear dimension L. The
boson-boson interaction is most easily expressed in position space

V̂ =
1

2

∫
d3rd3r′ c†(r)c†(r′)V (r, r′)c(r′)c(r) (176)

A good model for the potential V (r, r′) is to take it of the form

V (r, r′) = Uδ(3)(r− r′), (177)

i.e. bosons interact only if they occupy the same point in space. Changing to the momentum space
description

c(r) =
1

L3/2

∑
p

e
i
~p·rc(p), (178)

we have

V̂ =
U

2L3

∑
p1,p2,p3

c†(p1)c†(p2)c(p3)c(p1 + p2 − p3). (179)

4.1 Ideal Bose Gas

For U = 0 we are dealing with an ideal Bose gas and we know that the ground state is a condensate: all
particles occupy the lowest-energy single-particle state, i.e. the zero-momentum state

|GS〉0 =
1√
N !

(
c†(p = 0)

)N
|0〉. (180)

So p = 0 is special, and in particular we have

0〈GS|c†(p = 0)c(p = 0)|GS〉0 = N. (181)
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4.2 Bogoliubov Approximation

For small U > 0 we expect the Bose-Einstein condensate to persist, i.e. we expect

〈GS|c†(p = 0)c(p = 0)|GS〉 = N0 � 1. (182)

However,
[c†(0)c(0), V̂ ] 6= 0, (183)

so that the number of p = 0 bosons is not conserved, and the ground state |GS〉 will be a superposition of
states with different numbers of p = 0 bosons. However, for the ground state and low-lying excited states
we will have

〈Ψ|c†(0)c(0)|Ψ〉 ' N0 , (184)

where N0, crucially, is a very large number. The Bogoliubov approximation states that, when acting on the
ground state or low-lying excited states, we in fact have

c†(0) '
√
N0 , c(0) '

√
N0 ,

(185)

i.e. creation and annihilation operators are approximately diagonal. This is a much stronger statement than
(184), and at first sight looks rather strange. It amounts to making an ansatz for low-energy states |ψ〉 that
fulfils

〈ψ′|c(0)|ψ〉 =
√
N0〈ψ′|ψ〉+ . . . (186)

where the dots denote terms that are small compared to
√
N0. We’ll return to what this implies for the

structure of |ψ〉 a little later. Using (185) we may expand H in inverse powers of N0

H =
∑
p

p2

2m
c†(p)c(p)

+
U

2L3
N2

0 +
UN0

2L3

∑
k 6=0

2c†(k)c(k) + 2c†(−k)c(−k) + c†(k)c†(−k) + c(−k)c(k)

+ . . . (187)

Note that there is no term that goes as N
3
2

0 because setting the momentum of three of the creation/annihi-
lation operators in (179) to zero forces the last momentum to be zero as well. Now use that

N0 = c†(0)c(0) = N −
∑
p6=0

c†(p)c(p), (188)

where N is the (conserved) total number of bosons, and define

ρ =
N

L3
= density of particles. (189)

Then our Hamiltonian becomes

H =
Uρ

2
N +

∑
p6=0

[
p2

2m
+ Uρ

]
︸ ︷︷ ︸

ε(p)

c†(p)c(p) +
Uρ

2

[
c†(p)c†(−p) + c(−p)c(p)

]
+ . . .

(190)

The Bogoliubov approximation has reduced the complicated four-boson interaction to two-boson terms. The
price we pay is that we have to deal with the “pairing”-terms quadratic in creation/annihilation operators.
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4.3 Bogoliubov Transformation

Consider the creation/annihilation operators defined by(
b(p)
b†(−p)

)
=

(
cosh(θp) sinh(θp)
sinh(θp) cosh(θp)

)(
c(p)

c†(−p).

)
(191)

It is easily checked that for any choice of Bogoliubov angle θp = θ−p

[b(p), b(q)] = 0 = [b†(p), b†(q)] , [b(p), b†(q)] = δp,q. (192)

In terms of the Bogoliubov bosons the Hamiltonian becomes

H = const +
1

2

∑
p6=0

[(
p2

2m
+ Uρ

)
cosh(2θp)− Uρ sinh(2θp)

] [
b†(p)b(p) + b†(−p)b(−p)

]
−
[(

p2

2m
+ Uρ

)
sinh(2θp)− Uρ cosh(2θp)

] [
b†(p)b†(−p) + b(−p)b(p)

]
+ . . . (193)

Now we choose

tanh(2θp) =
Uρ

p2

2m + Uρ
, (194)

as this removes the b†b† + bb terms, and leaves us with a diagonal Hamiltonian

H = const +
∑
p6=0

E(p)b†(p)b(p) + . . .

(195)

where

E(p) =

√(
p2

2m
+ Uρ

)2

− (Uρ)2 . (196)

We note that

E(p) −→ p2

2m
for |p| → ∞, (197)

which tells us that at high momenta (and hence high energies) we recover the quadratic dispersion. In this
limit θp → 0, so that the Bogoliubov bosons reduce to the “physical” bosons we started with. On the other
hand

E(p) −→
√
Uρ

m
|p| for |p| → 0. (198)

So here we have a linear dispersion.

4.4 Ground State and Low-lying Excitations

We note that the Hamiltonian (195) involves only creation/annihilation operators with p 6= 0. Formally, we
can define zero-momentum Bogoliubov bosons as simply being equal to the original ones

b(0) = c(0) . (199)

Let us now define the Bogoliubov vacuum state |0̃〉 by

b(p)|0̃〉 = 0 . (200)

Clearly, for p 6= 0 we have E(p) > 0, and hence no Bogoliubov quasiparticles will be present in the ground
state. On the other hand, a basic assumption we made was that

〈GS|b(0)|GS〉 '
√
N0. (201)
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In order to get an idea what this implies for the structure of the ground state, let us express it in the general
form

|GS〉 =
∞∑
n=0

αn
(
b†(0)

)n|0̃〉 . (202)

Eqn (201) then implies that

αn+1 '
√
N0

n+ 1
αn . (203)

Replacing this approximate relation by an equality leads to a coherent state

|GS〉 = e−N0/2e
√
N0b†(0)|0̃〉. (204)

Low-lying excited states can now be obtained by creating Bogoliubov quasipartices, e.g.

b†(q)|GS〉, (205)

is a particle-excitation with energy E(q) > 0. Note that the eigenstates of the Hamiltonian are obtained by
acting with the Bogoliubov creation operators on the ground state and that the “elementary excitations” are
therefore the Bogoliubov bosons rather than the original bosons. The way to understand this is to note that
the ground state is a rather complicated many-boson state, and excitations involve the collective motion of
all these bosons. Inspection of the Bogoliubov angle (194) shows that θp goes to zero for large momenta
|p|, and concomitantly b†(p) ≈ c†(p), cf. (191). In other words, at high energies the Bogoliubov bosons
essentially reduce to the original ones, which is also reflected in the dispersion relation (197).

4.5 Ground state correlation functions

We are now in a position to work out correlation functions in the ground state such as

〈GS|c†(p)c(q)|GS〉 , p,q 6= 0. (206)

Inverting the Bogoliubov transformation (191) we have

c†(p) = cosh(θp)b†(p)− sinh(θp)b(−p) ,

c(q) = cosh(θq)b(q)− sinh(θq)b†(−q) . (207)

Using that
〈GS|b†(p) = 0 = b(q)|GS〉, (208)

we find that

〈GS|c†(p)c(q)|GS〉 = sinh(θq) sinh(θq)〈GS|b(−p)b†(−q)|GS〉
= sinh2(θp)δq,p (p,q 6= 0). (209)

This tells us that, in contrast to the ideal Bose gas, in the ground state of the interacting Bose gas we have
a finite density of bosons with non-zero momentum

〈GS|c†(p)c(p)|GS〉 = sinh2(θp) . (210)

Another feature of the ground state is that the two-point function of two annihilation/creation operators is
non-zero

〈GS|c(p)c(q)|GS〉 = 〈GS|c†(q)c†(p)|GS〉 = − cosh(θp) sinh(θq)δp,−q. (211)
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4.6 Spontaneous Symmetry Breaking

Eqns (211) imply that boson number is not a good quantum number in the ground state. More formally,
we say that the ground state spontaneously breaks the U(1) symmetry of the Hamiltonian H = T̂ + V̂ . Let
us explain that statement. The Hamiltonian is invariant under the symmetry operation

Ûc(p)Û † = eiφc(p) , φ ∈ R ,

Ûc†(p)Û † = e−iφc†(p) , (212)

i.e.
ÛHÛ † = H. (213)

The reason for this is that all terms in H involve the same number of creation as annihilation operators,
and the total particle number is therefore conserved. This is referred to as a global U(1) symmetry (as
the transformations (212) form a group called U(1)). Let us now investigate how ground state expectation
values transform. We have

〈GS|c(p)c(q)|GS〉 = 〈GS|Û †Ûc(p)Û †Ûc(q)Û †Û |GS〉 = e2iφ〈GS|Û †c(p)c(q)Û |GS〉 . (214)

If the ground state were invariant under the symmetry, we would have Û |GS〉 = |GS〉. Eqn (214) would then
imply that 〈GS|c(p)c(q)|GS〉 = 0. Reversing the argument, we see that a non-zero value of the expectation
value (211) implies that the ground state cannot be invariant under the U(1) symmetry, and in fact “breaks
it spontaneously”.

4.7 Depletion of the Condensate

We started out by asserting that for small interactions U > 0 we retain a Bose-Einstein condensate, i.e. the
consensate fraction N0/N remains large. We can now check that this assumption is self-consistent. We have

N0 = N −
∑
p6=0

c†(p)c(p). (215)

Thus in the ground state

N0

N
= 1− 1

N

∑
p6=0

〈GS|c†(p)c(p)|GS〉 = 1− 1

N

∑
p6=0

sinh2(θp), (216)

where we have used (209). This equals

N0

N
= 1− 1

2N

∑
p6=0

 1√
1− tanh2(2θp)

− 1

 = 1− 1

2N

∑
p6=0

 1√
1−

[
Uρ
ε(p)

]2
− 1

 . (217)

We again turn this into an integral and evaluate it in spherical polar coordinates, which gives

N0

N
≈ 1− 2π

ρ

∫ ∞
0

dp

(2π~)3
p2

 1√
1−

[
Uρ
ε(p)

]2
− 1

 . (218)

By means of the substitution p =
√

2mUρz we can see that the integral is proportional to U3/2 and thus
indeed small for small U .
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5 Application III: Spinwaves in a Ferromagnet

Consider the following model of a magnetic insulator: at each site r of a D-dimensional with N sites lattice
we have a magnetic moment. In QM such magnetic moments are described by three spin-operators

Sαr , α = x, y, z , (219)

which fulfil the angular momentum commutation relations

[Sαr , S
β
r′ ] = δr,r′iεαβγS

γ
r . (220)

We will assume that the spin are large in the sense that

S2
r =

∑
α

(
Sαr
)2

= s(s+ 1)� 1. (221)

Let us begin by constructing a basis of quantum mechanical states. At each site we have 2s+ 1 eigenstates
of Szr

Szr |m〉r = m|m〉r, m = s, s− 1, . . . ,−s. (222)

They can be constructed from |s〉r using spin lowering operators S−r = Sxr − iS
y
r

|s− n〉r =
1

Nn
(
S−r )n|s〉r , n = 0, 1, . . . , 2s, (223)

where Nn are normalization constants. A basis of states is then given by∏
r

|sr〉r , −s ≤ sr ≤ s spin on site r. (224)

5.1 Heisenberg model and spin-rotational SU(2) symmetry

An appropriate Hamiltonian for a ferromagnetic insulator was derived by Heisenberg

H = −J
∑
〈r,r′〉

Sr · Sr′ .

(225)

Here 〈r, r′〉 denote nearest-neighbour pairs of spins and we will assume that J > 0. The model (225) is
known as the ferromagnetic Heisenberg model. You can check that the Hamiltonian (225) commutes with
the three total spin operators

[H,Sα] = 0 , Sα =
∑
r

Sαr . (226)

These imply that the Hamiltonian is invariant under general rotations (in spin space)

eiα·SHe−iα·S = H. (227)

The transformations (227) form a group known as SU(2), and the Heisenberg Hamiltonian (225) is invariant
under them.
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5.2 Exact ground states

One ground state of H is given by

|GS〉 =
∏
r

|s〉r.

(228)

Its energy is

H|GS〉 = −J
∑
〈r,r′〉

s2|GS〉 = −Js2NB|GS〉, (229)

where NB is the total number of bonds in our lattice. The total spin lowering operator S− =
∑

r S
−
r

commutes with H by virtue of (226) and hence

|GS, n〉 =
1

Nn

(
S−
)n |GS〉 , 0 ≤ n ≤ 2sN (230)

are ground states as well (as they have the same energy). Here Nn is a normalization.

Aside 5: Proof that |GS〉 is a ground state

We note that the spin-spin interaction can be written in the form

2Sr · Sr′ = (Sr + Sr′)
2 − S2

r − S2
r′ = J2 − 2s(s+ 1). (231)

Here J2 is the total angular momentum squared. Its eigenvalues follow from the theory
of adding angular momenta to be

J2|j,m〉 = j(j + 1)|j,m〉 , j = 2s, 2s− 1, . . . , 1, 0. (232)

This tells us that the maximal eigenvalue of J2 is 2s(2s+ 1), and by expanding |ψ〉 in a
basis of eigenstates of J2 we can easily show that

〈ψ|J2|ψ〉 =
∑

j,m,j′,m′

〈ψ|j,m〉〈j,m|J2|j′,m′〉〈j′,m′|ψ〉

=
∑
j,m

|〈ψ|j,m〉|2j(j + 1) ≤ 2s(2s+ 1)
∑
j,m

|〈ψ|j,m〉|2 = 2s(2s+ 1). (233)

This tells us that
〈ψ|Sr · Sr′ |ψ〉 ≤ s2. (234)

This provides us with a bound on the eigenvalues of the Hamiltonian, as

〈ψ|H|ψ|〉 ≥ −J
∑
〈r,r′〉

s2 = −Js2Nz. (235)

The state we have constructed saturates this bound, so must be a ground state.

Let us now see how the SU(2) symmetry is reflected in expectation values of operators O. At finite
temperature we have

〈O〉β =
1

Z(β)
Tr
[
e−βHO

]
, (236)

where Z(β) = Tr[e−βH ] is the partition function and β = 1/kBT . In the T → 0 limit we have

〈O〉∞ =
1

2sN + 1

2sN∑
n=0

〈GS, n|O|GS, n〉, (237)
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i.e. we average over all ground states. The thermal average, as well as its T = 0 limit, are invariant under
rotations in spin space. Indeed, under a rotation in spin space we have

〈eiα·SOe−iα·S〉β =
1

Z(β)
Tr
[
e−βHeiα·SOe−iα·S

]
(238)

where S =
∑

r Sr are the global spin operators. Using the cyclicity of the trace and the fact that H
commutes with the global spin operators, we see that this equals 〈O〉β. If we choose as our operator O any
of the global spin operators, and consider a rotation by π around one of the orthogonal axes, we see that
the magnetization always vanishes

〈Sα〉β = 0 , α = x, y, z. (239)

Physically this is what one would expect for a system that is spin rotationally invariant, i.e. looks the same
in any direction in spin space.

5.3 Spontaneous Symmetry Breaking

In a real system, the 2sN + 1-fold ground state degeneracy is usually broken through imperfections. In
practice the details of these imperfections are not important, the only thing that matters is that the symmetry
gets broken. To keep things simple, one retains the spin-rotationally symmetric Hamiltonian, and says that
the ground state breaks the symmetry “spontaneously”.

A convenient mathematical description of this effect is as follows. Imagine adding an infinitesimal
magnetic field −ε

∑
r S

z
r to the Hamiltonian. This will break the symmetry and hence the degeneracy of the

ground states, which now will have energies

EGS,n = −Js2NB − ε(sN − n). (240)

Now consider the sequence of limits

lim
ε→0

lim
N→∞

[EGS,n − EGS,0] =

{
0 if limN→∞

n
N = 0 ,

∞ else.
(241)

This means that if we define the thermodynamic limit in the above way, then the only surviving ground
states will have magnetization per site s, i.e. contain only a non-extensive number of spin flips. In all of
these remaining ground states the spin rotational symmetry has been broken. As we have taken ε → 0
our Hamiltonian is again SU(2) symmetric, but the remaining ground states “spontaneously” break this
symmetry.

5.4 Holstein-Primakoff Transformation

We succeeded in finding the ground states of H because of their simple structure. For more general spin
Hamiltonians, or even the Hamiltonian (225) with negative value of J , this will no longer work and we need
a more general, but approximate way of dealing with such problems. This is provided by (linear) spinwave
theory.

As shown by Holstein and Primakoff, spin operators can be represented in terms of bosonic creation and
annihilation operators as follows:

Szr = s− a†rar , S+
r = Sxr + iSyr =

√
2s

√
1− a†rar

2s
ar . (242)

You can check that the bosonic commutation relations

[ar, a
†
r′ ] = δr,r′ (243)
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imply that
[Sαr , S

β
r′ ] = δr,r′iεαβγS

γ
r . (244)

However, there is a caveat: the spaces of QM states are different! At site r we have(
Sr
)n|s〉r , n = 0, . . . , 2s (245)

for spins, but for bosons there are infinitely many states(
a†r
)n|0〉r , n = 0, . . . ,∞. (246)

To make things match, we must impose a constraint, that there are at most 2s bosons per site. Now we take
advantage of the fact that we have assumed s to be large: in the ground state there are no bosons present,
because

〈GS|s− a†rar|GS〉 = 〈GS|Szr |GS〉 = s = (247)

Low-lying excited states will only have a few bosons, so for large enough s we don’t have to worry about
the constraint. Using the Holstein-Primakoff transformation, we can rewrite H in a 1/s expansion

H = −J
∑
〈r,r′〉

s2 − s
[
a†rar + a†r′ar′ − a

†
rar′ − a

†
r′ar

]
+ . . .

(248)

Here the dots indicate terms proportional to s0, s−1, etc. Once again using that s is large, we drop these
terms (for the time being). We then can diagonalize H by going to momentum space

ar =
1√
N

∑
k

eik·ra(k) , [a(k), a†(p)] = δk,p , (249)

Exercise 2: Quantization conditions for lattice “momenta”

As we are dealing with a lattice model translational invariance is now reduced to translations by
multiples of the lattice spacing in the various crystallographic directions. On a hypercubic lattice
with periodic boundary conditions we have

a(r + Lea) = a(r), (250)

where ea denotes the unit vector in the a direction and L is the linear size of our system (so N = LD).
In D=1 periodic boundary conditions imply that our spin model lives on a ring, and (250) then simply
means that if we go around the ring once we return precisely to where we started. Out goal is to
define a set of N linearly independent operators

a(k) =
1√
N

∑
r

e−ik·rar . (251)

Using (250) we conclude that

a(k) =
1√
N

∑
r

e−ik·rar+Lea =
1√
N

∑
r

e−ik·(r−Lea)ar, (252)
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which leads to the conditions
eiLk·ea = 1. (253)

A solution to these conditions that provides us with linearly independent a(k)’s is

ka =
2π

L
na , na = 1, 2, . . . , L. (254)

Let us now work out the commutation relations

[a(k), a†(p)] =
1

N

∑
r,r′

e−ik·reip·r
′
[a(r), a†(r′)]︸ ︷︷ ︸

δr,r′

=
1

N

∑
r

e−i(k−p)·r =
1

N

D∏
a=1

L∑
ra=1

e−i(ka−pa)ra

︸ ︷︷ ︸
Lδka,pa

= δk,p. (255)

In terms of creation and annihilation operators in momentum space the Hamiltonian becomes

H = −Js2Nz +
∑
q

ε(q)a†(q)a(q) + . . .

(256)

For a simple cubic lattice the energy is

ε(q) = 2Js [3− cos qx − cos qx − cos qz] . (257)

For small wave numbers this is quadratic

ε(q) ≈ Js|q|2 for |q| → 0. (258)

In the context of spontaneous symmetry breaking these gapless excitations are known as Goldstone modes.
Let us now revisit the logic underlying our 1/s expansion. For things to be consistent, we require that

the terms of order s in (256) provide only a small correction to the leading contribution proportional to s2.
This will be the case as long as we are interested only is states |Ψ〉 such that

〈Ψ|a†(q)a(q)|Ψ〉 � s. (259)

This condition is certainly fulfilled for the ground state and low-lying excited states.

5.4.1 Heisenberg Antiferromagnet

Another example to which spinwave theory can be fruitfully applied is the model

H = J
∑
〈r,r′〉

Sr · Sr′ , (260)

where 〈r, r′〉 denote nearest-neighbour pairs of spins on a simple cubic lattice and J > 0. Compared to (225)
all we have done is to switch the overall sign of H, but this has important consequences. In particular, it is
no longer possible to obtain an exact ground state for the model. Instead, we start by considering our spins
to be classical. This is justified if we are interested only in states with large spin quantum numbers. We
will assume this to be the case and check the self-consistency of our assumption later. In the classical limit
we can think of the spins as three-dimensional vectors. The lowest energy configuration is then one, where
all neighbouring spins point in opposite directions, i.e. along the three cystal axes the spin configuration
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looks like ↑↓↑↓↑↓ .... This is known as a Néel state. It is convenient to subdivide our lattice into two
sublattices: on sublattice A all spins point in the same direction, while on sublattice B all spins point in
the opposite direction. Like the ferromagnet, the model (260) has a global spin-rotational symmetry, that
will be spontaneously broken in the ground state. By choosing our spin quantization axis appropriately, the
classical ground state can then be written in the form∏

r∈A
|s〉r

∏
r′∈B
| − s〉r′ (261)

The idea is now to map this state to a ferromagnetic one, by inverting the spin quantization axis in the B
sublattice. After that we can employ the Holstein-Primakoff transformation to carry out a 1/s expansion.
As a result of the rotation of spin quatization axis on the B sublattice, the part of the Hamiltonian of order
s now contains terms involving two annihilation or two creation operators. Diagonalizing the Hamiltonian
then requires a Bogoliubov transformation.

5.5 Homework Questions 7-8

Question 7. A magnetic system consists of two types of Heisenberg spin SA and SB located respectively on
the two inter-penetrating sublattices of an NaCl crystal structure (i.e. a simple cubic structure with alternate A
and B in any Cartesian direction). Its Hamiltonian is

H = J
∑
i,j

SAi · SBj

where the i, j are nearest neighbours, respectively on the A and B sublattices. J is positive. Show that the
classical ground state has all the A spins ferromagnetically aligned in one direction and all the B spins ferromag-
netically aligned in the opposite direction. Assume the quantum mechanical ground state is well approximated
by the classical one. To a first approximation the spin operators are given in terms of boson operators a, b by

A sublattice B sublattice
Szi = SA − a†iai Szj = −SB + b†jbj
S+
i ≡ Sxi + iSyi ' (2SA)1/2ai S+

j ≡ Sxj + iSyj ' (2SB)1/2b†j
S−i ≡ Sxi − iSyi ' (2SA)1/2a†i S−j ≡ Sxj − iSyj ' (2SB)1/2bj

Discuss the validity of this approximation. Use these relations to express the Hamiltonian in terms of the boson
operators to quadratic order.

Transforming to crystal momentum space using (with N the number of sites on one sublattice)

ai = N−1/2
∑
k

e−ik·riak, bj = N−1/2
∑
k

eik·rjbk

show that your result can be expressed in the form

H = E0 +
∑
k

[
Aka

†
kak +Bkb

†
kbk + Ck(a†kb

†
k + bkak)

]
and determine the coefficients. Hence calculate the spectrum of excitations at low momenta. Consider both the
cases with SA = SB and SA 6= SB and comment on your results.

Question 8. (optional) Consider the ideal Fermi gas at finite density N/V in a periodic 3-dimensional box
of length L.
(a) Give an expression of the ground state in terms of creation operators for momentum eigenstates.
(b) Calculate the single-particle Green’s function

Gστ (ω,q) =

∫
dt eiω(t−t′)

∫
d3r e−iq·(r−r

′)Gστ (t, r; t′, r′) ,

Gστ (t, r; t′, r′) = −i〈GS|Tcσ(r, t) c†τ (r′, t′)|GS〉, (262)
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where T denotes time-ordering (i.e. TO(t1)O(t2) = θ(t1 − t2)O(t1)O(t2)− θ(t2 − t1)O(t2)O(t1) for fermionic
operators), and

cσ(r, t) ≡ e
i
~Htcσ(r)e−

i
~Ht. (263)

First express the creation/annihilation operators c†σ(r, t), cσ(r, t) in terms of creation/annihilation operators in

momentum space c†σ(p, t), cσ(p, t). Then show that for annihilation operators in momentum space we have

cσ(p, t) ≡ e
i
~Htcσ(p)e−

i
~Ht = cσ(p)e−

i
~ tε(p) , (264)

where ε(p) = p2/2m− µ. Use this to show that

cσ(r, t) =
1

L3/2

∑
p

e−
i
~ tε(p)+ip·r cσ(p). (265)

Now insert (265) into (262) and evaluate the ground state expectation value to obtain an integral representation
for Gστ (t, r; t′, r′). Why does the Green’s function only depend on t− t′ and r−r′? Finally, calculate Gστ (ω,q).

Note: the imaginary part of the single-particle Green’s function is (approximately) measured by angle resolved
photoemission (ARPES) experiments.
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Part II

Phases and Phase Transitions

Physically a phase transition is a point in parameter space, where the physical properties of a many-particle
system undergo a sudden change. An example is the paramagnet to ferromagnet transition in Fe or Ni, a
cartoon of which is shown in Fig. 4.

Figure 4: Equilibrium phase diagram for the paramagnetic to ferromagnetic transition. The magnetization
M(h, T ) jumps when crossing zero for T < Tc. When lowering the temperature at h = 0+ a spontaneous
magnetization develops at a critical temperature T = Tc and grows with decreasing temperature.

Mathematically a phase transition is a point in parameter space, where the free energy F = −kBT ln(Z)
becomes a nonanalytic function of one of its parameters (i.e. F or some of its derivatives becomes singular
or discontinuous) in the thermodynamic limit.

For a finite system this can never happen, because

Z =
∑

configurations C

e−E(C)/kBT (266)

is a finite sum over finite, positive terms. Hence all derivatives are finite and well defined as well.
Phase transitions are usually divided into two categories:

1. First Order Phase Transitions.

Here the free energy is continuous, but a first derivative is discontinuous. At the transition there is
phase coexistence. The magnetization per site is a first order derivative of the free energy with respect
to the magnetic field h. Therefore the phase transition at h = 0 and T < Tc in Fig. 4 is first order.

2. Second Order Phase Transitions.

These are characterized by a divergence in one of the higher order derivatives (“susceptibilities”) of
the free energy. The phase transition as a function of T for h = 0 in Fig. 4 is second order.
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6 The Ising Model

The two-dimensional square-lattice Ising model is one of the simplest statistical models to show a phase
transition and as a result has played a hugely important role in the development of the theory of critical
phenomena.

Ferromagnetism is an interesting phenomenon in solids. Some metals (like Fe or Ni) are observed to
acquire a finite magnetization below a certain temperature. Ferromagnetism is a fundamentally quantum
mechanical effect, and arises when electron spins spontaneously align along a certain direction. The Ising
model is a very crude attempt to model this phenomenon. It is defined as follows. We have a lattice in D
dimensions with N sites. On each site j of this lattice sits a “spin” variable σj , which can take the two
values ±1. These are referred to as “spin-up” and “spin-down” respectively. A given set {σ1, σ2, . . . , σN}
specifies a configuration. The corresponding energy is taken to be of the form

E({σj}) = −J
∑
〈ij〉

σiσj − h
N∑
j=1

σj , (267)

where 〈ij〉 denote nearest-neighbour bonds on our lattice and J > 0. The first term favours alignment
on neighbouring spins, while h is like an applied magnetic field. Clearly, when h = 0 the lowest energy
states are obtained by choosing all spins to be either up or down. The question of interest is whether the
Ising model displays a finite temperature phase transition between a ferromagnetically ordered phase at low
temperatures, and a paramagnetic phase at high temperatures.

6.1 Statistical mechanics of the Ising model

The partition function of the model is

Z =
∑
σ1=±1

∑
σ2=±1

· · ·
∑

σN=±1

e−βE({σj}). (268)

The magnetization per site is given by

m(h) =
1

N
〈
N∑
j=1

σj〉β =
1

Nβ

∂

∂h
ln(Z). (269)

The magnetic susceptibility is defined as

χ(h) =
∂m(h)

∂h
=

1

Nβ

∂2

∂h2
ln(Z). (270)

Substituting the expression (268) for the partition function and then carrying out the derivatives it can be
expressed in the form

χ(h) =
β

N

N∑
l,m=1

〈σlσm〉β − 〈σl〉β〈σm〉β. (271)

6.2 The One-Dimensional Ising Model

The simplest case is when our lattice is one-dimensional, and we impose periodic boundary conditions. The
energy then reads

E =
N∑
j=1

[
−Jσjσj+1 −

h

2
(σj + σj+1)

]
≡

N∑
j=1

E(σj , σj+1), (272)

where we have defined
σN+1 = σ1. (273)
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The partition function can be expressed in the form

Z =
∑

σ1,...,σN

N∏
j=1

e−βE(σj ,σj+1). (274)

It can be evaluated exactly by means of the transfer matrix method.

6.2.1 Transfer matrix approach

The general idea is to rewrite Z as a product of matrices. The transfer matrix T is taken to be a 2 × 2
matrix with elements

Tσσ′ = e−βE(σ,σ′). (275)

Its explicit form is

T =

(
T++ T+−
T−+ T−−

)
=

(
eβ(J+h) e−βJ

e−βJ eβ(J−h)

)
. (276)

The partition function can be expressed in terms of the transfer matrix as follows

Z =
∑

σ1,...,σN

Tσ1σ2Tσ2σ3 . . . TσN−1σNTσNσ1 (277)

As desired, this has the structure of a matrix multiplication

Z = Tr
(
TN
)
.

(278)

The trace arises because we have imposed periodic boundary conditions. As T is a real symmetric matrix,
it can be diagonalized, i.e.

U †TU =

(
λ+ 0
0 λ−

)
, (279)

where U is a unitary matrix and

λ± = eβJ cosh(βh)±
√
e2βJ sinh2(βh) + e−2βJ . (280)

Using the cyclicity of the trace and UU † = I, we have

Z = Tr
(
UU †TN

)
= Tr

(
U †TNU

)
= Tr

(
[U †TU ]N

)
= Tr

(
λN+ 0
0 λN−

)
= λN+ + λN− . (281)

But as λ− < λ+ we have

Z = λN+

(
1 +

[
λ−
λ+

]N)
= λN+

(
1 + e−N ln(λ+/λ−)

)
. (282)

So for large N , which is the case we are interested in, we have with exponential accuracy

Z ' λN+ .
(283)

Given the partition function, we can now easily calculate the magnetization per site

m(h) =
1

Nβ

∂

∂h
ln(Z). (284)

In Fig. 5 we plot m(h) as a function of inverse temperature β = 1/kBT for two values of magnetic field h.
We see that for non-zero h, the magnetization per site takes its maximum value m = 1 at low temperatures.
At high temperatures it goes to zero. This is as expected, as at low T the spins align along the direction
of the applied field. However, as we decrease the field, the temperature below which m(h) approaches unity
decreases. In the limit h→ 0, the magnetization per site vanishes at all finite temperatures. Hence there is
no phase transition to a ferromagnetically ordered state in the one dimensional Ising model.
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Figure 5: Magnetization per site as a function of inverse temperature for two values of applied magnetic
field. We see that when we reduce the magnetic field, the temperature region in which the magnetization is
essentially zero grows.

6.2.2 Averages of observables in the transfer matrix formalism

The average magnetization at site j is

〈σj〉β =
1

Z

∑
σ1,...,σN

σje
−βE({σj}). (285)

We can express this in terms of the transfer matrix as

〈σj〉β =
1

Z

∑
σ1,...,σN

Tσ1σ2Tσ2σ3 . . . Tσj−1σjσjTσjσj+1 . . . TσNσ1 . (286)

Using that
(Tσz)σj−1σj

= Tσj−1σjσj , (287)

where σz =

(
1 0
0 −1

)
is the Pauli matrix, we obtain

〈σj〉β =
1

Z
Tr
[
T j−1σzTN−j+1

]
=

1

Z
Tr
[
TNσz

]
. (288)

Diagonalizing T by means of a unitary transformation as before, this becomes

〈σj〉β =
1

Z
Tr
[
U †TNUU †σzU

]
=

1

Z
Tr

[(
λN+ 0
0 λN−

)
U †σzU

]
. (289)

The matrix U is given in terms of the normalized eigenvectors of T

T |±〉 = λ±|±〉 (290)

as
U = (|+〉, |−〉). (291)

For h = 0 we have

U |h=0 =
1√
2

(
1 1
1 −1

)
. (292)

This gives

〈σj〉β
∣∣∣
h=0

= 0. (293)
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For general h the expression is more complicated

U =

 α+√
1+α2

+

α−√
1+α2

−
1√

1+α2
+

1√
1+α2

−

 , α± =

√
1 + e4βJ sinh2(βh)± e2βJ sinh(βh). (294)

The magnetization per site in the thermodynamic limit is then

lim
N→∞

〈σj〉β = lim
N→∞

(
α2

+−1

α2
++1

)
λN+ +

(
α2
−−1

α2
−+1

)
λN−

λN+ + λN−
=

(
α2

+ − 1

α2
+ + 1

)
. (295)

This now allows us to prove, that in the one dimensional Ising model there is no phase transition at any
finite temperature:

lim
h→0

lim
N→∞

〈σj〉β = 0 , β <∞.
(296)

Note the order of the limits here: we first take the infinite volume limit at finite h, and only afterwards
take h to zero. This procedure allows for spontaneous symmetry breaking to occur, but the outcome of our
calculation is that the spin reversal symmetry remains unbroken at any finite temperature.

Similarly, we find

〈σjσj+r〉β =
1

Z
Tr
[
T j−1σzT rσzTN+1−j−r] =

1

Z
Tr

[
U †σzU

(
λr+ 0
0 λr−

)
U †σzU

(
λN−r+ 0

0 λN−r−

)]
. (297)

We can evaluate this for zero field h = 0

〈σjσj+r〉β
∣∣∣
h=0

=
λN−r+ λr− + λN−r− λr+

λN+ + λN−
≈
[
λ−
λ+

]r
= e−r/ξ. (298)

So in zero field the two-point function decays exponentially with correlation length

ξ =
1

ln coth(βJ)
. (299)

6.3 The Two-Dimensional Ising Model

We now turn to the 2D Ising model on a square lattice with periodic boundary conditions. The spin variables
have now two indices corresponding to rows and columns of the square lattice respectively

σj,k = ±1 , j, k = 1, . . . , N. (300)

The boundary conditions are σk,N+1 = σk,1 and σN+1,j = σ1,j , which correspond to the lattice “living” on
the surface of a torus. The energy in zero field is

E({σk,j}) = −J
∑
j,k

σk,jσk,j+1 + σk,jσk+1,j . (301)

6.3.1 Transfer Matrix Method

The partition function is given by

Z =
∑
{σj,k}

e−βE({σk,j}). (302)

The idea of the transfer matrix method is again to write this in terms of matrix multiplications. The
difference to the one dimensional case is that the transfer matrix will now be much larger. We start by
expressing the partition function in the form

Z =
∑
{σj,k}

e−β
∑N
k=1 E(k;k+1), (303)
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Figure 6: Ising model on the square lattice.

where

E(k; k + 1) = −J
N∑
j=1

σk,jσk+1,j +
1

2
[σk,jσk,j+1 + σk+1,jσk+1,j+1] . (304)

This energy depends only on the configurations of spins on rows k and k + 1, i.e. on spins σk,1, . . . , σk,N
and σk+1,1, . . . , σk+1,N . Each configuration of spins on a given row specifies a sequence s1, s2, . . . , sN with
sj = ±1. Let us associate a vector

|s〉 (305)

with each such sequence. By construction there 2N such vectors. We then define a scalar product on the
space spanned by these vectors by

〈t|s〉 =

N∏
j=1

δtj ,sj . (306)

With this definition, the vectors {|s〉} form an orthonormal basis of a 2N dimensional linear vector space.
In particular we have

I =
∑
s

|s〉〈s|. (307)

Finally, we define a 2N × 2N transfer matrix T by

〈σk|T |σk+1〉 = e−βE(k;k+1). (308)

The point of this construction is that the partition function can now be written in the form

Z =
∑
σ1

∑
σ2

· · ·
∑
σN

〈σ1|T |σ2〉〈σ2|T |σ3〉 . . . 〈σN−1|T |σN 〉〈σN |T |σ1〉 (309)

We now may use (307) to carry out the sums over spins, which gives

Z = Tr
[
TN
]
, (310)

where the trace is over our basis {|s〉|sj = ±1} of our 2N dimensional vector space. Like in the 1D case,
thermodynamic properties involve only the largest eigenvalues of T . Indeed, we have

Z =

2N∑
j=1

λNj , (311)
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where λj are the eigenvalues of T . The free energy is then

F = −kBT ln(Z) = −kBT ln

λNmax

2N∑
j=1

(
λj
λmax

)N = −kBTN ln(λmax)− kBT ln

∑
j

(
λj
λmax

)N , (312)

where λmax is the largest eigenvalue of T , which we assume to be unique. As |λj/λmax| < 1, the second
contribution in (312) is bounded by −kBTN ln(2), and we see that in the thermodynamic limit the free
energy per site is

f = lim
N→∞

F

N2
= lim

N→∞
−kBT

N
ln(λmax).

(313)

Thermodynamic quantities are obtained by taking derivatives of f and hence only involve the largest eigen-
value of T . The main complication we have to deal with is that T is still a very large matrix. This poses
the question, why we should bother to use a transfer matrix description anyway? Calculating Z from its
basic definition (302) involves a sum with 2N

2
terms, i.e. at least 2N

2
operations on a computer. Finding

the largest eigenvalue of a M ×M matrix involves O(M2) operations, which in our case amounts to O(22N ).
For large values of N this amounts to an enormous simplification.

6.3.2 Spontaneous Symmetry Breaking

Surprisingly, the transfer matrix of the 2D Ising model can be diagonalized exactly. Unfortunately we
don’t have the time do go through the somewhat complicated procedure here, but the upshot is that the
2D Ising model can be solved exactly. Perhaps the most important result is that in the thermodynamic
limit the square lattice Ising model has a finite temperature phase transition between a paramagnetic and
a ferromagnetic phase. The magnetization per site behaves as shown in Fig.7. At low temperatures T < Tc

1 T/T

m(T)

c

1

Figure 7: Phase Transition in the square lattice Ising model.

there is a non-zero magnetization per site, even though we did not apply a magnetic field. This is surprising,
because our energy (301) is unchanged if we flip all spins

σj,k → −σj,k. (314)

The operation (314) is a discrete (two-fold) symmetry of the Ising model. Because we have translational
invariance, the magnetization per site is

m = 〈σj,k〉β. (315)

Hence a non-zero value of m signifies the spontaneous breaking of the discrete symmetry (314). In order to
describe this effect mathematically, we have to invoke a bit of trickery. Let us consider zero temperature.
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Then there are exactly two degenerate lowest energy states: the one with all spins σj,k = +1 and the one
with all spins σj,k = −1. We now apply a very small magnetic field to the system, i.e. add a term

δE = −ε
∑
j,k

σj,k (316)

to the energy. This splits the two states, which now have energies

E± = −JNB ∓ εN , (317)

where NB is the number of bonds. The next step is key: we now define the thermodynamic limit of the free
energy per site as

f(T ) ≡ lim
ε→0

lim
N→∞

−kBT ln(Z)

N2
. (318)

The point is that the contributions Z± = e−βE± of the two states to Z are such that

Z−
Z+

= e−2εN/kBT . (319)

This goes to zero when we take N to infinity! So in the above sequence of limits, only the state with all
spins up contributes to the partition function, and this provides a way of describing spontaneous symmetry
breaking! The key to this procedure is that

lim
ε→0

lim
N→∞

Z 6= lim
N→∞

lim
ε→0

Z.

(320)

The procedure we have outlined above, i.e. introducing a symmetry breaking field, then taking the infinite
volume limit, and finally removing the field, is very general and applies to all instances where spontaneous
symmetry breaking occurs.

6.4 Homework Questions 9-11

Question 9. A lattice model for non-ideal gas is defined as follows. The sites i of a lattice may be empty or
occupied by at most one atom, and the variable ni takes the values ni = 0 and ni = 1 in the two cases. There
is an attractive interaction energy J between atoms that occupy neighbouring sites, and a chemical potential µ.
The model Hamiltonian is

H = −J
∑
〈ij〉

ninj − µ
∑
i

ni , (321)

where
∑
〈ij〉 is a sum over neighbouring pairs of sites.

(a) Describe briefly how the transfer matrix method may be used to calculate the statistical-mechanical properties
of one-dimensional lattice models with short range interactions. Illustrate your answer by explaining how the
partition function for a one-dimensional version of the lattice gas, Eq. (1), defined on a lattice of N sites with
periodic boundary conditions, may be evaluated using the matrix

T =

(
1 eβµ/2

eβµ/2 eβ(J+µ)

)
.

(b) Derive an expression for 〈ni〉 in the limit N →∞, in terms of elements of the eigenvectors of this matrix.
(c) Show that

〈ni〉 =
1

1 + e−2θ
,

where
sinh(θ) = exp(βJ/2) sinh(β[J + µ]/2) .
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Sketch 〈ni〉 as a function of µ for βJ � 1, and comment on the physical significance of your result.

Question 10. The one-dimensional 3-state Potts model is defined as follows. At lattice sites i = 0, 1, . . . , L
“spin” variables σi take integer values σi = 1, 2, 3. The Hamiltonian is then given by

H = −J
L−1∑
i=0

δσi,σi+1 , (322)

where δa,b is the Kronecker delta, J > 0.
(a) What are the ground states and first excited states for this model?
(b) Write down the transfer matrix for (322). Derive an expression for the free energy per site f in the limit
of large L in terms of the transfer matrix eigenvalues. Show that vectors of the form (1, z, z2) with z3 = 1 are
eigenvectors, and hence find the corresponding eigenvalues. Show that at temperature T (with β = 1/kBT ) and
in the limit L→∞

f = −kBT ln
(

3 + eβJ − 1
)
. (323)

(c) The boundary variable σ0 is fixed in the state σ0 = 1. Derive an expression (for large L), that the variable
at site `� 1 is in the same state, in terms of the transfer matrix eigenvalues and eigenvectors. Show that your
result has the form

〈δσ`,1〉 =
1

3
+

2

3
e−`/ξ. (324)

How does ξ behave in the low and high temperature limits?

Question 11. Consider a one dimensional Ising model on an open chain with N sites, where N is odd. On all
even sites a magnetic field 2h is applied, see Fig. 8. The energy is

E = −J
N−1∑
j=1

σjσj+1 + 2h

(N−1)/2∑
j=1

σ2j . (325)

(a) Show that the partition function can be written in the form

2h

1 NJ J J J J J J J

2h 2h 2h

Figure 8: Open Ising chain with magnetic field applied to all even sites.

Z = 〈u|T (N−1)/2|v〉 , (326)

where T is an appropriately constructed transfer matrix, and |u〉 and |v〉 two dimensional vectors. Give explicit
expressions for T , |u〉 and |v〉.
(b) Calculate Z for the case h = 0.

6.5 Peierls Argument

The 2D Ising model can be solved exactly by the transfer matrix method introduced above. Interestingly,
it is possible to establish the existence of a finite-temperature phase transition in the model without solving
it. This was pioneered by Sir Rudolf Peierls, who was the Wykeham Professor of Theoretical Physics at
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Oxford for many years and during his career made numerous ground breaking contributions in particular to
condensed matter physics.

The Peierls argument is a nice way of establishing that the 2D square lattice Ising model has magnetic
long-range order at sufficiently low temperatures without actually solving the model. Given that at very high
temperature there is no magnetic order, this shows that there must be at least one phase transition at a
finite temperature.

Consider the Ising model on the square lattice with boundary conditions such that all spins on the
boundary are up, i.e. take the value +1. You can think of these boundary conditions as a symmetry
breaking field. The bulk magnetic field is taken to be zero. Configurations look like the one shown in Fig. 9,
and can be characterized by domains walls. These are lines separating + and − spins such that

1. The + (−) spins lie always to the left (right) of the wall.

2. Where ambiguities remain, the wall is taken to bend to the right.

3. The length of the wall is defined as the number of lattice spacings it traverses.

Figure 9: A configuration of spins and the corresponding domain walls.

A wall of length b encloses at most b2/16 spins. The total number of domain walls of length b, m(b), is
bounded by

m(b) ≤ 4Nt3
b−1,

(327)

where Nt is the total number of sites. This can be seens as follows:

• the first link can go into less than 4Nt positions (starting at an arbitrary site and going in any of the
four possible directions).

• subsequent links have at most 3 possible directions each.

Let us denote the i’th domain wall of length b by (b, i). Next consider a particular configuration σ = {σj,k}
of spins on the lattice, and define

Xσ(b, i) =

{
1 if (b,i) occurs in σ

0 else
(328)

Then the total number of − spins in σ is bounded by

N− ≤
∑
b

b2

16

m(b)∑
i=1

Xσ(b, i), (329)
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because each spin is enclosed by at least one domain wall due to our choice of boundary conditions. Taking
thermal averages, we have

〈N−〉β ≤
∑
b

b2

16

m(b)∑
i=1

〈Xσ(b, i)〉β. (330)

Here the thermal average of Xσ(b, i) can be written as

〈Xσ(b, i)〉β =
1

Z

∑
σ

′
e−βE(σ), (331)

where the sum is only over configurations, in which (b, i) occurs. Now consider the configuration σ′ obtained
from σ by reversing the spins inside the domain wall (b, i). Clearly the energies of the two configurations

Figure 10: Configurations σ and σ′ related by reversing all spins inside the domain wall (b, i). Shown are
all the bonds whose energies have been changed from −J to J .

are related by
E(σ) = E(σ′) + 2bJ. (332)

This can be used to obtain a bound on Z

Z ≥
∑
σ′

′
e−βE(σ′) ≥

∑
σ

′
e−βE(σ)e2bJβ, (333)

where the first sum is only over configurations in which (b, i) occurs, and where we then have flipped all
spins inside the domain wall. This gives us a bound on

〈Xσ(b, i)〉β =
1

Z

∑
σ

′
e−βE(σ) ≤ e−2bJβ. (334)
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Now we put everything together

〈N−〉β ≤
∑
b

b2

16

m(b)∑
i=1

e−2βJb ≤
∑
b

b2

16
4Nt3

b−1e−2βJb =
Nt

12

∑
b=4,6,8,...

b2
[
3e−2βJ

]b
. (335)

The sum over b can now be easily carried out, and the results at small T (large β) is

〈N−〉β ≤ 108Nte
−8βJ .

(336)

So, at low temperatures we have

〈N−〉β
Nt

� 1

2
.

(337)

This proves the existence of a spontaneous magnetization at low temperatures.

6.6 Mean Field Theory

Consider the Ising model on a D-dimensional lattice with coordination number (number of nearest neighbour
sites) z

E = −J
∑
〈ij〉

σiσj − h
∑
j

σj . (338)

Here 〈ij〉 denotes nearest neighbour bonds, and each bond is counted once. The magnetization per site is

m =
1

N

N∑
j=1

〈σj〉β. (339)

We now rewrite the energy using
σi = m+ (σi −m). (340)

In particular we have

σiσj = m2 +m(σj −m) +m(σi −m) + (σi −m)(σj −m). (341)

The idea of the mean-field approximation is to assume that the deviations σj −m of the spins from their
average values are small, and to neglect the terms quadratic in these fluctuations. This gives

EMF = −J
∑
〈ij〉

−m2 +m(σi + σj)− h
∑
j

σj .

(342)

Physically, what we have done is to replace the interaction of a given spin with its neighbours by an average
magnetic field. We can simplify (342) further by noting that

−J
∑
〈ij〉

−m2 = Jm2Nz

2
,

∑
〈ij〉

σi + σj = z
∑
j

σj . (343)

The mean-field energy then becomes

EMF =
JNz

2
m2 − (Jzm+ h)

N∑
j=1

σj .

(344)
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The partition function in the mean-field approximation is

ZMF =
∑
{σj}

e−βEMF = e−
NJzβm2

2

∑
σ1

· · ·
∑
σN

N∏
j=1

eβ(Jzm+h)σj

= e−
NJzβm2

2

[∑
σ1

eβ(Jzm+h)σ1

]
. . .

[∑
σN

eβ(Jzm+h)σN

]

= e−
NJzβm2

2 [2 cosh(Jzmβ + hβ)]N . (345)

The magnetization per site is

m =
1

N

N∑
j=1

〈σj〉β = 〈σN 〉β, (346)

where we have used translational invariance in the last step. In mean field theory we have

m = 〈σj〉β =
1

ZMF
e−

NJzβm2

2

∑
σ1

· · ·
∑
σN

σN

N∏
j=1

eβ(Jzm+h)σj = tanh(Jzmβ + βh).

(347)

This is a self-consistency equation for m.

6.7 Solution of the self-consistency equation for h = 0

For zero field the self-consistency equation reads

m = tanh(Jzmβ). (348)

This can be solved graphically by looking for intersections of the functions g1(m) = tanh(Jzmβ) and
g2(m) = m. There are either one or three solutions

m =

{
0 if Jzβ < 1

±m0, 0 if Jzβ > 1
. (349)

We still have to check whether these solutions correspond to mimima of the free energy per site. The latter
is

fMF = − 1

βN
ln(ZMF) =

Jzm2

2
− 1

β
ln[2 cosh(Jzmβ)]. (350)

We have
∂2fMF

∂m2
= Jz

[
1− Jzβ

cosh(Jzmβ)

]
. (351)

This is negative for m = 0 and Jzβ > 1, and hence this solution corresponds to a maximum of the free
energy and hence must be discarded. This leaves us with

m =

{
0 if T > Tc

±m0 if T < Tc
,

(352)

where the transition temperature is

Tc =
Jz

kB
. (353)
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6.8 Vicinity of the Phase Transition

Let us define a dimensionless variable, that measures the distance in temperature to the phase transition

t =
T − Tc
Tc

. (354)

For |t| � 1 we obtain the following results

1. Magnetization per site

m
∣∣∣
h=0
'

{
0 if T > Tc,√
−3t if T < Tc.

(355)

2. Magnetic susceptibility in zero field

χ =
∂m

∂h

∣∣∣
h=0
'

{
1

kBTc
t−1 if T > Tc,

1
2kBTc

(−t)−1 if T < Tc,
(356)

3. Free energy per site and heat capacity per volume

fMF

∣∣∣
h=0
' −kBT ln 2 +

{
0 if T > Tc

−3kBTc
4 t2 if T < Tc.

(357)

C

V
= −T ∂

2fMF

∂T 2

∣∣∣
h=0
'

{
0 if T > Tc
3kB

2 if T < Tc.
(358)

7 Critical Behaviour and Universality

Close to a critical point thermodynamic functions display power-law behaviours characterized by critical
exponents. We will now discuss various such exponents, using as a specific example the paramagnet to
ferromagnet transition.

1. Order Parameter

This is a quantity that is different in the various phases and can be used to characterize the phase
transition. For the paramagnet to ferromagnet transition in zero magnetic field the appropriate order
parameter is the magnetization per site

m(T ) = lim
h→+0

lim
V→∞

1

V
M(h, T ).

(359)

Here M(h, T ) is the magnetization. Where T ≈ Tc, one has

m(T ) ∼

{
0 if T > Tc

|t|β if T < Tc
t =

T − Tc
Tc

.

(360)

β is a critical exponent.
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Figure 11: Order parameter for the paramagnet to ferromagnet transition in zero field.

2. Susceptibilities

At the critical point the system is very sensitive to external perturbations. The singularity in the
response of the order parameter to a field “conjugate” to it is characterized by critical exponents γ±.
For our magnet

χ±(T ) =
∂

∂h

∣∣∣
h=0

lim
V→∞

1

V
M(h, T ) ∼ |t|−γ± .

(361)

Figure 12: Critical behaviour of the magnetic susceptibility.

3. Heat Capacity

A third critical exponent is associated with the heat capacity

C(T ) = −T ∂
2F

∂T 2
∼

{
A+|t|−α+ if T > Tc

A−|t|−α− if T < Tc.
(362)

Depending on the signs of α± this may or may not be singular, see Fig. 13.

7.1 Universality

The critical exponents are insensitive to microscopic details of the system under consideration and are
characteristic of the critical point. A consequence of this is that completely different systems can exhibit
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Figure 13: Critical behaviour of the heat capacity.

the same critical behaviour!

8 Landau Theory

Landau Theory is a general approach to phase transitions that

• is phenomenological in nature and deals only with macroscopic quantities;

• applies only to the neighbourhood of a critical point, where the order parameter is small.

Landau theory is constructed as follows.

1. Identify the order parameter(s) M(r) characterizing the phase transition. Depending on which phase
transition we are dealing with M can be a real scalar, a complex scalar, a real or complex vector
or something more complicated. For the simplest case of a paramagnet to ferromagnet transition the
order parameter is the magnetization per site, i.e. a real number. What we mean by simplest case here
is that at a microscopic level the magnetic moments are like Ising spins, i.e. point either in a particular
direction or in the opposite direction. The situation where the magnetic moments are modelled by
vectors that can point in any direction can also be treated by the method we will now describe.

2. Form a “coarse-grained” order parameter density Φ(r). Think of this as the microscopic order param-
eter averaged over atomic distances. This is a continuum field. For the example of the paramagnet to
ferromagnet transition we are dealing with a real scalar field.

3. Consider the free energy density to be a functional of the order parameter field Φ(r). The free energy
is then

βF =

∫
dDrf [Φ(r)].

(363)

4. By construction of the order parameter(s), the latter is (are) small close to our critical point. This
allows us to expand f [Φ(r)] is a power series around Φ = 0. From now on we will focus on the simplest
case of a real scalar order parameter φ(r). Then the series expansion is

f [φ] ' const− hφ+ α2φ
2 +

1

2
|∇φ|2 + α3φ

3 + α4φ
4 + . . .

(364)
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where the coefficient of the gradient term is fixed by convention to be 1/2 (basically this amounts to a
rescaling of the order parameter by a constant and using the re-scaled quantity as our order parameter
field). This makes φ in general dimensionful

dim[φ(r)] = (length)1−D/2. (365)

The only linear term that is not a total derivative is −hφ, where h is an external field (a “source”) cou-
pling to the order parameter. Total derivative terms can be dropped, because the only give boundary
contributions to F . The coefficients αn are a priori all functions of temperature and magnetic field.

5. In translationally invariant systems the free energy is minimized by r-independent order parameters
(i.e. ∇φ(r) = 0). The reason is that 1

2 |∇φ|
2 ≥ 0, and hence this contribution to F is minimized

by constant solutions. For constant field h the potential V (φ(r)) = −hφ + α2φ
2 + α3φ

3 + α4φ
4 is

also minimized by constant solutions. In order to understand the nature of the phase transition, we
therefore can simply look at the minima of the potential V (φ).

6. Finally, we use symmetries and the fact that we are interested in the vicinity of a critial point to
constrain the αj .

• If we truncate our expansion at order φ4, then thermodynamic stability requires

α4 > 0.
(366)

If α4 < 0 the free energy density would be unbounded from below and could become infinitely
negative, which is forbidden.

• If we know that the system is invariant under certain symmetry operations, e.g.

φ→ −φ, (367)

then the free energy must respect this symmetry. A ferromagnet has the symmetry (367) in
absence of a magnetic field because of time-reversal invariance. Hence we must have α3 = 0 in
this case.

• In the case h = α3 = 0, for a translationally invariant system, we can obtain the temperature
dependence of α2 as follows. As discussed above, the nature of the phase transition can be inferred
from the minima of the potential V (φ) = α2φ

2 + α4φ
4. This is done in Fig. 14. We see that the

phase transition corresponds to α2 changing sign at T = Tc. So in the vicinity of the transition
we have (by Taylor expanding α2 in T − Tc)

α2(t) = At+O(t2) , t =
T − Tc
Tc

, A > 0.

(368)

The parameter α4 is also temperature dependent, but this dependence is subleading

α4(t) = α4(0) +O(t). (369)

7. If we have α3 < 0 the transition is generically first order. To see this we again use that in a trans-
lationally invariant system the minima of the free energy density will be r-independent, so that we
merely need to scrutinize the potential V (φ) to understand the nature of the phase transition. In
Fig. 15 we plot V (φ) when α2 is decreased at fixed α3, α4. We see that initially the minimum occurs
at φ = 0 (no order), and at some critical value of α2 then jumps from zero to a finite value φ0. This
is characteristic of a first order transition.
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Figure 14: Minima of the potential V (φ). For α2 > 0 the minima occurs at φ = 0, so there is no ferromagnetic
order. For α2 < 0 there are two minima at φ = ±φ0, corresponding to the emergence of a spontaneous
magnetization.

8.1 Thermodynamic Equilibrium

The state of thermodynamic equilibrium is obtained by minimizing the free energy

βF =

∫
dDr

[
−hφ+ α2φ

2 + α3φ
3 +

1

2
|∇φ|2 + α4φ

4

]
, (370)

where α3(h, t) must vanish at zero field α3(0, t) = 0. In our case we are searching for the order parameter
configuration φ(r) that gives the smallest contribution to βF . This is found by functional extremization

δF

δφ(r)
= 0. (371)

The resulting nonlinear differential equation is

−∇2φ(r) + 2α2φ(r) + 3α3φ
2(r) + 4α4φ

3(r)− h = 0.
(372)

It is easy to see (see the discussion above) that the solutions to (372) that minimize the free energy are
in fact r-independent (if we ignore boundary conditions). Hence for zero field h = 0 the order parameter
configuration that minimizes the free energy is

φ(r) =

{
0 if α2 > 0↔ T > Tc

±φ0 = ±
√
− α2

2α4
if α2 < 0↔ T < Tc

.

(373)

We observe that we are dealing with a second order phase transition (because φ0 vanishes at the critical
point) from a paramagnetic to a ferromagnetic phase.
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Figure 15: Minima of the potential V (φ) for α3 < 0. Decreasing the value of α2 leads to a discontinuous
jump in the order parameter at some critical value. The transition is therefore first order.

8.2 Beyond the Landau Free Energy

So far we have focussed entirely on the state of thermodynamic equilibrium. We now want to extend Landau
theory to take into account fluctuations as well. Let us go back to the microscopic model underlying our
Landau free energy. The partition function for this microscopic theory is

Zmicro =
∑

configurations C

e−βE(C) . (374)

In order to define our order-parameter field, we used a coarse-graining procedure. Hence after coarse-graining
Z should become

Z −→
∑

order parameter
configurations

e−βH . (375)

Because under the coarse-graining procedure many microscopic configurations C map onto the same order
parameter configuration φ(r), the “Landau-Ginzburg Hamiltonian” βH incorporates certain entropic effects.
By employing the same logic as before, we can argue that

βH =

∫
dDr f [φ(r)] , (376)

where f [φ(r)] is the same functional we constructed when considering the Landau free energy. As the order
parameter is really a continuous field, what we mean by the sum in (375) is really the functional integral

Z =

∫
Dφ(r) e−βH. (377)

The latter is defined as follows:
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• We first discretize our D-dimensional spatial variable

r −→ a0n = a0(n1, . . . , nD), (378)

where a0 is a lattice spacing and the total number of points on our discrete grid is ND.

• We then discretize the order parameter field and its derivatives

φ(r) −→ φn ,

∂rjΦ(r) −→
φn+ej − φn

a0
, (379)

where ej are unit vectors in the j-direction.

• The Landau-Ginzburg Hamiltonian is discretized as

βH −→
∑
n

f [φn]aD0 . (380)

• The functional integral is then defined as follows

Z =

∫
Dφ(r) e−βH ≡ lim

N→∞

∫ ∏
n

dφne
−

∑
m f [φm]aD0 .

(381)

Crucially, the functional integral defined in this way can be manipulated according to the same rules we
derived for path-integrals in Quantum Mechanics. In this new way of looking at things we now can analyze
properties that are not directly related to the free energy. For example, we may ask about properties of
correlation functions like

〈φ(r)φ(0)〉β ≡
1

Z

∫
Dφ φ(r)φ(0) e−βH. (382)

8.3 Saddle Point Approximation

The Landau-Ginzburg field theory

Z =

∫
Dφ(r) e−

∫
dDrf [φ(r)], (383)

is still difficult to analyze. For the example we have discussed, it reduces to the Euclidean space version of
the λφ4 theory you have encountered in the field theory part of the course. In order to proceed we therefore
resort to further approximations. The saddle-point approximation takes into account the thermodynamically
most likely configuration φ(r), i.e. the configuration that minimizes

βH =

∫
dDrf [φ(r)]. (384)

We see that the saddle-point approximation precisely recovers the results of the Landau free energy approach!
However, using our new formulation we now go beyond this approximation and take into account fluctuations.
We will see below how to do this.

8.4 Mean Field Exponents

Using the saddle point solution we can determine the corresponding approximation for the critical exponents.
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• Order parameter.

Using that α2 = At for t = (T − Tc)/Tc < 0, we have

φ0 = ±
√

A

2α4
|t|

1
2 .

(385)

This gives the critical exponent

β =
1

2
.

(386)

• Magnetic susceptibility.

Differentiating (372) with respect to h gives for r-independent solutions

2α2
∂φ

∂h
+ 6α3

∂φ

∂h
φ+ 12α4

∂φ

∂h
φ2 = 1− 2

∂α2

∂h
φ− 3

∂α3

∂h
φ2 − 4

∂α4

∂h
φ3. (387)

On the right hand side we only need to retain the first term as the others are small close to the
transition. The zero-field susceptibility is then

χ =
∂φ

∂h

∣∣∣
h=0
≈ 1

2α2 + 12α4φ2
, (388)

where we have used that α3(0, t) = 0. Using that α2 = At and φ2
0 = A|t|/2α4 this becomes

χ =

{
1

2At if t > 0,
1

4A|t| if t < 0.
(389)

This gives the critical exponents

γ± = 1.
(390)

• Heat capacity.

The heat capacity is defined by

C(T, h = 0) = −T ∂
2F

∂T 2
. (391)

The saddle point contribution to the free energy is

F

V
∼

{
0 if t > 0,

−A2kBTct
2

4α4
if t < 0,

(392)

giving

C(T, h = 0) ∼

{
0 if t > 0,
A2kBV

2α4
if t < 0,

(393)

This has a finite jump at Tc, which corresponds to the critical exponent

α = 0. (394)
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• Correlation length exponent.

The exponents described above can all be obtained from the saddle point solution, or equivalently the
Landau free energy. This is not the case for the correlation length exponent ν, which is related to
fluctuations around the saddle point.

Away from the critical point the (connected) order-parameter two-point function decays exponentially
with distance

〈φ(r)φ(0)〉β − 〈φ(r)〉β〈φ(0)〉β = e−|r|/ξ , |r| → ∞. (395)

The correlation length ξ diverges when the critical point is approached

ξ ∼ |t|−ν .
(396)

The relation (396) defines the exponent ν. We now determine ν in what is known as the Gaussian
approximation. In the disordered phase this amounts to simply dropping the φ4 term in the free energy
density, i.e. by setting

〈φ(r)φ(0)〉β ≈
1

Z

∫
Dφ φ(r)φ(0) exp

(
−
∫
dDr′

[
1

2
|∇φ(r′)|2 + α2φ

2(r′)

])
. (397)

It is not a priori clear that the Gaussian approximation will give a good account of th two point
function. It turns out to be good if the spatial dimensionality D is sufficiently high.

The two-point function (397) can be calculated using a generating functional

Z[h] =

∫
Dφ exp

(
−
∫
dDr′

[
1

2
|∇φ(r′)|2 + α2φ

2(r′)− h(r′)φ(r′)

])
. (398)

In order to work out how Z[h] is related to the correlation functions we are interested in we need
to know how to take “functional derivatives” of Z[h] with respect to “sources” h(r). The necessary
technology is summarized below.

Aside 6: Functionals and functional derivatives

Functionals
What is a functional? You all know that a real function can be viewed as a map from e.g. an
interval [a, b] to the real numbers

f : [a, b]→ R , x→ f(x). (399)

A functional is similar to a function in that it maps all elements in a certain domain to real
numbers, however, the nature of its domain is very different. Instead of acting on all points of an
interval or some other subset of the real numbers, the domain of functionals consists of (suitably
chosen) classes of functions. In other words, given some class {f} of functions, a functional F
is a map

F : {f} → R , f → F [f ]. (400)

We now consider two specific examples of functionals.

1. The distance between two points. A very simple functional F consists of the map which
assigns to all paths between two fixed points the length of the path. To write this functional
explicitly, let us consider a simple two-dimensional situation in the (x, y) plane and choose

58



two points (x1, y1) and (x2, y2). We consider the set of paths that do not turn back, i.e.
paths along which x increases monotonically as we go from (x1, y1) to (x2, y2). These can
be described by the set of functions {f} on the interval [x1, x2] satisfying f(x1) = y1 and
f(x2) = y2. The length of a path is then given by the well-known expression

F [f(x)] =

∫ x2

x1

dx′
√

1 + f ′(x′)2 . (401)

2. Action Functionals. These are very important in Physics. Let us recall their defini-
tion in the context of classical mechanics. Start with n generalised coordinates q(t) =
(q1(t), . . . , qn(t)) and a Lagrangian L = L(q, q̇). Then, the action functional S[q] is de-
fined by

S[q] =

∫ t2

t1

dtL(q(t), q̇(t)) . (402)

It depends on classical paths q(t) between times t1 and t2 satisfying the boundary condi-
tions q(t1) = q1 and q(t2) = q2.

Functional differentiation
In both the examples given above a very natural question to ask is what function extremizes the
functional. In the first example this corresponds to wanting to know the path that minimizes
the distance between two points. In the second example the extremum of the action functional
gives the solutions to the classical equations of motion. This is known as Hamilton’s principle.
In order to figure out what function extremizes the functional it is very useful to generalize the
notion of a derivative. For our purposes we define the functional derivative by

δF [f(x)]

δf(y)
= lim

ε→0

F [f(x) + εδ(x− y)]− F [f(x)]

ε
.

(403)

Here, as usual, we should think of the δ-function as being defined as the limit of a test function,
e.g.

δ(x) = lim
a→0

1√
πa
e−x

2/a2
, (404)

and take the limit a→ 0 only in the end (after commuting the limit with all other operations such
as the limε→0 in (403)). Importantly, the derivative defined in this way is a linear operation which
satisfies the product and chain rules of ordinary differentiation and commutes with ordinary
integrals and derivatives. Let us see how functional differentiation works for our two examples.

1. The distance between two points. In analogy with finding stationary points of functions
we want to extremize (401) by setting its functional derivative equal to zero

0 =
δF [f(x)]

δf(y)
. (405)

We first do the calculation by using the definition (403).

δF [f(x)]

δf(y)
= lim

ε→0

∫ x2

x1

dx′

√
1 + [f ′(x′) + εδ′(x′ − y)]2 −

√
1 + [f ′(x′)]2

ε
. (406)

The Taylor expansion of the square root is
√

1 + 2ε = 1 + ε+ . . ., which gives√
1 + [f ′(x′) + εδ′(x′ − y)]2 =

√
1 + [f ′(x′)]2 +

εf ′(x′)δ′(x′ − y)√
1 + [f ′(x′)]2

+O(ε2) , (407)
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where δ′(x) is the derivative of the delta-function and O(ε2) denote terms proportional to
ε2. Substituting this back into (406) we have a

δF [f(x)]

δf(y)
=

∫ x2

x1

dx′
δ′(x′ − y)f ′(x′)√

1 + [f ′(x′)]2
= − d

dy

f ′(y)√
1 + [f ′(y)]2

. (409)

The solution to (405) is thus
f ′(y) = const, (410)

which describes a straight line. In practice we don’t really go back to the definition of the
functional derivative any more than we use the definition of an ordinary derivative to work
it out, but proceed as follows.

– We first interchange the functional derivative and the integration

δF [f(x)]

δf(y)
=

∫ x2

x1

dx′
δ

δf(y)

√
1 + [f ′(x′)]2. (411)

– Next we use the chain rule

δ
√

1 + f ′(x′)2

δf(y)
=

1

2
√

1 + f ′(x′)2

δ(1 + f ′(x′)2)

δf(y)
=

f ′(x′)√
1 + f ′(x′)2

δf ′(x′)

δf(y)
. (412)

– Finally we interchange the functional and the ordinary derivative

δf ′(x′)

δf(y)
=

d

dx′
δf(x′)

δf(y)
=

d

dx′
δ(x′ − y) . (413)

The last identity follows from our definition (403).

Now we can put everything together and arrive at the same answer (409).

aIn the last step we have used ∫ b

a

dx′δ′(x′ − y)g(x′) = −g′(y) , (408)

which can be proved by “integration by parts”.

Exercise 3

We now want to try out the ideas introduced above on our second example and extremize the
classical action (402) in order to obtain the classical equations of motion. We first interchange
functional derivative and integration and then use the chain rule to obtain

δS[q]

δqi(t)
=

δ

δqi(t)

∫ t2

t1

dt̃ L(q(t̃), q̇(t̃)) (414)

=

∫ t2

t1

dt̃

[
∂L

∂qj
(q, q̇)

δqj(t̃)

δqi(t)
+
∂L

∂q̇j
(q, q̇)

δq̇j(t̃)

δqi(t)

]
(415)

(416)
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We now use that
δq̇j(t̃)
δqi(t)

= d
dt̃

δqj(t̃)
δqi(t)

and integrate by parts with respect to t̃

δS[q]

δqi(t)
=

∫ t2

t1

dt̃

[
∂L

∂qj
(q, q̇)− d

dt̃

∂L

∂q̇j
(q, q̇)

]
δqj(t̃)

δqi(t)
(417)

=

∫ t2

t1

dt̃

[
∂L

∂qj
(q, q̇)− d

dt̃

∂L

∂q̇j
(q, q̇)

]
δijδ(t̃− t) =

∂L

∂qi
(q, q̇)− d

dt

∂L

∂q̇i
(q, q̇) . (418)

In the second last step we have used

δqj(t̃)

δqi(t)
= δijδ(t̃− t) , (419)

which follows straightforwardly from our general definition (403). Thus we conclude that the extrema
of the classical action are given by paths that fulfil the equations of motion

∂L

∂qi
(q, q̇)− d

dt

∂L

∂q̇i
(q, q̇) = 0.

(420)

Nice.

Taking functional derivatives of Z[h] we find that

〈φ(r)φ(0)〉β =
δ

δh(r)

δ

δh(0)

∣∣∣
h=0

ln(Z[h]). (421)

We calculate the generating functional by going to Fourier space

φ(r) =

∫
dDp

(2π)D
e−ip·rφ̃(p), h(r) =

∫
dDp

(2π)D
e−ip·rh̃(p). (422)

This gives

βH =

∫
dDp

(2π)D

[(
p2

2
+ α2

)
φ̃(p)φ̃(−p)− h(p)φ̃(−p)

]
. (423)

Next we “complete the square” by changing variables to

ϕ̃(p) = φ̃(p)− h̃(p)

p2 + 2α2
. (424)

As the Jacobian of the change of variables is 1, this gives

Z[h] =

∫
Dϕ̃ exp

(
−
∫

dDp

(2π)D

[
p2

2
+ α2

]
ϕ̃(p)ϕ̃(−p)

)
exp

(
1

2

∫
dDp

(2π)D
h̃(p)h̃(−p)

p2 + 2α2

)
. (425)

The first factor is merely a constant, which we will denote by N , while the second factor is rewritten
as

Z[h] = N exp

(
1

2

∫
dDrdDr′h(r)G(r− r′)h(r′)

)
,

G(r) =

∫
dDp

(2π)D
e−ip·r

p2 + 2α2
. (426)

Taking functional derivatives we have

〈φ(r)φ(0)〉β = G(r) ∼ (2α2)
D−3

4
e−|r|

√
2α2

|r|
D−1

2

, |r| → ∞. (427)

61



This gives the correlation length

ξ =
1√
2α2
∼ 1

t
1
2

, (428)

and thus the critical exponent

ν =
1

2
.

(429)

Given the explicit calculation we have just done, we are now in the position to introduce a shortcut
for obtaining the two point function in the Gaussian approximation in similar situations. In absence
of a source h(r) the Landau-Ginzburg Hamiltonian (and the Landau free energy βF for that matter)
is written as

βH =
1

2

∫
dDp

(2π)D

[(
p2 + 2α2

)
φ̃(p)φ̃(−p) + quartic

]
. (430)

From this expression we can simply read off the result for the two point function in the Gaussian
approximation

〈φ̃(p)φ̃(q)〉β =
(2π)DδD(p− q)

p2 + 2α2
. (431)

Here the denominator is given by whatever factor multiplies the quadratic term in βH. The delta-
function expresses momentum conservation.

In the ordered phase t < 0 we expand f [φ(r)] around one of the minima at ±φ0. The choice of
minimum implements spontaneous symmetry breaking. We have

V (φ) = α2φ
2 + α4φ

4 ' α2φ
2
0 + α4φ

4
0 + (α2 + 6α4φ

2
0)(φ− φ0)2 + . . . (432)

We may drop the constant and retain only the contribution quadratic in δφ = φ − φ0 (this is the
Gaussian approximation in the ordered phase), which gives

f [δφ(r)] ' 1

2
|∇δφ|2 + α̃2δφ

2. (433)

Here α̃2 = −2α2 > 0. We may now copy the calculation in the disordered phase and obtain for the
connected correlation function

〈δφ(r)δφ(0)〉β = 〈φ(r)φ(0)〉β − 〈φ(r)〉β〈φ(0)〉β ∼
e−|r|

√
−4α2

|r|
D−1

2

, |r| → ∞. (434)

We see that the correlation length scales as ξ ∝ |t|−1/2, giving again ν = 1/2.

8.5 Homework Questions 12-14

Question 12. Consider a Landau expansion of the free energy of the form

F =
a

2
m2 +

b

4
m4 +

c

6
m6

with c > 0. Examine the phase diagram in the a−b plane, and show that there is a line of critical transitions
a = 0, b > 0 which joins a line of first order transitions b = −4(ca/3)1/2 at a point a = b = 0 known as a
tricritical point.

Supposing that a varies linearly with temperature and that b is independent of temperature, compare
the value of the exponent β at the tricritical point with its value on the critical line.
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From Yeomans, Statistical Mechanics of Phase Transitions

Question 13.
(a) Discuss how an order parameter may be used to characterise symmetry breaking at a phase transition.
(b) Argue that the uniaxial ferromagnet-paramagnet transition can be described by a Landau free energy
of the form

F =

∫
d3r

[
1

2
|∇φ(r)|2 − hφ(r) + α2φ

2(r) + α3φ
3(r) + α4φ

4(r)

]
. (435)

What can you say about α4?
(c) What is the nature of the transition for h = 0 if α3 6= 0? Explain your answer.
(d) Now assume that α3 = h = 0. Argue that close to the critical point

α2 = At , t =
T − Tc
Tc

and A > 0. (436)

(e) Derive the equation characterizing the saddle point solution for α3 = h = 0. What are the configurations
φ with the lowest free energy for h = 0, at T > Tc and at T < Tc? Why are these r independent?
(f) Now consider more general solutions to the saddle point equation in the low-temperature phase. With
suitable boundary conditions the saddle point solutions for the order parameter are functions of x only, i.e.
φ = φ(x). Show that in this case

E =
1

2

[
dφ(x)

dx

]2

− α2φ
2 − α4φ

4 (437)

is independent of x. Construct a solution φ(x) such that

lim
x→∞

φ(x) = φ1 , lim
x→−∞

φ(x) = φ2, (438)

where φ1,2 are the solutions found in (d). Hint: determine E for such solutions first.

Question 14. A system with a real, two-component order parameter (φ1(r), φ2(r)) has a free energy

F =

∫
ddr

[
1

2
|∇φ1(r)|2 +

1

2
|∇φ2(r)|2 − 1

2

(
φ2

1(r) + φ2
2(r)

)
+

1

4

(
φ2

1(r) + φ2
2(r)

)2]
.

Find the order-parameter values Φ1,Φ2 that minimise this free energy. Consider small fluctuations around
such state, with (φ1(r), φ2(r)) = (Φ1 + ϕ1(r),Φ2 + ϕ2(r)) and expand F to second order in ϕ.

Assuming that the statistical weight of thermal fluctuations is proportional to exp(−F ), calculate ap-
proximately the correlation function

〈ϕ1(r)ϕ1(0) + ϕ2(r)ϕ2(0)〉

by evaluating a Gaussian functional integral. How does your result depend on the dimensionality d of the
system?

9 Other Examples of Phase Transitions

9.1 Isotropic-Nematic Transition in Liquid Crystals

Liquid crystals are fluids of rod-like molecules. At high temperatures their centres of mass are randomly
distributed and the rods are randomly oriented. At low temperatures, in the nematic phase the rods
spontaneously align along a common axis, see Fig. 16. What is the order parameter characterizing this
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high temperatures low temperatures

n→

Figure 16: At low temperatures the rod-like molecules spontaneously align along an axis ~n.

transition?
Let us associate a unit vector ~n(r) with a molecule at position r. The first guess one may have is to take

〈~n(r)〉β as the order parameter. This will not work, because the two vectors ~n(r) and −~n(r) describe the
same orientation of the molecule. Hence the order parameter must be invariant under

~n(r) −→ −~n(r). (439)

So how about something quadratic like
〈ni(r)nj(r)〉β. (440)

The problem with this expression is that it is different from zero even for randomly oriented molecules
(which is what one has at very high temperatures). Indeed, using a parametrization of the unit vector for
a single molecule in terms of polar coordinates we have

~n =

sin θ cosϕ
sin θ sinϕ

cos θ

 . (441)

Then averaging over all possible orientations gives

〈〈ninj〉〉 =
1

4π

∫ π

0
dθ

∫ 2π

0
dϕ sin θninj =

1

3
δi,j 6= 0. (442)

This consideration suggests to try

Qij = 〈ninj〉β −
1

3
δi,j

(443)

as our order parameter. At very high temperatures, when molecules have random orientations, this is zero.
On the other hand, if the molecules are aligned in the z-direction, i.e. ~n = ~ez, we have

Q =

−1
3 0 0

0 −1
3 0

0 0 2
3

 . (444)
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So this seems to work. Given the order parameter, how do we then determine the free energy? In the high
temperature phase the free energy must be invariant under rotations of the molecules, i.e. under

Q(r) −→ RQ(r)RT . (445)

This suggests the following expansion for the free energy density

f [Q(r)] =
1

2
|∇Q|2 + α2Tr[Q2] + α3Tr[Q3] + α4

(
Tr[Q2]

)2
+ . . .

(446)

Here |∇Q|2 =
∑3

i,j,k=1(∂kQij)
2. The presence of a cubic term suggests that the transition is first order,

which is indeed correct.

9.2 Superfluid Transition in Weakly Interacting Bosons

Let us recall the second quantized Hamiltonian for weakly repulsive bosons

H =

∫
d4r

[
c†(r)

(
−∇

2

2m

)
c(r) +

U

2
c†(r)c†(r)c(r)c(r)

]
. (447)

Let us recall that the Hamiltonian (447) exhibits a U(1) symmetry, i.e. it is invariant under the transfor-
mation

c(r) −→ eiθc(r). (448)

This expresses the fact that the Hamiltonian conserves the total number of bosons. At temperatures below Tc
the symmetry (448) gets spontaneously broken and in the superfluid phase we have macroscopic occupation
of the zero momentum single-particle state

〈c(p = 0)〉β =
√
N0. (449)

This implies that at low temperatures in a spatially homogeneous system we have

〈c(r)〉T<Tc 6= 0. (450)

These observations suggest that we should try

ψ(r) = 〈c(r)〉β (451)

as our order parameter. Importantly this order parameter is complex valued. Our Landau free energy must
respect the resulting symmetry of the order parameter

ψ(r) −→ eiθψ(r) , (452)

while the symmetry gets spontaneously broken in the ordered phase. Using our usual arguments for writing
down the Landau free energy, we arrive at the following expansion in powers of the order parameter

F [ψ] =

∫
dDr

[
1

2m
|∇ψ|2 + α2|ψ(r)|2 + α4|ψ(r)|4 + . . .

]
.

(453)

In analogy to the case of a real scalar order parameter considered above we require α4 > 0 for stability,
while α2 = At is proportional to the reduced temperature.
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Exercise 4: Deriving (453)

It is useful to express the complex field ψ in terms of its real and imaginary part

ψ(r) = ψ1(r) + iψ2(r) . (454)

Under U(1) transformations (452) we have

ψ1(r) −→ cos(θ)ψ1(r)− sin(θ)ψ2(r) ,

ψ2(r) −→ sin(θ)ψ1(r) + cos(θ)ψ2(r) . (455)

Expanding in powers of ψ1,2 and only retaining terms that respect the U(1) symmetry we arrive at
(453).

In order to proceed it is useful to represent the order parameter in the form

ψ(r) = ρ(r) eiθ(r) , (456)

where both ρ and θ are real. Substituting (456) into (453) gives an expansion of the form

F [ρ, θ] =

∫
dDr

[
1

2m
|∇ρ|2 + α2ρ

2(r) + α4ρ
4(r) +

1

2m
ρ2(r)|∇θ|2 + . . .

]
. (457)

In a homogeneous system this free energy is minimized by

ρ(r) = ρ0 = ±
√
− α2

2α4
. (458)

Substituting this back into (457) we obtain (at leading order in the expansion) a Gaussian theory that
describes the fluctuations around the ordered state

F [δρ, θ] =

∫
dDr

[
1

2m
|∇δρ|2 + (α2 + 6α4ρ

2
0)ρ2(r) +

ρ2
0

2m
|∇θ|2 + . . .

]
. (459)

We may now proceed as in our calculating of the correlation length exponent for a real scalar order parameter
theory in order to determine the two point function. The result is

〈δρ(r) δρ(0)〉β ∝
∫

dDp

(2π)D
e−ip·r

p2

m + a
, (460)

where
a = 2α2 + 12α4ρ

2
0 . (461)

When considering the two point function of θ we face a complication in that (by construction) the field is
defined only modulo 2π. This makes calculations more complicated unless one is in a situation where the
fluctuations of θ around some ordered value, which we will take to be zero, are small. In that case the
system does not explore configurations for which it becomes important that θ is defined only modulo 2π.
Under these assumptions we may again follow our previous calculations to obtain

〈θ(r) θ(0)〉β ∝
∫

dDp

(2π)D
e−ip·r

p2
. (462)

This integral is divergent at small momenta for D < 2, while for large D we have

〈θ(r) θ(0)〉β ∝
1

|r|D−2
, D > 2. (463)

The divergence for D < 2 invalidates the assumptions we have made about the fluctuations of θ being small.
However, the fact that fluctuations diverge in low dimensions is in fact correct. What happens is that phase
fluctuations are so strong, that it becomes impossible to have a globally nonzero order parameter 〈ψ(r)〉β.
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10 Regime of validity of the saddle point approximation/mean field
theory

An important question is how reliable the saddle-point approximation we have used to analyze path integrals
like (381) is. A useful consistency check is obtained by comparing the variance of the order parameter to
its square when averaged over a spatial region with a radius set by the correlation length ξ. The variance
gives a measure of the size of the fluctuations around the average and for a translationally invariant system
is given by

〈(δφ)2〉Rξ =
〈[ ∫

Rξ

dDr
(
φ(r)− 〈φ(r)〉︸ ︷︷ ︸

δφ(r)

)]2〉
=

∫
Rξ

dDr

∫
Rξ

dDr′
〈
δφ(r) δφ(r′)〉

∼
∫
Rξ

dDr

∫
Rξ

dDr′ ξ
3−D

2
e−|r−r

′|/ξ

|r− r′|
D−1

2

∝ ξ2+D. (464)

Here Rξ is a box of length ξ centered around the origin and we have used our result (434) for the two point
function in the Gaussian approximation. This should be compared to the square of the order parameter
averaged over Rξ

〈φ〉2Rξ = ξ2D〈φ(0)〉2 . (465)

We have
〈(δφ)2〉Rξ
〈φ〉2Rξ

∝ ξ2−D

〈φ(0)〉2
∝ |t|ν(D−2)−2β, (466)

where ν and β are the correlation length and order parameter exponents respectively. The saddle point
approximation has a chance of being accurate as long as the right hand side of (466) is much less than 1,
which occurs if the exponent of |t| is positive. Using our previous results that β = ν = 1

2 we therefore require

D > 4. (467)

This means that our saddle point approximation is not expected to work quantitatively in dimensions less
than 4. The dimension above which a saddle point (mean field) approximation becomes valid is called upper
critical dimension. In D < 4 a significantly more refined analysis based on the renormalization group is
required to obtain quantitative results.

Mean field theory can fail in another way: at low temperatures it predicts an ordered phase, but we have
already seen for the case of the 1D Ising model and the Landau theory for a superfluid that in low numbers of
spatial dimensions fluctuations can be so strong that they preclude the formation of an ordered state. This
fact goes under the name of “Mermin-Wagner-Hohenberg theorem”. The dimension below which there is no
ordered phase is called lower critical dimensions. As we have seen, the formation of order is associated with
the spontaneous breaking of a discrete (Z2 spin reflection for the Ising model) or continuous (spin rotational
symmetry SU(2) for the Heisenberg model, U(1) for the superfluid) symmetry. For systems with sort range
interactions as the ones we have considered here, continuous symmetries can be broken spontaneously only
at zero temperature in D = 2, and never in D = 1. In contrast, discrete symmetries can be broken only
at zero temperature in D = 1. Let us summarize our findings for the example for the Landau theory of a
superfluid.

• For D > 4 the saddle point approximation is valid (the upper critical dimension is 4). There is a
transition to an ordered phase and the critical exponents are given by mean field theory.

• In the intermediate regime 2 < D < 4 there is a transition to an ordered state at low temperatures,
but fluctuations modify the mean-field behaviour and lead to different values for the critical exponents
characterizing the phase transition.
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• For D < 2 (the lower critical dimension is 2) phase fluctuations become so strong that it is no longer
possible for the system to order at low temperatures.
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Part III

Random Systems and Stochastic Processes

In nature there are many phenomena, in which some quantity varies in a random way. An example is
Browninan motion, which refers to the motion of a small particle suspended in a fluid. The motion, observed
under a microscope, looks random. It is hopeless to try to compute the position in detail, but certain average

Figure 17: Cartoon of a path of a particle undergoing Brownian motion.

features obey simple laws. Averaging over a suitable time interval is difficult and one therefore replaces time
averaging of a single irregularly varying function of time by averaging over an ensemble of functions. The
latter must of course be chosen in such a way that the two results agree

time average −→ ensemble average. (468)

11 Random Variables

A random variable is an object X defined by

1. a set {xj} of possible values (either discrete or continuous);

2. a probability distribution PX(xj) over this set

PX(xj) ≥ 0 ,
∑
j

PX(xj) = 1 (this becomes an integral in the continuous case.). (469)

Example: Let X be the number of points obtained by casting a die

{xj} = {1, 2, 3, 4, 5, 6} , PX(xj) =
1

6
. (470)

11.1 Some Definitions

The probability distribution PX(x) can be characterized by the moments of X

〈Xn〉 ≡
∫
dx xn PX(x).

(471)

The average value of X is the first moment 〈X〉, while the variance is σ2 = 〈X2〉 − 〈X〉2.
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The Fourier transform of PX(x) is called the characteristic function

φX(k) =

∫
dx PX(x)eikx =

∞∑
n=0

(ik)n

n!
〈Xn〉 ≡ 〈eikX〉.

(472)

The last equality shows that the characteristic function is the generating function for the moments

〈Xn〉 = (−i)n d
n

dkn

∣∣∣
k=0

φX(k). (473)

The cumulants of PX(x) are defined as

Cn(X) = (−i)n d
n

dkn

∣∣∣
k=0

ln
(
φX(k)

)
.

(474)

The first few cumulants are

C1(X) = 〈X〉 , C2(X) = 〈X2〉 − 〈X〉2 , C3(X) = 〈X3〉 − 3〈X2〉〈X〉+ 2〈X〉3. (475)

The Gaussian distribution is defined by

PX(x) =
1√

2πσ2
e−

(x−x0)2

2σ2 . (476)

Its characteristic function is
φX(k) = eikx0− 1

2
k2σ2

. (477)

The cumulants are C1(X) = x0, C2(X) = σ2, Cn>2(X) = 0. Hence the Gaussian distribution is completely
determined by its first two cumulants.

11.2 Discrete-time random walk

To see the above definitions in action we consider a tutor on (without loss of generality) his way back to
Summertown after a long night out (needless to say it must be a humanities tutor). He moves along Banbury
road, by making each second a step forward/backward with equal probability. Modelling Banbury road by
a line, his possible positions are all integers −∞ < n < ∞ (assuming for simplicity that Banbury road is
infinitely long, which is probably how it feels to our tutor), and we want to know the probability PN (n) for
her to be at position n after N steps, starting from n = 0.

• Each step is a random variable Xj (j = 1, . . . , N) taking the values ±1 with probabilities 1/2.

• The position after r steps is Y =
∑N

j=1Xj .

Clearly we have
〈Y 〉 = 0 , 〈Y 2〉 = N〈X2

j 〉 = N , (478)

where we have used that the steps are mutually independent. To obtain pN (n) we employ the characteristic
function

φXj (k) = PXj (1)eik1 + PXj (−1)eik(−1) = cos(k). (479)

The characteristic function of the random variable Y is

φY (k) = 〈eikY 〉 = 〈eik
∑N
j=1 Xj 〉 =

N∏
j=1

〈eikXj 〉 =
(
φXj (k)

)N
=

1

2N

(
eik + e−ik

)N
=

1

2N

N∑
r=0

(
N

r

)
eik(N−2r). (480)
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On the other hand we have by definition of the characteristic function

φY (k) =
∑
n

PY (n)eikn =
N∑

n=−N
pN (n)eikn. (481)

Equating (480) with (481) gives

pN (n) =
1

2N

(
N
N−n

2

)
, (482)

where the binomial coefficient is taken to be zero if (N − n)/2 is not an integer between 0 and N .

11.3 The central limit theorem

Let Xj j = 1, . . . , N be independent random variables with identical distributions PX(x) and consider their
arithmetic mean

SN =
1

N

N∑
j=1

Xj . (483)

Then for large N , SN tends towards a Gaussian, irrespective of the form of PX(x), provided that 〈X〉 and
〈X2〉 are finite.

To see that this is the case, let us consider the characteristic function

φSN (k) = 〈eikSN 〉 = 〈ei
k
N

∑N
j=1 Xj 〉 = 〈eik

X
N 〉N =

(
φX
( k
N

))N
, (484)

where we have used that the random variables are independent and have the same distribution. The
cumulants of SN are

Cn(SN ) = (−i)n d
n

dkn

∣∣∣
k=0

N ln
(
φX
( k
N

))
. (485)

We see that these cumulants are related to the cumulants Cn(X) of PX(x) by

Cn(SN ) = N1−nCn(X).
(486)

Hence, for very large N PSN (s) tends to a Gaussian distribution with average 〈X〉 and variance C2(X)/N =
σ2/N , i.e.

PSN (s) −→
(

N

2πσ2

) 1
2

exp

[
− N

2σ2
(s− 〈X〉)2

]
.

(487)

12 Stochastic Processes: Definitions

A function YX(t) of time t and a random variable X is called a stochastic process (SP). Examples are
the position x(t) or the velocity v(t) of a particle undergoing Brownian motion. A SP is characterized by
probability densities

P1(y1, t1) = probability that Y (t1) = y1;

...

Pn(y1, t1; . . . ; yn, tn) = joint probability that Y (t1) = y1, . . . , Y (tn) = yn. (488)

These are
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• normalized ∫
dy1 . . . dyn Pn(y1, t1; . . . ; yn, tn) = 1 ; (489)

• reducible ∫
dyn Pn(y1, t1; . . . ; yn, tn) = Pn−1(y1, t1; . . . ; yn−1, tn−1). (490)

Another way of characterizing a SP is through correlation functions

〈Y (t1)〉 =

∫
dy1 y1 P (y1, t1) ,

〈Y (t1)Y (t2)〉 =

∫
dy1dy2 y1y2 P2(y1, t1; y2, t2) ,

. . . (491)

A stochastic process is called stationary if for all n and any t

Pn(y1, t1; . . . ; yn, tn) = Pn(y1, t1 + τ ; . . . ; yn, tn + τ). (492)

The conditional probability that Y = y2 at time t2, given that Y = y1 at time t1 is denoted by

P1|1(y2, t2|y1, t1). (493)

This is normalized ∫
dy2 P1|1(y2, t2|y1, t1) = 1 , (494)

and related to unconditional probabilities by

P2(y1, t1; y2, t2) = P1|1(y2, t2|y1, t1) P1(y1, t1). (495)

The conditional probability that Y = yn at time tn, given that Y = yj at time tj for j = 1, . . . , n − 1 is
denoted by

P1|n−1(yn, tn|y1, t1; y2, t2; . . . ; yn−1, tn−1). (496)

13 Markov Processes

Perhaps the most important stochastic processes are so-called Markov processes (MP). Their defining prop-
erty is that t1 < t2 < . . . < tn

P1|n−1(yn, tn|y1, t1; y2, t2; . . . ; yn−1, tn−1) = P1|1(yn, tn|yn−1, tn−1).
(497)

This means that at time tn−1 one can predict the state of the system at time tn on the basis of present
information, i.e. yn−1, only! The history of how the system arrived at yn−1 at time tn−1 is irrelevant.

A Markov process is completely determined by the two functions P1(y1, t1) and P1|1(y2, t2|y1, t1), and
this makes Markov processes tractable. Any P1(y1, t1) and P1|1(y2, t2|y1, t1) define a MP, provided that they
fulfil the following two consistency conditions

• Chapman-Kolmogorov equation

P1|1(y3, t3|y1, t1) =

∫
dy2 P1|1(y3, t3|y2, t2)P1|1(y2, t2|y1, t1) , t3 > t2 > t1.

(498)
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• Evolution equation

P1(y2, t2) =

∫
dy1 P1|1(y2, t2|y1, t1)P1(y1, t1) , t2 > t1.

(499)

A MP is called stationary if P1(y, t) is time-independent and P1|1(y2, t2|y1, t1) depends only on the time
difference t2 − t1 (and y1,2).

13.1 Examples of Markov Processes

• The discrete-time random walk is a MP.

• The Wiener process, defined by

P1|1(y2, t2|y1, t1) =
1√

2π(t2 − t1)
e
− (y2−y1)2

2(t2−t1) ,

P1(y, t) =
1√
2πt

e−
y2

2t , (500)

is a non-stationary Markov process. It was originally invented for describing the stochastic behaviour
of the position of a Brownian particle.

13.2 Markov Chains

A Markov chain is a MP, in which the random variable only takes a finite number of values and in-
volves discrete time steps. The probability P1(y, t) can then be represented as a N -component vector,
and P1|1(y2, t2|y1, t1) ≡ T as an N ×N matrix. The normalization condition (494) becomes

N∑
j=1

Tjk = 1,

(501)

which is often referred to as probability conservation.
Example: Two state process with Y = 1 or Y = 2, with conditional probabilities

P1|1(1, t+ 1; 1, t) = 1− q ,
P1|1(2, t+ 1; 1, t) = q ,

P1|1(1, t+ 1; 2, t) = r ,

P1|1(2, t+ 1; 2, t) = 1− r . (502)

Introducing a two-component vector

~p(t) =

(
P1(1, t)
P1(2, t)

)
, (503)

the evolution equation for the process can be expressed as a vector equation

~p(t+ 1) =

(
1− q r
q 1− r

)
︸ ︷︷ ︸

T

~p(t).

(504)
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T is a square matrix with non-negative entries, that is in general not symmetric. The matrix elements Tij
are the rates for transitions from state j to state i. It is useful to rewrite the equation in components

pn(t+ 1) =
∑
j

Tnjpj(t). (505)

Then
pn(t+ 1)− pn(t) =

∑
j

Tnjpj(t)−
∑
j

Tjn︸ ︷︷ ︸
1

pn(t) =
∑
j

Tnjpj(t)− Tjnpn(t). (506)

Now consider our time interval to be small instead of 1. Then (506) turns into a differential equation, called
a Master equation

dpn(t)

dt
=
∑
j

Tnjpj(t)− Tjnpn(t).

(507)

This has a nice physical interpretation as a “loss/gain” equation for probabilities: the first term on the
right-hand side is the rate of transitions from state j to state n times the probability of j being realized, i.e.
the total gain of probability for state n. The second term on the right-hand side is the rate of transitions
from state n to state j times the probability of n being realized, i.e. the total loss of probability for state n.
Let us now return to the discrete form (504), which can be iterated to give

~p(t+ 1) = T t+1~p(0). (508)

While T is generally not symmetric, it is nevertheless often diagonalizable. Then there exist left and right
eigenvectors such that

T |Rα〉 = λα|Rα〉 , 〈Lα|T = λα〈Lα| , 〈Lα|Rβ〉 = δα,β , (509)

and T can be represented in the form

T =
∑
α

λα|Rα〉〈Lα|. (510)

Using the orthonormality of left and right eigenvectors we have

T t+1 =
∑
α

λt+1
α |Rα〉〈Lα|.

(511)

In our example

λ1 = 1 , 〈L1| = (1, 1) , |R1〉 =
1

1 + r/q

(
r/q
1

)
. (512)

λ2 = 1− q − r , 〈L2| = (−q
r
, 1) , |R2〉 =

1

1 + r/q

(
−1
1

)
. (513)

So for large t we have

T t+1 ≈ |R1〉〈L1| =
1

r + q

(
r r
q q

)
, (514)

and hence

~p(∞) =
1

r + q

(
r r
q q

)
~p(0). (515)

14 Brownian Motion

We now want to think of Brownian motion as a Markov process. Let v1, v2, . . . be the velocities of the
particle at different time steps. Then vk+1 depends only on vk, but not on v1, . . . , vk−1.
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14.1 Langevin Equation

One approach to Brownian motion is via a stochastic differential equation, the Langevin equation for the
velocity v(t) (more precisely the velocity in D = 1 or a component of the velocity in D > 1)

dv(t)

dt
= −γv(t) + η(t).

(516)

Here the first term on the right hand side is damping term linear in v, while the second term represents the
remaining random force with zero average 〈η(t)〉 = 0. This is often referred to as “noise”. For simplicity we
will assume collisions to be instantaneous, so that forces at different times are uncorrelated

〈η(t)η(t′)〉 = Γδ(t− t′). (517)

Given our assumptions about the noise, we can calculate noise-averaged quantities quite easily. We have

d

dt′

(
v(t′)eγt

′
)

=

(
dv

dt′
+ γv

)
eγt
′

= η(t′)eγt
′
, (518)

where in the last step we used the Langevin equation (516). Integrating both sides of this equation between
t = 0 and t′ = t, we obtain

v(t) = v(0)e−γt +

∫ t

0
dt′ η(t′)e−γ(t−t′).

(519)

Averaging this over the noise, we find the average velocity

〈v(t)〉 = v(0)e−γt +

∫ t

0
dt′ 〈η(t′)〉︸ ︷︷ ︸

=0

e−γ(t−t′) = v(0)e−γt.

(520)

Similarly we have

〈v2(t)〉 = 〈
[
v(0)e−γt +

∫ t

0
dt′ η(t′)e−γ(t−t′)

] [
v(0)e−γt +

∫ t

0
dt′′ η(t′′)e−γ(t−t′′)

]
〉

= v2(0)e−2γt + e−2γt

∫ t

0
dt′dt′′ 〈η(t′)η(t′′)〉︸ ︷︷ ︸

Γδ(t′−t′′)

eγ(t′+t′′) (521)

Carrying out the time integrals this becomes

〈v2(t)〉 = v2(0)e−2γt +
Γ

2γ
(1− e−2γt).

(522)

The displacement of the particle is

x(t)− x(0) =

∫ t

0
dt′ v(t′) =

v(0)

γ
(1− e−γt) +

∫ t

0
dt′
∫ t′

0
dt′′ η(t′′)e−γ(t′−t′′). (523)

Assuming x(0) = 0, the average position of the particle is

〈x(t)〉 =
v(0)

γ
(1− e−γt).

(524)
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Finally, we want to determine the particle’s mean square deviation

〈
[
x(t)− 〈x(t)〉

]2〉 = 〈x2(t)〉 − 〈x(t)〉2. (525)

Substituting (523) and using again that x(0) = 0 this becomes∫ t

0
dt1

∫ t1

0
dt2e

−γ(t1−t2)

∫ t

0
dt′1

∫ t′1

0
dt′2e

−γ(t′1−t′2)〈η(t2)η(t′2)〉︸ ︷︷ ︸
ΓΘ(t′1−t2)e−γ(t′1−t2)

=

∫ t

0
dt1

∫ t1

0
dt2e

−γ(t1−2t2)

∫ t

t2

dt′1e
−γt′1︸ ︷︷ ︸

γ−1(e−γt2−e−γt)

.(526)

Carrying out the remaining two integrals we find

〈
[
x(t)− 〈x(t)〉

]2〉 =
Γ

γ2
t− Γ

γ3
(1− e−γt)− Γ

2γ3
(1− e−γt)2.

(527)

So at very late times we have

〈x2(t)〉 =
Γ

γ2
t+ . . .

(528)

The displacement grows like
√
t, which is characteristic of diffusion. Finally, we may relate Γ/γ to the

temperature of the fluid by noting that

〈v2(t→∞)〉 =
Γ

2γ
. (529)

On the other hand, by equipartition we have

m

2
〈v2〉 ∼ kBT

2
(530)

Combining these two equations, we arrive at

Γ

2γ
=
kBT

m
.

(531)

14.2 Fokker-Planck Equation

We now want to derive a differential equation for the probability P1(v, t) of our particle having velocity v
at time t from the Langevin equation

v(t) = v(0)e−γt +

∫ t

0
dt′ e−γ(t−t′)η(t′). (532)

Our starting point is the general evolution equation

P1(v, t+ ∆t) =

∫
duP1|1(v, t+ ∆t|u, t) P1(u, t). (533)

It is convenient to consider the integral

Ω =

∫
dv [P1(v, t+ ∆t)− P1(v, t)]h(v), (534)

where h(v) is is test function (infinitely many time differentiable, h(v) and all of its derivatives going to zero
at infinity etc). On the one hand, we have to linear order in ∆t∫

dv [P1(v, t+ ∆t)− P1(v, t)]h(v) =

∫
dv

∂P1(v, t)

∂t
∆t h(v). (535)

76



On the other hand, using (533) we have

Ω =

∫
du dv h(v) P1|1(v, t+ ∆t|u, t) P1(u, t)−

∫
dv h(v) P1(v, t). (536)

Relabelling the integration variable from v to u in the second term, and using that normalization condition∫
dv P1|1(v, t+ ∆t|u, t) = 1, we obtain

Ω =

∫
du P1(u, t)

∫
dv P1|1(v, t+ ∆t|u, t) [h(v)− h(u)] . (537)

Expanding h(v) around u in a Taylor series gives

Ω =

∫
du P1(u, t)

∞∑
n=1

h(n)(u)

∫
dv P1|1(v, t+ ∆t|u, t)(v − u)n

n!︸ ︷︷ ︸
D(n)(u)

. (538)

Integrating the n’th term in the sum n times by parts, and using the nice properties of the function h(u),
then leads to the following expression

Ω =

∫
du h(u)

∞∑
n=1

(
− ∂

∂u

)n
P1(u, t)D(n)(u). (539)

Using that (535) and (539) have to be equal for any test function h(u), we conclude that

∂P1(v, t)

∂t
∆t =

∞∑
n=1

(
− ∂

∂v

)n
P1(v, t)D(n)(v).

(540)

This starts looking like our desired differential equation. What remains is to determine the quantities D(n)(v)

D(n)(v) =

∫
dw P1|1(w, t+ ∆t|v, t)(w − v)n

n!
=

∫
dz P1|1(v + z, t+ ∆t|v, t)z

n

n!

=
1

n!
〈[v(t+ ∆t)− v(t)]n〉. (541)

We see that D(n)(v) are related to the moments of the velocity difference distribution! We can use the
Langevin equation to determine them, and the result is

〈v(t+ ∆t)− v(t)〉 = −γv(0)e−γt∆t ,

〈
(
v(t+ ∆t)− v(t)

)2〉 = Γ∆t+O
(
(∆t)2

)
,

〈
(
v(t+ ∆t)− v(t)

)n〉 = O
(
(∆t)2

)
, n ≥ 3. (542)

Substituting these into (540) and then taking the limit ∆t→ 0, we arrive at the Fokker-Planck equation

∂

∂t
P1(v, t) = γ

∂

∂v
vP1(v, t) +

Γ

2

∂2

∂v2
P1(v, t).

(543)

This is a second order linear PDE for P1(v, t) and can be solved by standard methods. For initial conditions
P1(v, 0) = δ(v − v0) we find

P1(v, t) =
1√

2πσ2(t)
exp

(
−
(
v − v̄(t)

)2
2σ2(t)

)
,

(544)
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where

σ2(t) =
Γ

2γ
(1− e−2γt) , v̄(t) = v0e

−γt. (545)

In the limit t→∞ this turns into the Maxwell distribution

P1(v, t) =

√
γ

πΓ
e−

γv2

Γ =

√
m

2πkBT
e
− mv2

2kBT . (546)

14.2.1 Moments of the Velocity Difference Probability Distribution

Let us see how to derive (542), starting from the Langevin equation

v(t) = v(0)e−γt +

∫ t

0
dt′ e−γ(t−t′)η(t′). (547)

For a very small time interval ∆t we have

v(t+ ∆t) = v(0)e−γ(t+∆t) +

∫ t+∆t

0
dt′ e−γ(t+∆t−t′)η(t′)

= v(0)e−γt(1− γ∆t) +

∫ t

0
dt′ e−γ(t−t′)η(t′)(1− γ∆t) +

∫ t+∆t

t
dt′ e−γ(t−t′)η(t′) +O

(
(∆t2)

)
= (1− γ∆t) v(t) +

∫ t+∆t

t
dt′ e−γ(t−t′)η(t′) +O

(
(∆t2)

)
. (548)

Hence ∆v(t) = v(t+ ∆t)− v(t) is given by

∆v = −γv∆t+

∫ t+∆t

t
dt′ e−γ(t−t′)η(t′) +O

(
(∆t2)

)
. (549)

To derive (542) we rewrite (549) in the form

∆v(t) = v0(t)∆t+

∫
dt′K(t, t′) η(t′), (550)

where

v0(t) = −γv(0)e−γt ,

K(t, t′) = −γΘ(t− t′)Θ(t′)e−γ(t−t′)∆t+ Θ(t′ − t)Θ(t+ ∆t− t′)e−γ(t−t′). (551)

Let us now assume that η(t) is Gaussian distributed. Then the probability distribution for the noise is the
functional

P [η(t)] = e−
1

2Γ

∫
dt η2(t). (552)

Averages are then given by the path integral

〈η(t1) . . . η(tn)〉 =

∫
Dη(t) η(t1) . . . η(tn) e−

1
2Γ

∫
dt′ η2(t′). (553)

As this is Gaussian, we may use Wick’s theorem to calculate averages

〈η(t)〉 = 0 ,

〈η(t)η(t′)〉 = Γδ(t− t′) ,
〈η(t1)η(t2)η(t3)〉 = 〈η(t1)η(t2)〉〈η(t3)〉+ 〈η(t3)η(t1)〉〈η(t2)〉+ 〈η(t2)η(t3)〉〈η(t1)〉 = 0 ,

〈η(t1)η(t2)η(t3)η(t4)〉 = 〈η(t1)η(t2)〉〈η(t3)η(t4)〉+ . . . (554)
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The probability distribution for ∆v(t) can be obtained from the generating function

Z(λ) = 〈eλ∆v(t)〉 = eλv0(t)∆t

∫
Dη(t) e−

1
2Γ

∫
dt′[η2(t′)−2λΓK(t,t′)η(t′)]. (555)

Changing variables to
η̃(t′) = η(t′)− λΓK(t, t′), (556)

the generating function becomes

Z(λ) = eλv0(t)∆t+λ2Γ
2

∫
dt′ K2(t,t′). (557)

It is then a straightforward matter to calculate the moments

〈∆v〉 =
dZ

dλ

∣∣∣
λ=0

= v0(t)∆t ,

〈
(
∆v
)2〉 =

d2Z

dλ2

∣∣∣
λ=0

= Γ

∫
dt′ K2(t, t′) = Γ

∫ t+∆t

t
dt′ e−γ(t−t′) +O

(
(∆t)2

)
= Γ∆t+O

(
(∆t)2

)
,

〈
(
∆v
)n〉 =

dnZ

dλn

∣∣∣
λ=0

= O
(
(∆t)2

)
, n ≥ 3. (558)

14.3 Diffusion Equation

Finally, we would like to obtain a differential equation for P1(x, t). The difficulty is that x(t) is not a Markov
process, because x(t+ ∆t) depends on both x(t) and v(t). On can treat the combined evolution of x(t) and
v(t), but we will follow a simpler route. Recalling that

v(t) = v(0)e−γt +

∫ t

0
dt′ e−γ(t−t′)η(t′), (559)

we see that v(t) becomes a random variable for t� γ−1 with

〈v(t)〉 = 0 , 〈v(t)v(t′)〉 =
Γ

2γ
e−γ|t−t

′|. (560)

Now let us imagine that we observe the Brownian particle only at sufficiently long time intervals t, t′ � γ−1,
and describe only these coarse grained positions. Then we may replace

〈v(t)v(t′)〉 =
Γ

2γ
e−γ|t−t

′| → Γ

γ2
δ(t− t′). (561)

This is because Γ
2γ e
−γ|t−t′| is substantially different from zero only if |t− t′| < γ−1, and∫ ∞

−∞
dt

Γ

2γ
e−γ|t−t

′| =
Γ

γ2
. (562)

The differential equation for the position

dx(t)

dt
= v(t), (563)

then turns into a special case (of no damping) of the Langevin equation we solved for the velocity. We
therefore can use our previous results to conclude that

∂

∂t
P1(x, t) =

Γ

2γ2

∂2

∂x2
P1(x, t).

(564)
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This is the diffusion equation with diffusion coefficient

D =
Γ

2γ2
. (565)

Its solution for initial conditions P1(x, 0) = δ(x− x0) is

P1(x, t) =
1√

2πD|t− t0|
exp

(
−
(
x− x0

)2
4D|t− t0|

)
.

(566)

14.4 Homework Questions 12-16

Question 12. This question is concerned with the central limit theorem.
(i) Show explicitly that for N � 1, pN � 1 the binomial distribution

PN (n) =
N !

n!(N − n)!
pnqN−n, p+ q = 1

becomes

PN (n) =
1√

2πσ2
exp

(
−(n− < n >)2

2σ2

)
where σ2 = Npq. Check that the same result follows from the central limit theorem.
(ii) Consider a random walk in one dimension, for which the probability of taking a step of length x→ x+ dx is

f(x)dx =
1

π

γ

x2 + γ2
dx.

Find the probability distribution for the total displacement after N steps. Does it satisfy the central limit theorem?
Should it? What are the cumulants of this distribution?

Question 13. Let y = ±1. Show that

P1|1(y, t | y′, t′) =
1

2

{
1 + e−2γ(t−t′)

}
δy,y′ +

1

2

{
1− e−2γ(t−t′)

}
δy,−y′ (567)

obeys the Chapman-Kolmogorov equation.
Show that

P1(y, t) =
1

2
(δy,1 + δy,−1) (568)

is a stationary solution. Write P1|1 as a 2 × 2 matrix and formulate the Chapman-Kolmogarov equation as a
property of that matrix.

Question 14. This question is about a continuous random walk, also known as a Wiener process.
Show that for −∞ < y <∞ and t2 > t1 the Chapman-Kolmogarov equation is satisfied for

P1|1(y2, t2 | y1, t1) =
1√

2π(t2 − t1)
exp−

{
(y2 − y1)2

2(t2 − t1)

}
. (569)

Choose P1(y1, 0) = δ(y1). Show that for t > 0

P1(y, t) =
1√
2πt

exp

{
−y2

2t

}
. (570)
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Show that P1(y, t) obeys the diffusion equation

∂P

∂t
= D

∂2P

∂y2
(571)

for D = 1
2 . What is the solution for arbitrary D > 0?

Question 15. A particle suspended in a fluid undergoes Brownian motion in one dimension with position
x(t) and velocity v(t). This motion is modelled by the Langevin equation

dv

dt
= −γv + η(t),

where η(t) is a Gaussian random variable characterised completely by the averages 〈η(t)〉 = 0 and 〈η(t1)η(t2)〉 =
Γδ(t1 − t2). Discuss the physical origin of each of the terms in the Langevin equation.

What is meant by the term Markov process? Illustrate your answer by discussing which of the following are
Markov processes: (a) v(t) alone; (b) x(t) alone; (c) v(t) and x(t) together.

Show that for t > 0

x(t) =
v(0)

γ
(1− e−γt) +

∫ t

0
dt1

∫ t1

0
dt2 e−γ(t1−t2) η(t2)

is a solution of the Langevin equation with initial condition x(0) = 0. Calculate the average 〈x(t) v(t)〉 and
discuss its limiting behaviour at short and long times.

Question 16. The time evolution of a stochastic system is represented by a master equation of the form

dpn(t)

dt
=
∑
m

Wnmpm(t) .

Explain briefly the meaning of this equation and discuss the assumptions on which it is based. What general
conditions should the matrix elements Wnm satisfy?

A molecule lies between two atomic-scale contacts and conducts charge between them. A simple model of
this situation is illustrated below. The model has three states: the molecule may be uncharged, or may carry a
single charge at either site A or site B but not both. Charges hop between these sites, and between the sites and
the contacts, at the rates indicated in the figure. (For example, a charge at site A has probability f2 per unit
time of hopping to site B.)

A B

f2 ff 31

Write down a master equation for this model. For the system in equilibrium, calculate the occupation probabilities
of the three states, and show that the average number of charges flowing through the molecule per unit time is

f1f2f3

f1f2 + f1f3 + f2f3
.

Consider the case f1 = f2 = f3 ≡ f . The molecule is uncharged at time t = 0. Show that the probability
p(t) for it to be uncharged at a later time t is

p(t) =
1

3
+

2

3
exp

(
−3

2
ft

)
cos

(√
3

2
ft

)
.
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