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1 Classical Field Theory

We start by discussing various aspects of classical fields. This will lay the groundwork for the
subsequent analysis of qauntum fields, as well as illustrating the dynamics of fields beyond
what we will be able to analyse in the quantum theory.

1.1 Dynamics of Fields

A field is a quantity that can have a different value at every point of a space(-time) x = (t,x).
The spatial coordinate x may parametrise space itself, but also may restrict to the interior
(or surface) of a material - it depends on what the field is describing.

The particular difference of fields is that they involve an infinite number of degrees of free-
dom. While classical particle mechanics deals with a finite number of generalized coordinates
qa(t), indexed by a label a, in field theory we are interested in the dynamics of fields

φa(t,x) , (1.1)

where both a and x are considered as labels. We are hence dealing with an infinite number of
degrees of freedom (dofs), at least one for each point x in space. Notice that the concept of
position has been relegated from a dynamical variable in particle mechanics to a mere label
in field theory.
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What does every point in space(-time) mean physically? If we take a field
defined on spacetime, then this implies that the value of the field at one point,
and the value at another point separated by 10−25 metres, are physically separate
dynamical quantities. There are, furthermore, an infinite number of dynamical
quantities going down to ever smaller and smaller scales. By writing a field φ(x, t),
and describing its dynamics, we are also talking about the dynamics of this infinite
number of quantities defined on truly microscopic scales.

Actually, we know this must ultimately be wrong physics. In condensed matter
systems, this notion is going to break down when we get to distances much smaller
than a lattice spacing - at sub-atomic separations, it really does not make sense
to talk about the value of a field φ(x, t). Even in particle physics, where we might
think that space makes sense down to arbitrarily small distances, any classical
picture of space will still fail at small enough distances (once quantum gravity
kicks in).

But yet we still talk about fields with infinite numbers of degrees of freedom, and
in practice what happens at the very shortest of distances turns out to decouple
when we get to longer distances. The field φ(x, t) does contain short-distance
dynamics in it - but it also drops out from the long-distance questions we want
to pose. That this happens is true but deeply non-obvious, and arises from the
physics of renormalisation.

Lagrangian and Action

The dynamics of the fields is governed by the Lagrangian. In all the systems we will study
in this course, the Lagrangian is a function of the fields φa and their derivatives ∂µφa,

1 and
given by

L(t) =

∫
d3xL(φa, ∂µφa) , (1.2)

where the official name for L is Lagrangian density, but is in practice often simply called
the Lagrangian. I am now also going to assume that the field is defined on four dimensions,
three spatial and one time (this is an assumption - there are many interesting and physically
important field theories that are defined on dimensions less than three).

For any time interval t ∈ [t1, t2], the action corresponding to (1.2) reads

S =

∫ t2

t1

dt

∫
d3xL =

∫
d4xL . (1.3)

Recall that in classical mechanics L depends only on qa and q̇a, but not on the second time
derivatives of the generalized coordinates. In field theory we similarly restrict to Lagrangians
L depending on φa and φ̇a. Furthermore, with an eye on Lorentz invariance, we will only
consider Lagrangians depending on ∇φa and not higher derivatives.

Notice that employing c = ~ = 1, i.e., working with natural units, the dimension of
the action is [S] = 0. With (1.3) and [d4x] = −4, it follows that the Lagrangian must

1If there is no (or only little) room for confusion, we will often drop the arguments of functions and write
φa = φa(x) etc. to keep the notation short.
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necessarily have [L] = 4. Other objects that we will use frequently to construct Lagrangians
are derivatives, masses, couplings, and most importantly fields. The dimensions of the former
two objects are [∂µ] = 1 and [m] = 1, while the dimensions of the latter two quantities depend
on the specific type of coupling and field one considers. We therefore postpone the discussion
of the mass dimension of couplings and fields to the point when we meet the relevant building
blocks.

Principle of Least Action

As with particles, yhe dynamical behavior of fields can be determined by the principle of
least action. This principle states that when a system evolves from one given configuration to
another between times t1 and t2 it does so along a “path” in configuration space for which the
action is an extremum (usually a minimum) and hence satisfies δS = 0. This condition leads
to equations of motion:

δS =

∫
d4x

{
∂L
∂φa

δφa +
∂L

∂(∂µφa)
δ(∂µφa)

}

=

∫
d4x

{[
∂L
∂φa
− ∂µ

(
∂L

∂(∂µφa)

)]
δφa + ∂µ

(
∂L

∂(∂µφa)
δφa

)}
= 0 .

(1.4)

The last term is a total derivative and vanishes for any δφa that decays at spatial infinity and
obeys δφa(t1,x) = δφa(t2,x) = 0. For all such paths, we obtain the Euler-Lagrange equations
of motion (EOMs) for the fields φa, namely

∂µ

(
∂L

∂(∂µφa)

)
− ∂L
∂φa

= 0 . (1.5)

When we come to quantise fields, ultimately the most powerful approach is the use of the
path integral formalism, from which the principle of least action arises as a classical limit.
However, the easier (but less powerful) approach comes from using a Hamiltonian as taught
in ordinary quantum mechanics.

Hamiltonian Formalism

The Hamiltonian formalism of classical mechanics starts with the Hamiltonian,

H(qi,pi, t) =
∑

i

piq̇i(qi, pi, t)− L (1.6)

where the conjugate momentum

pi =
∂L

∂q̇i
. (1.7)

Field theory is ‘just’ the mechanics of systems with N → ∞ degrees of freedom. For
the Hamiltonian formalism of field theory, as the degrees of freedom are φa(x), the conjugate
momentum variable (momentum density) is πa(x),

πa =
∂L
∂φ̇a

. (1.8)
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In terms of πa, φ̇a, and L the Hamiltonian density is given by

H = πaφ̇a − L , (1.9)

where, as in classical mechanics, we must eliminate φ̇a in favor of πa everywhere in H. The
Hamiltonian then simply takes the form

H =

∫
d3xH . (1.10)

Note the expression for H is precisely as in the case of classical mechanics and is to be regarded
as a function of φa and πa (no explicit inclusion of φ̇a).

1.2 Noether’s Theorem

A field theory is not required to possess any particular symmetries, and perfectly consistent
field theories can be constructed which possess no special symmetry properties.

But, interesting field theories that we care about generally do have extra symmetry prop-
erties. Familiar examples are spatial translation, spatial rotation, time translation invariance
and Lorentz symmetry. Less familiar examples are internal gauge or global symmetries (which
may relate different types of particle to each other), chiral symmetries (multiplying fermions
fields by complex phases), or supersymmetries (which relate bosons and fermions).

The role of symmetries in field theory is therefore possibly even more important than in
particle mechanics. As with particle mechanics, a crucial aspect of symmetries is that they
lead to the generation of conserved quantities. We therefore start here by recasting Noether’s
theorem within a field theoretic framework.

Currents and Charges

The statement of Noether’s theorem is that every continuous symmetry of the Lagrangian
gives rise to a conserved current Jµ(x), so that the EOMs (1.5) imply

∂µJ
µ = 0 , (1.11)

or in components dJ0/dt+∇ ·J = 0.2 To every conserved current there exists also a conserved
(global) charge Q, i.e., a physical quantity which stays the same value at all times, defined as

Q =

∫

R3

d3x J0 . (1.12)

The latter statement is readily shown by taking the time derivative of Q,

dQ

dt
=

∫

R3

d3x
dJ0

dt
= −

∫

R3

d3x∇ · J , (1.13)

2In quantum theory there can be exceptions to this, called ‘anomalies’, where symmetries of the classical
Lagrangian cease are not symmetries of the quantum theory.
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which is zero, provided we assume that J falls off sufficiently rapidly as |x| → ∞. Notice,
however, that the existence of the conserved current J is much stronger than the existence of
the (global) charge Q, because it implies that charge is in fact conserved locally. To see this,
we define the charge in a finite volume V by

QV =

∫

V

d3x J0 . (1.14)

Repeating the above analysis, we find

dQV

dt
= −

∫

V

d3x∇ · J = −
∮

S

dS · J , (1.15)

where S denotes the area bounding V , dS is a shorthand for n dS with n being the outward
pointing unit normal vector of the boundary S, and we have used Gauss’ theorem. In physical
terms the result means that any charge leaving V must be accounted for by a flow of the
current 3-vector J out of the volume. This kind of local conservation law of charge holds in
any local field theory.

Proof of Theorem

In order to prove Noether’s theorem, we’ll consider infinitesimal transformations. This is
always possible in the case of a continuous symmetry. We say that δφa is a symmetry of the
theory if, under a field transformation

φa → φa + δφa, (1.16)

the Lagrangian changes by a total derivative

δL(φa) = ∂µJ µ(φa) , (1.17)

for a set of functions J µ. We then consider the transformation of L under an arbitrary change
of field δφa. Glancing at (1.4) tells us that in this case

δL =

[
∂L
∂φa
− ∂µ

(
∂L

∂(∂µφa)

)]
δφa + ∂µ

(
∂L

∂(∂µφa)
δφa

)
. (1.18)

When the EOMs are satisfied than the term in square bracket vanishes so that we are simply
left with the total derivative term. For a symmetry transformation satisfying (1.17), the
relation (1.18) hence takes the form

∂µJ µ = δL = ∂µ

(
∂L

∂(∂µφa)
δφa

)
, (1.19)

or simply ∂µJ
µ = 0 with

Jµ =
∂L

∂(∂µφa)
δφa − J µ , (1.20)
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which completes the proof. Notice that if the Lagrangian is invariant under the infinitesimal
transformation δφa, i.e., δL = 0, then J µ = 0 and Jµ contains only the first term on the
right-hand side of (1.20).

We stress that that our proof only goes through for continuous transformations for which
there exists a choice of the transformation parameters resulting in a unit transformation, i.e.,
no transformation. An example is a Lorentz boost with some velocity v, where for v = 0 the
coordinates x remain unchanged. There are examples of discrete symmetry transformations
where this does not occur. E.g., a parity transformation P does not have this property, and
Noether’s theorem is not applicable then.

Energy-Momentum Tensor

Recall that in classic particle mechanics, spatial translation invariance gives rise to the con-
servation of momentum, while invariance under time translations is responsible for the con-
servation of energy. What happens in classical field theory? To figure it out, let’s have a look
at infinitesimal translations

xν → xν − εν =⇒ φa(x)→ φa(x+ ε) = φa(x) + εν∂νφa(x) , (1.21)

where the sign in the field transformation is plus, instead of minus, because we are doing an
active, as opposed to passive, transformation. If the Lagrangian does not explicitly depend
on x but only through φa(x) (which will always be the case in the Lagrangians discussed in
the course), the Lagrangian transforms under the infinitesimal translation as

L → L+ εν∂νL . (1.22)

Since the change in L is a total derivative, we can invoke Noether’s theorem which gives
us four conserved currents T µν = (Jµ)ν one for each of the translations εν (ν = 0, 1, 2, 3).
From (1.20) and (1.21) we readily read off the explicit expressions for T µν ,

T µν =
∂L

∂(∂µφa)
∂νφa − δµνL . (1.23)

This quantity is called the energy-momentum (or stress-energy) tensor. It has dimension
[T µν ] = 4 and satisfies

∂µT
µ
ν = 0 . (1.24)

The four “conserved charges” are (µ = 0, 1, 2, 3)

P µ =

∫
d3xT 0µ , (1.25)

Specifically, the “time component” of P µ is

P 0 =

∫
d3xT 00 =

∫
d3x

(
πaφ̇a − L

)
, (1.26)

which (looking at (1.9) and (1.10)) is nothing but the Hamiltonian H. We thus conclude that
the charge P 0 is the total energy of the field configuration, and it is conserved. In fields theory,
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energy conservation is thus a pure consequence of time translation symmetry, like it was in
particle mechanics. Similarly, we can identify the charges P i (i = 1, 2, 3),

P i =

∫
d3xT 0i = −

∫
d3x πa∂iφa , (1.27)

as the momentum components of the field configuration in the three space directions, and they
are of course also conserved.

1.3 Symmetries and the Lorentz Group

In general, there are many different symmetry that can occur in physics. A symmetry trans-
formation is, generally, an operation you can perform on a system that transforms it back to
itself. In physics, symmetries normally refer to symmetries of the underlying equations. Much
interesting physics - including both superconductivity and the properties of the Higgs boson
- can be understood as examples of where there is a symmetry of the equations that is not a
symmetry of the solution.

We are not going to give a formal mathematical presentation of group theory in these
lectures (see the previous C6 lecture notes by John Chalker and Andre Lukas for an account).
However, one concept of general importance is that of a representation of a symmetry. Rep-
resentations refer to the distinct ways an abstract symmetry can be concretely realised, by
mapping each symmetry transformation gi onto an n×n matrix Gi acting on an n-dimensional
vectors. Examples are the 3-dimensional vector representation of spatial rotations or the ten-
dimensional symmetric tensor (metric) representation of Lorentz transformations in general
relativity.

One extremely important example of a symmetry is that of the Lorentz group. The Lorentz
group L is of fundamental importance for the construction of relativistic field theories, as L
is associated with the symmetry of 4-dimensional space-time. We therefore now consider the
form of the Lorentz group in some more detail.

Using the Minkowski metric η = diag (1,−1,−1,−1), the Lorentz group L consists of the
real 4× 4 matrices Λ that satisfy

η = ΛT ηΛ , (1.28)

which written in components (µ, ν, ρ, σ = 0, 1, 2, 3) takes the form

ηµν = ησρΛµ
ρΛν

σ . (1.29)

It is readily seen that the transformations

xµ → Λµ
νx

ν , (1.30)

with Λ satisfying (1.28) leave the distance ds2 invariant. Setting for simplicity the speed of
light c to 1, one has

ds2 = ηµνdx
µdxν → ηµνΛµ

ρdx
ρΛν

σdx
σ = ηρσdx

ρdxσ = ds2 . (1.31)

The Lorentz transformations (LTs) (1.30) therefore preserve distance as measured by the
Minkowski metric.
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4.1. SYMMETRIES 43

det(Λ) Λ0
0 name contains given by

+1 ≥ 1 L↑
+ 14 L↑

+

+1 ≤ −1 L↓
+ PT PTL↑

+

−1 ≥ 1 L↑
− P PL↑

+

−1 ≤ −1 L↓
− T TL↑

+

Table 4.1: The four disconnected components of the Lorentz group. The union L+ = L↑
+ ∪ L↓

+ is also called the
proper Lorentz group andL↑ = L↑

+∪L↑
− is called the orthochronosLorentz group (as it consists of transformations

preserving the direction of time). L↑
+ is called the proper orthochronos Lorentz group.

O satisfying OT O = 1 and det(O) = 1. Writing O = 1 + iT with (purely imaginary) generators T , the relation
OT O = 1 implies T = T † and, hence, that the Lie-algebra of SO(3) consists of 3 × 3 anti-symmetric matrices
(multiplied by i). A basis for this Lie algebra is provided by the three matrices Ti defined by

(Ti)jk = −iεijk , (4.16)

which satisfy the commutation relations
[Ti, Tj] = iεijkTk . (4.17)

These are the same commutation relations as in Eq. (4.13) and, hence, the Ti form a three-dimensional (irreducible)
representation of (the Lie algebra of) SU(2). This representation must fit into the above classification of SU(2)
representations by an integer or half-integer number j and, simply on dimensional grounds, it has to be identified
with the j = 1 representation.

4.1.4 The Lorentz group
The Lorentz group is of fundamental importance for the construction of field theories. It is the symmetry associated
to four-dimensional Lorentz space-time and should be respected by field theories formulated in Lorentz space-time.
Let us begin by formally defining the Lorentz group. With the Lorentz metric η = diag(1, −1, −1, −1) the Lorentz
group L consists of real 4 × 4 matrices Λ satisfying

ΛT ηΛ = η . (4.18)

Special Lorentz transformations are the identity 14, parityP = diag(1, −1, −1, −1), time inversionT = diag(−1, 1, 1, 1)
and the product PT = −14. We note that the four matrices {14, P, T, PT } form a finite sub-group of the Lorentz
group. By taking the determinant of the defining relation (4.18) we immediately learn that det(Λ) = ±1 for all
Lorentz transformations. Further, if we write out Eq. (4.18) with indices

ηµνΛµ
ρΛ

ν
σ = ηρσ (4.19)

and focus on the component ρ = σ = 0 we conclude that (Λ0
0)

2 = 1 +
∑

i(Λ
i
0)

2 ≥ 1, so either Λ0
0 ≥ 1

or Λ0
0 ≤ −1. This sign choice for Λ0

0 combined with the choice for det(Λ) leads to four classes of Lorentz
transformations which are summarised in Table 4.1. Also note that the Lorentz group contains three-dimensional
rotations since matrices of the form

Λ =

(
1 0
0 O

)
(4.20)

satisfy the relation (4.18) and are hence special Lorentz transformations as long as O satisfies OT O = 13.
To find the Lie algebra of the Lorentz group we writeΛ = 14+iT + . . . with purely imaginary 4×4 generators

T . The defining relation (4.18) then implies for the generators that T = −ηT T η, so T must be anti-symmetric
in the space-space components and symmetric in the space-time components. The space of such matrices is six-
dimensional and spanned by

Ji =

(
0 0
0 Ti

)
, K1 =




0 i 0 0
i 0 0 0
0 0 0 0
0 0 0 0


 , K2 =




0 0 i 0
0 0 0 0
i 0 0 0
0 0 0 0


 , K3 =




0 0 0 i
0 0 0 0
0 0 0 0
i 0 0 0


 , (4.21)

Figure 1.1: The four disconnected components of the Lorentz group - these consist of
’ordinary’ Lorentz transformations that may also be multiplied by Parity and Time-
reversal.

Let us examine the consequences of (1.28). First, we take its determinant

det (η) = det
(
ΛT
)

det (η) det (Λ) , (1.32)

from which we deduce that
det (Λ) = ±1 . (1.33)

The case of det (Λ) = +1 (−1) corresponds to proper (improper) LTs and the associated sub-
group is denoted L+ (L−). This implies that parity or space-inversion P = diag (1,−1,−1,−1)
as well as time-reversal T = diag (−1, 1, 1, 1) are improper LTs and as such part of L−. Second,
we look at the component η00, in which case one finds from (1.29) the relation

1 = ησρΛ0
ρΛ0

σ =
(
Λ0

0

)2 −
∑

i=1,2,3

(
Λi

0

)2
. (1.34)

It follows that
|Λ0

0| ≥ 1 . (1.35)

When Λ0
0 ≥ 1 the LT is said to be orthochronous and part of L↑, while Λ0

0 ≤ −1 gives a
non-orthochronous LT which belongs to L↓. In consequence, the Lorentz group consists out
of four classes of LTs as illustrated in Figure 1.1

Let us have a look at some simple example of LTs: an ordinary spatial rotation by the
angle θ about the z-axis, and then a boost by v < 1 along the x-axis

Λµ
ν =




1 0 0 0

0 cos θ − sin θ 0

0 sin θ cos θ 0

0 0 0 1


 , Λµ

ν =




γ −γv 0 0

−γv γ 0 0

0 0 1 0

0 0 0 1


 , (1.36)

with γ = (1− v2)−1/2. In fact, any 3-dimensional rotation

Λµ
ν =

(
1 0

0 O

)
, (1.37)
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44 CHAPTER 4. CLASSICAL FIELD THEORY

(j+, j−) dimension name symbol
(0, 0) 1 scalar φ
(1/2, 0) 2 left-handed Weyl spinor χL

(0, 1/2) 2 right-handedWeyl spinor χR

(1/2, 0) ⊕ (0, 1/2) 4 Dirac spinor ψ
(1/2, 1/2) 4 vector Aµ

Table 4.2: Low-dimensional representations of the Lorentz group.

where Ti are the generators (4.16) of the rotation group. Given the embedding (4.20) of the rotation group into
the Lorentz group the appearance of the Ti should not come as a surprise. It is straightforward to work out the
commutation relations

[Ji, Jj ] = iεijkJk , [Ki, Kj ] = −iεijkJk , [Ji, Kj] = iεijkKk . (4.22)

The above matrices can also be written in a four-dimensional covariant form by introducing six 4×4matrices σµν ,
labelled by two anti-symmetric four-indices and defined by

(σµν)ρ
σ = i(ηρ

µηνσ − ηµσηρ
ν) . (4.23)

By explicit computation one finds that Ji = 1
2εijkσjk andKi = σ0i. Introducing six independent parameters εµν ,

labelled by an anti-symmetric pair of indices, a Lorentz transformation close to the identity can be written as

Λρ
σ $ δρ

σ − i

2
εµν(σµν)ρ

σ = δρ
σ + ερ

σ; . (4.24)

The commutation relations (4.22) for the Lorentz group are very close to the ones for SU(2) in Eq. (4.13). This
analogy can be made even more explicit by introducing a new basis of generators

J±
i =

1

2
(Ji ± iKi) . (4.25)

In terms of these generators, the algebra (4.22) takes the form

[J±
i , J±

j ] = iεijkJ±
k , [J+

i , J−
j ] = 0 , (4.26)

that is, precisely the form of two copies (a direct sum) of two SU(2) Lie-algebras. Irreducible representations of the
Lorentz group can therefore be labelled by a pair (j+, j−) of two spins and the dimension of these representations
is (2j++1)(2j−+1). A list of a few low-dimensional Lorentz-group representations is provided in Table 4.2. Field
theories in Minkowski space usually require Lorentz invariance and, hence, the Lorentz group is of fundamental
importance for such theories. Since it is related to the symmetries of space-time it is often also referred as external
symmetry of the theory. The classification of Lorentz group representations in Table 4.2 provides us with objects
which transform in a definite way under Lorentz transformations and, hence, are the main building blocks of
such field theories. In these lectures, we will not consider spinors in any more detail but focus on scalar fields
φ, transforming as singlets, φ → φ under the Lorentz group, and vector fields Aµ, transforming as vectors,
Aµ → Λµ

νAν .

4.2 General classical field theory
4.2.1 Lagrangians and Hamiltonians in classical field theory
In this subsection, we develop the general Lagrangian and Hamiltonian formalism for classical field theories.
This formalism is in many ways analogous to the Lagrangian and Hamiltonian formulation of classical mechan-
ics. In classical mechanics the main objects are the generalised coordinates qi = qi(t) which depend on time
only. Here, we will instead be dealing with fields, that is functions of four-dimensional coordinates x = (xµ)
on Minkowski space. Lorentz indices µ, ν, · · · = 0, 1, 2, 3 are lowered and raised with the Minkowski metric
(ηµν) = diag(1, −1, −1, −1) and its inverse ηµν . For now we will work with a generic set of fields φa = φa(x)
before discussing scalar and vector fields in more detailed in subsequent sections. Recall that the Lagrangian in

Figure 1.2: Low-dimensional representations of the Lorentz group.

leaves ds2 invariant, since one has OTO = OOT = 13 by definition, if O is an element of the
3-dimensional rotation group SO(3).3

Any Lorentz transformation can be decomposed as the product of a rotation, a boost,
space-inversion P , and time-reversal T . Let us concentrate on the continuous transformations.
Since there are three rotations and three boosts, one for each space direction, the continuous
LTs are described in terms of six parameters. To find the corresponding six generators, i.e., a
basis of transformation matrices that describes infinitesimal rotations and boosts, we write

Λ = 14 + iM , (1.38)

where M are purely imaginary 4 × 4 matrices. Inserting this linearized LT into the defining
relation (1.28), implies

M = −ηMT η . (1.39)

This tells us that the generators M must be anti-symmetric in the space-space components,
but symmetric in the space-time components. The space of such matrices has indeed dimension
six and is spanned by the set (i = 1, 2, 3)

Ji =

(
0 0

0 Mi

)
,

K1 =




0 i 0 0

i 0 0 0

0 0 0 0

0 0 0 0


 , K2 =




0 0 i 0

0 0 0 0

i 0 0 0

0 0 0 0


 , K3 =




0 0 0 i

0 0 0 0

0 0 0 0

i 0 0 0


 .

(1.40)

Here (Mi)jk = −iεijk with εijk the fully anti-symmetric Levi-Civita tensor (ε123 = +1) are the
generators of SO(3). It follows that the matrices Ji (Ki) generate rotations (boosts).

It is a matter of simple algebra to work out the commutation relations of the generators
Ji and Ki of the Lorentz group. One obtains

[Ji, Jj] = iεijkJk , [Ki, Kj] = −iεijkJk , [Ji, Kj] = iεijkKk , (1.41)

3The group of 3-dimensional orthogonal matrices is denoted by O(3), while its subgroup of matrices with
determinant +1 is called the special orthogonal group SO(3). The difference between the two is the parity
transformation x→ −x, which is in O(3) but not in SO(3).
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where [a, b] = ab − ba is the usual commutator. These relations look very similar to the
commutation relations of angular momentum or spin that you should know from quantum
mechanics (QM). To make the analogy between the Lorentz group and the Lie group SU(2)
even more explicit, we introduce the following new basis of generators

J±i =
1

2
(Ji ± iKi) . (1.42)

In terms of these generators, it is straightforward to verify that the Lorentz Lie algebra (1.41)
takes the form

[J±i , J
±
j ] = iεijkJ

±
k , [J±i , J

∓
j ] = 0 . (1.43)

This means that J+
i and J−i independently obey the Lie algebra of SU(2). By analogy to the

spin quantum number, we can therefore introduce a pair (j+, j−) of two spins that characterize
the possible representations of the Lorentz group. The states within a representation are
further distinguished by the eigenvalues of J+

3 and J−3 , which can take the values m+ =
−j+,−j+ + 1, . . . , j+ − 1, j+ and m− = −j−,−j− + 1, . . . , j− − 1, j−. The dimension, i.e., the
number of distinct states in a given representation (j+, j−) is hence (2j+ + 1) (2j− + 1).

A list of some basic low-dimensional Lorentz-group representations is provided in Fig-
ure 1.2. Field theories in Minkowski space usually require Lorentz invariance and, hence,
the Lorentz group is of fundamental importance for such theories. Since it is related to the
symmetries of space-time it is often also referred as external symmetry of the theory. The
classification of Lorentz group representations provides us with objects which transform in
a definite way under LTs and thus these objects are the main building blocks of such field
theories. In what follows we will not deal with the spinor fields χL,R and ψ that describe
fermions (quarks and leptons). Our focus will be on scalar φ and vector Aµ fields, which have
very simple transformation properties under the Lorentz group:

φ→ φ , Aµ → Λµ
νAν . (1.44)

1.4 Scalar Field Theories

We now apply the formalism described above to scalar field theories. These are the simplest
class of Lorentz invariant field theories, as they only involve fields transforming trivially under
the Lorentz group.

A Single Real Scalar Field

The Lagrangian density of a real scalar field φ is given by

L =
1

2
(∂µφ)2 − V (φ) , (1.45)

where the first term is referred to as kinetic energy (or kinetic term), while the second is known
as the scalar potential.4 Notice that φ corresponds to the (j+, j−) = (0, 0) representation of
the Lorentz group. The dimension of the real scalar field is obviously [φ] = 1.

4Note that if this is expanded, it looks like φ̇2−(∇φ)2−V (φ). As ∇φ depends on the values of the individual
field degrees of freedom, it can also be viewed as a ‘potential’ term, with the Lagrangian then reflecting the
particle mechanics form of L = T − U .
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The scalar potential can be written as

V =
1

2
m2φ2 +

∞∑

n=3

λn
n!
φn . (1.46)

Here m is the mass of φ (this will become clear later on) and the coefficients λn are called
coupling constants. Dimensional analysis tells us that

[m] = 1 , [λn] = 4− n . (1.47)

The coupling terms in (1.46) fall into three different categories. First, dimension-three
terms with [λ3] = 1. For such terms, we can define a dimensionless parameter λ3/E, where
E has dimension of mass and represents the energy scale of the process of interest. This
means that ∆L3 = λ3 φ

3/(3!) is a small perturbation for high energies, i.e., E � λ3, but a
big one at low energies, i.e., E � λ3. Such terms are called relevant, because they become
and are most relevant at low energies which, after all, is where most of the physics that we
experience lies. In a relativistic quantum field theory (QFT), we have E > m, which means
that we can always make this sort of perturbations small by taking λ3 � m. Second, terms
of dimension four with [λ4] = 0. E.g., ∆L4 = λ4 φ

4/(4!). Such terms are small if λ4 � 1 and
are called marginal. Third, operators with dimension of higher than four, having [λn] < 0. In
this case the appropriate dimensionless parameters is (λnE

n−4) and terms ∆Ln = λn φ
n/(n!)

with n ≥ 5 are small (large) at low (high) energies. Such contributions are called irrelevant,
since in daily life, meaning En−4 � λn, these terms do not matter.

As we will see later, it is typically impossible to avoid high-energy processes in QFT. We
hence might expect problems with irrelevant terms (or operators) that become important at
high energies. Indeed, these operators lead to non-renormalizable QFTs in which one cannot
make sense of the infinities at arbitrarily high energies. This does not mean that these theories
are useless, it just means that they become incomplete at some energy scale and need to be
embedded into an appropriate complete theory aka an ultraviolet (UV) completion. Let me
also add that the above naive assignment of relevant, marginal, and irrelevant operators is not
always carved in stone, since quantum corrections can sometimes change the character of an
operator.

Low-Energy Description

In typical applications of QFT only the relevant and marginal couplings are important. This
is due to the fact that the irrelevant couplings become small at low energies, as we have seen
above. In practice this saves us, since instead of considering the infinite number of coupling
terms in (1.46), only a handful are actually needed. E.g., in the case of the real scalar field φ
described earlier, we only have to take into account two operators, namely ∆L3 = λ3 φ

3/(3!)
and ∆L4 = λ4 φ

4/(4!), in the low-energy limit.
Let us have a closer look at this issue. Suppose that at some day we discover the true

superduper theory aka the TOE that describes the world at very high energy scales. Whatever
this scale is, let’s call it Λ. Since it is an energy scale, we obviously have [Λ] = 1. What we
want to understand are the laws of physics at energy scales E that we can probe directly

11



in a laboratory, which given today’s standards, means E � Λ. Let us further suppose that
at energies of order E, the laws of physics are described by a real scalar field.5 This scalar
field will have some complicated coupling terms (1.46), where the precise form is dictated by
all the stuff that is going on in the TOE. Can we get an idea about the interactions? Well,
we can write our dimensionful coupling constants λn in terms of dimensionless couplings gn,
multiplied by a suitable power of the relevant scale Λ,

λn =
gn

Λn−4 . (1.48)

The exact values of the dimensionless couplings gn depend on the details of the TOE,6 so we
have to do some guesswork. Since the couplings gn are dimensionless, 1 looks like a pretty good
and somehow a natural guess. Since we are not completely sure, let’s say gn = O(1). This
means that in a laboratory with E � Λ the coupling terms ∆Ln = λnφ

n/(n!) of (1.46) will be
suppressed by powers of (E/Λ)n−4 if n ≥ 5. Given the CERN Large Hadron Collider (LHC)
energy of around 1 TeV, this is a suppression by many orders of magnitude. E.g., for Λ =
MP = 1016 TeV corresponding to the Planck mass MP , one has E/Λ = 10−16. It is this simple
argument based on dimensional analysis that ensures that we need to focus only on the first
few terms in the interactions, namely those that are relevant and marginal. It also means that
if we only have access to low-energy experiments, it is going to be very difficult to figure out
the precise nature of the TOE, because its effects are highly diluted except for the relevant
and marginal interactions. Some people therefore call the superduper theory that everybody
is looking for, not TOE, but TOENAIL, which stands for “theory of everything not accessible
in laboratories”.

Klein-Gordon Equation

Applying the Euler-Lagrange equations to (1.45) leads to

∂µ∂µφ+
∂V

∂φ
= 0 . (1.49)

This equation describes the dynamical evolution of the scalar field φ. The Laplacian in
Minkowski space is sometimes denoted by � and ∂V/∂φ is commonly written as V ′. In
this notation, the above equation reads �φ+ V ′ = 0.

For non-vanishing (interaction) coefficients λ3, λ4, . . . the equation is non-linear and solu-
tions to (1.49) are difficult to find. We therefore simply ignore them for the time being and
consider only the free case. The dynamics of such a non-interacting massive real scalar field
is encoded in the famous Klein-Gordon equation:

(
� +m2

)
φ = 0 , (1.50)

arising from the Lagrangian

L =
1

2
(∂µφ)2 − 1

2
m2φ2 . (1.51)

5Of course, we know that this assumption is plain wrong, since the standard model (SM) of particle physics
is a non-abelian gauge theory with chiral fermions, but the same argument applies in that case.

6If we would know the precise structure of the TOE we could, in fact, calculate the couplings gn.
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To find the solutions to the classical Klein-Gordon equation (1.51), we perform a Fourier
transform on the field φ,

φ(t,x) =

∫
d3p

(2π)3
eip·x φ(t,p) . (1.52)

In momentum space (1.51) simply reads

[
∂2

∂t2
+
(
p2 +m2

)]
φ(t,p) = 0 , (1.53)

which tells us that for each value of p, the Fourier mode φ(t,p) obeys the equation of a simple
harmonic oscillator with frequency

ωp =
√
|p|2 +m2 . (1.54)

It is then not difficult to see that the most general solution of the classical Klein-Gordon
equation is a linear superposition of simple harmonic oscillators,7

φ(x) =

∫
d3p

(2π)3
1

2ωp

(
a(p)e−ipx + a∗(p)eipx

)
, (1.55)

each vibrating at a different frequency with a different amplitude (the appearance of the specific
combination of coefficients a(p) and a∗(p) is dictated by the reality of the Klein-Gordon field
φ). The 4-vector p in the exponents is understood as pµ = (ωp,p).

The decomposition (1.55) sees each individual Fourier mode evolving as a harmonic os-
cilator. The main puzzling aspect is to understand why the amplitudes for the Fourier modes
have been written as a(p)

2ωp
rather than just a(p).

The reason why this is convenient is to notice that the measure d3p/(2π)3 1/(2ωp) is a
Lorentz-invariant quantity. This follows from “reverse engineering”

∫
d3p

(2π)3
1

2ωp
=

∫
d3p

(2π)3
1

2p0

∣∣∣∣
p0=ωp

=

∫
d4p

(2π)3
δ(p20−p2−m2)

∣∣
p0>0

=

∫
d4p

(2π)3
δ(p2−m2)|p0>0 .

(1.56)
From the latter result we can also figure out that the Lorentz-invariant delta function for
3-momenta is

2ωp δ
(3)(p− q) , (1.57)

since ∫
d3p

2ωp
2ωp δ

(3)(p− q) = 1 . (1.58)

The Lorentz invariance of the measure d3p/(2π)3 1/(2ωp) and its consequences, should be kept
in mind, because these features will be important at several occasions later on.

The important physical implication is that quantizing the field φ is then the same as
quantizing a infinite number of harmonic oscillators. A free field φ corresponds to an infinite

7The actual derivation of this result can be found on page 47 of the script by John Chalker and Andre Lukas.
It is not repeated here.
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number of non-interacting harmonic oscillators, and an interacting field φ corresponds to an
infinite number of interacting harmonic oscillator. You should already know how this is done in
QM and we will see later on how it is done in QFT. As Sidney Coleman once said: “The career
of a young theoretical physicist consists of treating the harmonic oscillator in ever-increasing
levels of abstraction.”.

Lorentz Invariance

We want to confirm that a Lorentz Transformation

φ(x)→ φ′(x) = φ(Λ−1x) , (1.59)

leaves the the KG action invariant. Notice that the inverse Λ−1 appears here because we are
dealing with an active transformation, in which the field is truly shifted.8 To see why this
means that the inverse appears, it will suffice to consider a non-relativistic example such as
a temperature field. Suppose we start with an initial field φ(x) which has a hotspot at, say,
x = (1, 0, 0). Let’s now make a rotation x → Ox about the z-axis so that the hotspot ends
up at x = (0, 1, 0). If we want to express the new field φ′(x) in terms of the old field φ(x),
we have to place ourselves at x = (0, 1, 0) and ask what the old field looked like at the point
O−1x = (1, 0, 0) we came from. This O−1 is the origin of the Λ−1 factor in the argument of
the transformed field in (1.59).

According to the LT (1.59), the transformation of the mass term is 1/2m2φ2(x) →
1/2m2φ2(x′) with x′ = Λ−1x. The transformation of ∂µφ is

∂µφ(x)→transformation ∂µ(φ(x′)) = (Λ−1)νµ(∂νφ)(x′) . (1.60)

Here we have used that

∂µ =
∂

∂xµ
=

∂

∂(x′)ν
∂(x′)ν

∂xµ
= (Λ−1)νµ ∂

′
ν . (1.61)

and wrote ∂′νφ(x′) = (∂νφ)(x′). Below we will also use the notation ∂µφ(x′) to denote the
derivative with respect to x′ at x′. Using the defining property (Λ−1)ρµ(Λ−1)σν η

µν = ηρσ of
the LTs, we thus find that the derivative term in the Klein-Gordon Lagrangian then transforms
as

1

2
(∂µφ(x))2 → 1

2
(Λ−1)ρµ(∂ρφ)(x′)(Λ−1)σν(∂σφ)(x′) ηµν

=
1

2
(∂ρφ)(x′)(∂σφ)(x′) ηρσ

=
1

2
(∂µφ(x′))

2
.

(1.62)

Putting things together, we see that the action of the Klein-Gordon theory is indeed Lorentz
invariant,

S =

∫
d4xL(x)→

∫
d4xL(x′) =

∫
d4x′ L(x′) = S . (1.63)

8In passive transformations, it is the coordinates that are changed rather than the field.
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Notice that changing the integration variables from d4x to d4x′, in principle introduces an
Jacobian factor det (Λ). This factor is, however, equal to 1 for LT connected to the identity,
that we are dealing with (remember that 14 is part of the proper, orthochronous or restricted
Lorentz group L↑+).

A similar calculation also shows that, as promised, the EOM of the Klein-Gordon field φ,
as given in (1.50), are invariant,

(
∂2 +m2

)
φ(x)→

(
∂2 +m2

)
φ′(x)

=
[
(Λ−1)νµ∂ν(Λ

−1)ρµ∂ρ +m2
]
φ(x′)

=
(
ηνρ∂′ν∂

′
ρ +m2

)
φ(x′) = 0 .

(1.64)

Here we have used another common notation for the Laplacian, ∂µ∂µ = ∂2.
Notice that the above explicit example shows that the Lagrangian formulation of field

theory makes it especially easy to discuss Lorentz invariance, since an EOM is automatically
Lorentz invariant if it follows from a Lagrangian that is a Lorentz scalar. This is an immediate
consequence of the principle of least action. If a LT leaves the Lagrangian unchanged, then
an extremum of the action will be transformed to another extremum of the action.

Conservation Laws

Let us derive the Hamiltonian density and the energy-momentum tensor for (1.45). The
conjugate momentum of φ is simply π = φ̇, and therefore

H =
1

2
π2 +

1

2
(∇φ)2 + V . (1.65)

For the stress tensor we find from (1.23) the expression

T µν = (∂µφ)(∂νφ)− 1

2
ηµν (∂ρφ)2 + ηµν V . (1.66)

Notice that the energy-momentum tensor of (1.45) immediately comes out symmetric, i.e.,
Tµν = Tνµ. This is not always the case. In accordance with our general formula (1.26), we
hence have

P 0 =

∫
d3xT 00 =

∫
d3x

(
1

2
π2 +

1

2
(∇φ)2 + V

)
=

∫
d3xH = H . (1.67)

The energy is hence conserved in our real scalar theory. Analog relations hold for the space
components P i, signalling 3-momentum conservation.

In classical particle mechanics, rotational invariance gives rise to conservation of angular
momentum. What is the analogy in field theory? What happens to the remaining three LTs,
namely the boosts. What conserved quantity do they correspond to? In order to address these
questions using Noether’s theorem, we first need the infinitesimal form of the LTs

Λµ
ν = δµν + ωµν , (1.68)
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where ωµν is infinitesimal. The condition (1.29) for Λ to be a LT becomes in infinitesimal
form

ηµν = ηρσ (δµρ + ωµρ) (δνσ + ωνσ) = ηµν + ωµν + ωνµ +O(ω2) . (1.69)

This shows that ωµν must be an anti-symmetric matrix (a feature that I have stated before
without proof),

ωµν = −ωνµ . (1.70)

Notice that an anti-symmetric 4×4 matrix has six independent parameters, which agrees with
the number of different Lorentz transformations, i.e., three rotations and three boosts.

Applying the infinitesimal LT to our real scalar field φ, we have

φ(xλ)→ φ(xλ − ωλνxν) = φ(x)− ωλνxν∂λφ(x) , (1.71)

where the minus sign arises from the factor Λ−1 in (1.59). The variation of the field φ under
an infinitesimal LT is hence given by

δφ = −ωµνxν∂µφ . (1.72)

By the same line of reasoning, one shows that the variation of the Lagrangian (as it is also a
Lorentz scalar) is

δL = −ωµνxν∂µL = −∂µ (ωµνx
νL) , (1.73)

where in the last step we used the fact that ωµµ = 0 due to its anti-symmetry. The Lagrangian
changes by a total derivative, so we can apply Noether’s theorem (1.20) with J µ = −ωµνxνL
to find the conserved current,

Jµ = − ∂L
∂(∂µφ)

ωρνx
ν∂ρφ+ ωµνx

νL

= −ωρν
[

∂L
∂(∂µφ)

∂ρφ− δµρL
]
xν = −ωρνT µρxν .

(1.74)

Stripping off ωρν , we obtain six different currents, which we write as

(Iλ)µν = xµT λν − xνT λµ . (1.75)

These currents satisfy
∂λ(Iλ)µν = 0 , (1.76)

and give (as usual) rise to six conserved charges . For µ, ν 6= 0, the LT is a rotation and
the three conserved charges give the total angular momentum of the field configuration (i, j =
1, 2, 3):

Qij =

∫
d3x

(
xiT 0j − xjT 0i

)
. (1.77)

What’s about the boosts? In this case, the conserved charges are

Q0i =

∫
d3x

(
x0T 0i − xiT 00

)
. (1.78)
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The fact that these are conserved tells us that

0 =
dQ0i

dt
=

∫
d3xT 0i + t

∫
d3x

dT 0i

dt
− d

dt

∫
d3x xiT 00

= P i + t
dP i

dt
− d

dt

∫
d3x xiT 00 .

(1.79)

Yet, also the momentum P i is conserved, i.e., dP i/dt = 0, and we conclude that

d

dt

∫
d3x xiT 00 =

d

dt

∫
d3x xiH = const. (1.80)

This is the statement that the center of energy of the field travels with a constant velocity. In
a sense it’s a field theoretical version of Newton’s first law but, rather surprisingly, appearing
here as a conservation law. Notice that after restoring the label a our results for (Iλ)µν etc.
also apply in the case of multicomponent fields.

Poincaré Invariance

We now require that a physical system possesses both space-time translation (1.21) and Lorentz
symmetry. The symmetry group that includes both transformations is called the Poincaré
group. Notice that for any Poincaré-invariant theory the two charge conservation equations
(1.24) and (1.76) should hold.

This is only possible if the energy-momentum tensor T µν is symmetric. Applying first
(1.76) and then (1.24), we have

0 = ∂λ(Iλ)µν = ∂λ
(
xµT λν − xνT λµ

)

= xµ∂λT
λν + T λν∂λx

µ − xν∂λT λµ − T λµ∂λxν

= T λνδλ
µ − T λµδλν = T µν − T νµ .

(1.81)

This general result tells us that the expression of the energy-momentum tensor in any Poincaré-
invariant theory can be made symmetric without changing physics. The key to actually do it,
lies in making use of the conservation law (1.24) in an appropriate way.

Discrete Internal Symmetries

So far we have only imposed external symmetries, such as Lorentz or Poincaré symmetry,
on our scalar theory. Let us also have a brief look at internal symmetries. An interesting
(discrete) internal symmetry to be considered is a Z2 symmetry which acts as

φ(x)→ −φ(x) . (1.82)

This transformation leaves (1.45) invariant if the scalar potential V contains only terms with
an even number of φ fields (but as it is not a continuous symmetry, we cannot use Noether’s
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Figure 1.3: Shape of the scalar potential for m2 ≥ 0 (solid line) and m2 < 0 (dashed
line). In the latter case the positions of the minima are at φ = ±v = ±

√
(−6m2)/λ.

The value of the potential at the minima is V (v) = V0 − (λv4)/24.

theorem to derive a conserved quantity). Restricting ourselves to relevant and marginal cou-
plings, we write

V = V0 +
1

2
m2φ2 +

λ

4!
φ4 . (1.83)

where we have added a constant term V0 to the potential. Note that the inclusion of the
constant term V0 leaves the EOM (1.49) unaltered.

Let us now study the simplest type of solutions to the real scalar theory with the poten-
tial (1.83). A trivial solution of (1.49) is φ(x) = v = const., provided that

∂V

∂φ

∣∣∣∣
φ=v

= 0 . (1.84)

This relation implies that we should look for the extrema of the potential (1.83). In fact,
to minimize the energy (1.67) we should focus on the minima of V . Such solutions of the
classical theory are called vacua (or vacuum if there is a single one). Note that if the quartic
coupling λ is negative, the potential is not bounded from below and the energy of a constant
field configuration tends to minus infinity for large field values. To avoid such an unphysical
situation, we simply assume λ > 0 in what follows.

The shape of the scalar potential V is shown in Figure 1.3. We see that one has to
distinguish two cases. First, the case where m2 ≥ 0 (solid curve). In this situation there is
a single minimum located at the origin φ = 0. This solution is mapped into itself under the
transformation (1.82) and we say that the symmetry is unbroken in this vacuum. The second
case with m2 < 0 (dashed curve) is more interesting. In this case φ = 0 is a maximum, while
there are two minima. These are located at

φ = ±v = ±
√
−6m2

λ
. (1.85)

18



At the minima, the potential takes the value

V (v) = V0 +
1

4
m2v2 = V0 −

λv4

24
. (1.86)

Notice that neither minimum is invariant under the Z2 symmetry. In fact, the minima are
interchanged under (1.82), and we say that the symmetry is spontaneously broken. In general,
spontaneous symmetry breaking refers to the case where a symmetry of the underlying theory
is partially or fully broken by the vacuum solution of the theory. This concept of spontaneous
symmetry breaking is of fundamental importance in theoretical physics and we shall return to
it later.

Continuous Internal Symmetries

Besides discrete symmetries, continuous internal symmetries also play an important role in
particle physics. We start our discussion by considering a scalar theory that involves two real
scalar fields φ1,2 and combine these fields into a field vector

φ =

(
φ1

φ2

)
. (1.87)

In the following we will be interested in theories that are invariant under SO(2) transformations
(aka internal 2-dimensional rotations) that take the form

φ→ φ′ = Oφ . (1.88)

Since this transformation is the same at every space-time point, symmetries of this type are
called global.9 The length of φ should be SO(2) invariant, which implies that

OTO = OOT = 12 , (1.89)

and we also require that
det (O) = +1 . (1.90)

Proper 2-dimensional rotation matrices can be written as

O = eiαT , (1.91)

where α is a real parameter (the rotation angle) and T denotes the 2×2 matrix that generates
the 2-dimensional rotations. A suitable choice of the generator reads

T =

(
0 −i
i 0

)
. (1.92)

Check that this indeed exponentiates to a standard rotation! Notice that SO(2) is said to be
an abelian group, since

eiαT eiβT = eiβT eiαT = ei(α+β)T , (1.93)

9In a local transformation, the matrix O is allowed to differ between every point in space.
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which means that the ordering of two successive group transformations (rotations) does not
matter.

For 3-dimensional rotations, things are a bit more complicated. Since there is now one
independent rotation for each plane in three dimensions, the SO(3) group has 3 (3− 1) /2 =
3 parameters αi (Euler angles) and three generators Ti (i = 1, 2, 3). Infinitesimal SO(3)
transformations thus act on φ = (φ1, φ2, φ3)

T as φ → φ′ = φ + iαiTiφ. From (1.89) and
(1.90) it follows that the generator Ti are hermitian and traceless:

(Ti)
† = Ti , Tr (Ti) = 0 . (1.94)

A possible set of 3× 3 matrices with these properties is

T1 =




0 0 0

0 0 −i
0 i 0


 , T2 =




0 0 i

0 0 0

−i 0 0


 , T3 =




0 −i 0

i 0 0

0 0 0


 , (1.95)

which can be written in a more compact way as (Ti)jk = −iεijk (j, k = 1, 2, 3). By a straight-
forward calculation, one can prove that the latter matrices satisfy the following Lie algebra

[Ti, Tj] = iεijkTk . (1.96)

These relations imply that two 3-dimensional rotations do not in general “commute”, which
is equivalent to the non-abelian character of SO(3).

Other examples of non-abelian groups are provided by the special unitary groups SU(n),
which consist of all complex n× n matrices U satisfying

U †U = UU † = 1n , det (U) = +1 . (1.97)

The simplest non-trivial example of a special unitary group is SU(2). It has 22 − 1 = 3
generators τi and close to the identity one can write the group transformations as U = 12+itiτi.
From (1.97) it follows that the generators obey τ †i = τi and Tr (τi) = 0. A convenient choice
of the generators τi is

τi =
σi
2
, (1.98)

where σi are the usual Pauli matrices given by

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (1.99)

Recalling that σiσj = δij12 + iεijkσk, it is easy to show that Tr (τiτj) = δij/2 and that the
SU(2) generators fulfil the commutation relations

[τi, τj] = iεijkτk . (1.100)

Although they lead to the same commutation relations, SU(2) and SO(3) are not actually
the same groups. They in fact differ in their global properties. SU(2) is a ‘double cover’ of
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SO(3) - roughly, it contains two copies of SO(3). This is related to the fact that, under 2π
rotations of SO(3) spinors return to minus themselves. This global minus sign means that
spinors should be viewed as representations of SU(2).

Interestingly, (1.96) and (1.100) are the same commutation relations. This means that
the matrices τi and Ti form two different representations of the SU(2) Lie algebra. The
representation that is classified by the 2 × 2 matrices (1.98) is called fundamental. It acts
on a complex vector of size two and hence the dimension of the representation space is two.
The representation where the generators are 3 × 3 matrices of the form (Ti)jk = −iεijk

(
as

in (1.95)
)

is instead called the adjoint representation of SU(2). This representation acts on
3-dimensional real vectors and therefore it has the dimension of SU(2) that is equal to three.

A Complex Scalar Field With a U(1) Symmetry

For the further discussion it will prove convenient to arrange the two real scalar fields that
we have meet at the beginning of the previous subsection into a single complex Klein-Gordon
field defined as

ϕ =
1√
2

(φ1 + iφ2) . (1.101)

On this complex representation, the transformation (1.88) acts as follows
(
φ1

φ2

)
→
(

cosα − sinα

sinα cosα

)(
φ1

φ2

)
=⇒

(
φ1

iφ2

)
→
(

cosα i sinα

i sinα cosα

)(
φ1

iφ2

)

=⇒ φ1 + iφ2 → eiα (φ1 + iφ2) .

(1.102)

This means that all terms in the invariant Lagrangians we are looking for should be unchanged
under a rephasing of the φ field, aka a global U(1) transformation,

ϕ→ ϕ′ = eiαϕ , ϕ∗ → (ϕ′)∗ = e−iαϕ∗ . (1.103)

The different transformation properties of ϕ and ϕ∗ tell us that these fields carry charge 1 and
−1, respectively.

Since ϕ and ϕ∗ carry a non-zero charge not all terms polynomial in the fields are allowed
in the Lagrangian if we want to respect the symmetry. E.g., a term ϕ2 has charge +2 and is
hence not invariant under (1.103). In general, we can only allow terms with the same number
of ϕ and ϕ∗ field, so that the sought U(1) invariant Lagrangian takes the form

L = (∂µϕ
∗)(∂µϕ)− V (ϕ∗ϕ) , (1.104)

with

V (ϕ∗ϕ) = V0 +m2ϕ∗ϕ+
λ

4
(ϕ∗ϕ)2 . (1.105)

Note that it is essential for the invariance of the kinetic term that the group parameter α is
space-time independent. For the EOM for ϕ, we find from the Euler-Lagrange equation (1.5),

∂2ϕ+
∂V

∂ϕ∗
= ∂2ϕ+m2ϕ+

λ

2
(ϕ∗ϕ)ϕ = 0 . (1.106)
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A similar equation holds in the case of ϕ∗. The conjugate momenta are π = ϕ̇∗ and π∗ = ϕ̇
(note that we treat φ and φ∗ as independent here - this reflects the fact that φ contains two
degrees of freedom within it). The Hamiltonian then reads

H = πϕ̇+ π∗ϕ̇∗ − L = π∗π + (∇ϕ∗) · (∇ϕ) + V (ϕ∗ϕ) . (1.107)

As this theory is invariant under both translations and Lorentz transformations, the theory
has conserved stress and angular momentum tensors which can be obtained in complete anal-
ogy with the single scalar field case discussed before. We leave the derivation of the explicit
expressions for T µν and Qij as an useful exercise.

According to Noether’s theorem the presence of the internal symmetry (1.103) leads to a
new type of conserved current which we will now derive. The variations of the fields ϕ and ϕ∗

(treated as independent) under the global U(1) symmetry are

δϕ = iαϕ , δϕ∗ = −iαϕ∗ . (1.108)

By plugging these variations into the general formula (1.20) and realizing that in our case
J µ = 0 since δL = 0, the conserved current and charge is readily obtained:

Jµ = i (ϕ∗ ∂µϕ− ϕ∂µϕ∗) , Q = i

∫
d3x (ϕ∗ ϕ̇− ϕϕ̇∗) = i

∫
d3x (ϕ∗π∗ − ϕπ) . (1.109)

There is an ambiguity worth noting, when applying Noether’s theorem to find the conserved
charge under the transformation (1.103). Obviously, if Q is conserved, then so is every other
operator c1Q + c2 with c1,2 constant numbers. The expression for Q in (1.109) is therefore
unique up to a multiplicative and an additive constant. The multiplicative factor essentially
denotes the units in which we measure the charge. Notice that we have already used this am-
biguity in (1.109) and simply ignored a factor −α. Later we will also learn how the ambiguity
on the additive constant is removed.

Spontaneous Symmetry Breaking

We would now like to discuss the vacua of the theory, i.e., solutions to the EOM (1.106) with
ϕ = v = const. As for the real scalar case, when m2 ≥ 0 there is a single minimum at ϕ = 0.
This solution is left invariant under the transformations (1.103) and hence the U(1) symmetry
is unbroken. For m2 < 0 the shape of the potential is illustrated in Figure 1.4. We can see
from the depicted red line that in this case there is a whole circle of minima

ϕ = v =
v0√

2
eiδ , v0 =

√
−4m2

λ
, (1.110)

where δ is an arbitrary phase. Clearly, the existence of this one-dimensional space of vacua is
not an accident, but originates from the U(1) invariance of the scalar potential (1.105):

V (ϕ∗ϕ)→ V ((ϕ′)∗ϕ′) = V (e−iαϕ∗eiαϕ) = V (ϕ∗ϕ) . (1.111)

In fact, this symmetry-induced invariance implies that for every minimum ϕ of V , ϕ′ =
exp (iα)ϕ is also a minimum for arbitrary α. We can use this freedom to choose a particular

22



Φ1

Φ2

V

Φ1

Φ2

V

ϕ1

ϕ2

Figure 1.4: Left: Shape of the scalar potential of the complex Klein-Gordon field
for m2 < 0. The positions of the minima are indicated by the red curve. Right:
Field excitations ϕ1,2 (black arrows) around the minimum of the scalar potential at
ϕ = v0

√
2.

minimum that breaks the U(1) symmetry spontaneously. Let’s take the minimum on the φ1

axis, meaning ϕ = v0/
√

2. Around this point we then can expand the field as

ϕ =
1√
2

(v0 + ϕ1 + iϕ2) , (1.112)

where ϕ1,2 are understood to be small fluctuations. Inserting the above relation into (1.105),
we find

V = V0 +
1

4
m2v20 −m2ϕ2

1 +O(ϕ3
1, ϕ1ϕ

2
2) . (1.113)

This is an interesting result, because it tells us that while the excitation ϕ1 is massive with
mass

√
2m (remember m2 < 0) the excitation ϕ2 remains massless. Looking at Figure 1.4 this

is not a completely unexpected feature. While ϕ2 corresponds to an fluctuation around the
circle of minima (a flat direction in the potential), ϕ1 represents an excitation perpendicular
to ϕ1 (a direction of the potential with a curvature). The appearance of massless scalars for
spontaneously broken global symmetries is a general feature known as Goldstone’s theorem
and the corresponding massless scalars are also called Goldstone bosons. We will now study
this phenomenon in a more general setting.10

Goldstone’s Theorem

To generalize the above findings, we consider a field theory involving a set of scalar fields
φ = (φ1, . . . , φn)T with corresponding potential V (φ). We assume that the potential has a
minimum at v = (v1, . . . , vn)T that satisfies

∂V

∂φa

∣∣∣∣
φ=v

= 0 . (1.114)

10Although we are meeting it here as a classical result, Goldstone’s theorem also extends to quantum theories.
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After defining ϕ = φ− v, we can Taylor expand the potential around such a minimum in the
following way

V = V (v) +
1

2
Mabϕ

aϕb +O(ϕ3) , (1.115)

where (a, b = 1, . . . , n)

Mab =
∂2V

∂φa∂φb

∣∣∣∣
φ=v

. (1.116)

Clearly, the eigenvalues of the mass matrix M are the mass squares of the fields (around the
vacuum v).

Now let us assume that our scalar theory is invariant under a continuous (global) symmetry
group G, under which

φ→ R(g)φ , (1.117)

where R(g) denotes the representation of φ. The invariance of the scalar theory in particular
means that the scalar potential is invariant under such a transformation, namely

V (φ) = V (R−1(g)φ) , (1.118)

for all g ∈ G. The vacuum will in general not respect the full symmetry group G, but will
spontaneously break it into a subgroup H ⊂ G, so that

R(g)v = v for g ∈ H , R(g)v 6= v for g 6∈ H . (1.119)

Now introducing infinitesimal group transformations

R(g) = 1 + itαTα , (1.120)

with generators Tα (in the representation R) and small coefficients tα. The set of generators
{Tα} can be split into two subsets Ti and Tj, where Ti denotes the generators of the unbroken
subgroup H, while Tj are the remaining generators corresponding to the broken part of G. By
definition, one has

Tiv = 0 , Tjv 6= 0 . (1.121)

Now let us see how (1.120) acts on our potential. We have

V (φ) = V (φ− itαTαφ) = V (φ)− i
(
∂V

∂φ

)T
tαTαφ . (1.122)

Differentiating this expression again and evaluating it at φ = v, one finds using (1.114)
and (1.116), that

MTαv = 0 . (1.123)

From this relation we see that every broken generator Tj (with Tjv 6= 0) leads necessarily to
an eigenvector of M with eigenvalue zero. Or in more physical terms, every broken symmetry
leads to a massless scalar excitation. We have proven Goldstone’s theorem!
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Scalar Field Theory With a SU(2)× U(1) Symmetry

Let us further illustrate Goldstone’s theorem by an educated example (this is a simplified
account of what actually happens in the Higgs sector of the Standard Model). We consider
the symmetry SU(2)× U(1) and a complex scalar field Φ that is a doublet under SU(2) and
has a charge of 1/2 under the U(1). Our scalar transforms as

Φ→ eiαY eit
iτi Φ '

(
1 + iαY + itiτi

)
Φ , (1.124)

with the generators

Y =
1

2
, τi =

σi
2
. (1.125)

Notice that our notation is on purpose sloppy here, since the 1 on the right-hand side of (1.124)
should be in fact the 2 × 2 matrix 12. A similar statement also applies to the generator Y .
Such a sloppiness in notation is common in textbooks, and it is good to get used to it early.

We can write an invariant Lagrangian as

L = (∂µΦ)† (∂µΦ)− V (Φ†Φ) (1.126)

with
V (Φ†Φ) = V0 + µ2 Φ†Φ + λ

(
Φ†Φ

)2
. (1.127)

Provided that λ > 0 and µ2 < 0 (note we use µ2 rather than m2 for the squared mass term),
the scalar potential (1.127) is bounded from below and minimized for

Φ†Φ = v20 = −µ
2

2λ
. (1.128)

Using (1.124) allows us to choose a particular simple vacuum configuration. Without loss of
generality, we take

Φ = v =

(
0

v0

)
. (1.129)

For this choice, it is easy to verify that

τ1v 6= 0 , τ2v 6= 0 , (τ3 − Y )v 6= 0 , (1.130)

but
(τ3 + Y )v = 0 . (1.131)

Hence three of the four generators of SU(2) × U(1) are broken, which corresponds to the
breaking pattern

SU(2)× U(1)→ U(1) , (1.132)

where the U(1) on the right-hand side is the diagonal subgroup of SU(2)×U(1) corresponding
to the generator Q = τ3 + Y .

Although this example appears slightly contrived, its relevance stems from the fact that
the breaking pattern (1.132) is precisely that of the electroweak gauge group of the SM of
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particle physics: the SM is in fact based on SU(3)c × SU(2)L × U(1)Y → SU(3)c × U(1)em,
where the subscript c refers to color, L indicates that the SU(2) only acts on left-handed
fields, Y represents hypercharge, and U(1)em corresponds to the unbroken electromagnetism
associated to the generator Q, i.e., the electric charge.

However, there is an important difference. While the above theory predicts three massless
Goldstone bosons, in Nature we only observe a single weakly-interacting massless state, i.e.,
the photon. This difference is explained by the fact that the electroweak symmetry in the
SM is realized as a local or gauge(d) symmetry, while in our simple example we dealt with a
global symmetry. It turns out that in the case of the spontaneously broken electroweak gauge
symmetry our three massless Goldstone bosons are absorbed (or eaten) by three vector bosons
(the electrical neutral Z boson and the charged W± bosons) that receive their mass from the
breaking mechanism. This is the famous Higgs mechanism.

The residual massive scalar mode becomes massive is then the (physical) massive scalar
state the Higgs. After many years of searching, the Higgs boson was discovered in 2013 when
the ATLAS and the CMS collaborations (situated at the CERN LHC in Geneva) announced
the existence of a new bosonic state with a mass of around 125 GeV. Subsequent analyses have
shown that this particle behaves precisely as expected for a Standard Model Higgs particle.
This discovery marks a turning point in the history of elementary-particle physics: the almost
50 year-long hunt for the came to a successful end, and a no-lose era ended (in the sense that
the Higgs was a guaranteed discovery for a collider that was energetic enough). The Nobel
prize was then awarded to Francois Englert and Peter W. Higgs for their theoretical work on
the mechanism of electroweak symmetry breaking.

However, in order to fully understand the physics of the Higgs mechanism, we are still miss-
ing an important ingredient, namely vector fields. These 4-component fields will be discussed
now.

1.5 Vector Field Theories

In this section we focus on the basic features of another important ingredient of realistic
(quantum) field theories, i.e., vector fields. These fields carry spin one and are called vector
fields, since they transform like a vector under the Lorentz group.

Maxwell’s Theory Of Electromagnetism

As another simple application of the formalism we have developed, let us try to derive
Maxwell’s equations using the field theory formulation. In terms of the electric and mag-
netic fields E and B and the charge density ρ and 3-vector current j, these equations take
the well-known form

∇ ·B = 0 , (1.133)

∇×E +
∂B

∂t
= 0 , (1.134)

∇ ·E = ρ , (1.135)
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∇×B − ∂E

∂t
= j . (1.136)

The E and B fields are spatial 3-vectors and can be expressed in terms of the components
of the 4-vector field Aµ = (φ,A) by

E = −∇φ− ∂A

∂t
, B =∇×A . (1.137)

This definition ensures that the first two homogeneous Maxwell equations (1.133) and (1.134)
are automatically satisfied,

∇ · (∇×A) = εijk∂i∂jAk = 0 , (1.138)

∇×
(
−∇φ− ∂A

∂t

)
+
∂

∂t
(∇×A) = −∇× (∇φ) = −εijk∂j∂kφ = 0 . (1.139)

Here the indices i, j, k = 1, 2, 3 are summed over if they appear twice.
The remaining two inhomogeneous Maxwell equations (1.135) and (1.136) follow from the

Lagrangian

L = −1

2
(∂µAν) (∂µAν) +

1

2
(∂µAν) (∂νAµ)− AµJµ , (1.140)

with Jµ = (ρ, j). From the rules presented before, we gather that the dimension of the vector
field and current is [Aµ] = 1 and [Jµ] = 3, respectively. The funny minus sign of the first term
on the right-hand side is required to ensure that the kinetic term 1/2Ȧ2

i is positive using the
Minkowski metric. Notice also that the Lagrangian (1.140) has no kinetic term 1/2Ȧ2

0 and
hence A0 is not dynamical. Why this is and necessarily has to be the case will become clear
pretty soon.

Let us now evaluate the equations of motion and so confirm that the statement made
before (1.140) is indeed correct. We first evaluate

∂L
∂Aν

= −Jν , ∂L
∂(∂µAν)

= −∂µAν + ∂νAµ , (1.141)

from which we derive the EOMs,

0 = ∂µ

(
∂L

∂(∂µAν)

)
− ∂L
∂Aν

= ∂µ(−∂µAν + ∂νAµ) + Jν . (1.142)

Introducing now the field-strength tensor

Fµν = ∂µAν − ∂νAµ , (1.143)

we can write (1.140) and (1.142) quite compact,

L = −1

4
FµνF

µν − JµAµ . (1.144)

∂µF
µν = Jν , (1.145)
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Does this look familiar? I hope so. Notice that we have [Fµν ] = 2 and that the field-strength
tensor satisfies the Bianchi identity:

∂ρFµν + ∂µFνρ + ∂νFρµ = 0 . (1.146)

In order to see that (1.145) indeed captures the physics of (1.135) and (1.136), we compute
the components of F µν . We find

F 0i = −F i0 = ∂0Ai − ∂iA0 =

(
∇φ+

∂A

∂t

)i
= −Ei ,

F ij = −F ji = ∂iAj − ∂jAi = −εijkBk ,

(1.147)

while all other components are zero. With this in hand, we then obtain from ∂µF
µ0 = ρ and

∂µF
µ1 = j1,

∂µF
µ0 = ∂0F

00 + ∂iF
i0 =∇ ·E = ρ ,

∂µF
µ1 = ∂0F

01 + ∂iF
i1 = −∂E

1

∂t
+
∂B3

∂x2
− ∂B2

∂x3
=

(
∇×B − ∂E

∂t

)1

= j1 .
(1.148)

Similar relations hold for the remaining components i = 2, 3. Taken together this proves the
second inhomogeneous Maxwell equation (1.136).

Let me also derive the energy-momentum tensor T µν of electrodynamics, ignoring for the
moment the source term JµA

µ. Using (1.141) one finds

T µν = −F µρ∂νAρ +
1

4
ηµνFρσF

ρσ . (1.149)

Notice that the first term in (1.149) is not symmetric, which implies that T µν 6= T νµ. In fact,
this is not really surprising since the definition of the energy-momentum tensor (1.23) does
not exhibit an explicit symmetry in the indices µ and ν. Nevertheless, there is always a way
to massage the energy-momentum tensor of any theory into a symmetric form.11 To learn how
this can be done in the case under consideration is the objective of a homework problem.

Physical Degrees Of Freedom

Under LTs, Aµ transforms as a vector, i.e., Aµ → Λµ
νAν , and the same applies of course also

to the current Jµ. The field-strength tensor Fµν , on the other hand, carries two indices and
hence transforms as a tensor, i.e., Fµν → Λµ

ρΛν
σFρσ. Equipped with these transformation

properties it is an easy exercise to show that the Lagrangian (1.144) is Lorentz invariant (at
the end it is sufficient to observe that in the expression for L all indices are contracted, so that
(1.144) is a Lorentz scalar). The explicit calculation is left as an exercise to the interested
reader.

11One (but not the only) reason that you might want to have a symmetric energy-momentum tensor Tµν

is to make contact with general relativity, since such an object sits on the right-hand side of Einstein’s field
equations.
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After (1.140) we have already mentioned that not all components of Aµ are dynamical,
which signals that Aµ contains unphysical dofs. In fact, this is not really a surprise because
the physical fields E and B come from Fµν not Aµ (see (1.147)). Formally, this is expressed
by the fact that a gauge transformation

Aµ(x)→ Aµ(x) + ∂µf(x) , (1.150)

with arbitrary function f(x) leaves Fµν invariant:

Fµν = ∂µAν − ∂νAµ → ∂µ(Aν + ∂νf)− ∂ν(Aµ + ∂µf)

= ∂µAν − ∂νAµ + ∂µ∂νf − ∂ν∂µf = Fµν .
(1.151)

A gauge transformation should be thought of relating two physically identical configurations
for Aµ(x).

This is an important result, because it gives us a recipe on how to “derive” the covariant
formulation of electrodynamics without ever talking about Maxwell’s equations. The idea is
simply to find the most general Lagrangian (including terms up to a certain mass dimension)
that is Lorentz invariant and unchanged under (1.150). Notice that gauge invariance in partic-
ular implies that L should only depend on Aµ through Fµν . Up to dimension four this leaves
basically only one term12 (in the case of a vanishing source term), namely L = −1/4FµνF

µν .
The associated EOM is of course ∂µF

µν = 0, or written in terms of Aµ,

∂2Aµ − ∂µ∂νAν = 0 . (1.152)

In fact, this equation can be further simplified by exploiting the gauge symmetry (1.150) by
imposing a gauge condition on Aµ through a suitable choice of gauge parameter f . There
are various possibilities for such a gauge choice and here we consider the Lorenz (sic) gauge
defined by

∂µA
µ = 0 . (1.153)

This gauge has the salient benefit that it is covariant (in contrast to other gauges such as
temporal gauge Ȧ0 = 0 or Coloumb gauge ∇ ·A = 0) and it simplifies (1.152) to

∂2Aµ = 0 . (1.154)

It is however important to realize that (1.153) does not fix the gauge entirely but leaves a
residual gauge freedom, since all choices of f with

∂2f = 0 , (1.155)

are equivalent in the sense that they all lead to (1.154).

12The term Fµν F̃
µν with F̃µν = εµνρσFρσ denoting the dual field-strength tensor also mets all requirements.

It can however be written as a total derivative 4∂µ(εµνρσAν∂ρAσ) and therefore does not contribute to the
classical EOMs. We hence ignore such a term.
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The solutions of ∂2Aµ = 0 can be quickly obtained by noticing that the latter equation
is nothing but a Klein-Gordon equation for a massless vector field. Adding vector indices to
(1.55), we arrive at

Aµ(x) =

∫
d3p

(2π)3
1

2ωp

(
aµ(p)e−ipx + a∗µ(p)eipx

)
, (1.156)

where ωp = |p| and pµ = (ωp,p). After a Fourier transform, the Lorenz gauge condition
(1.153) can be written as

pµaµ(p) = 0 . (1.157)

This gauge condition can be used to show that there are only two physical degrees of
freedom in the electromagnetic field - the polarisation modes transverse to the direction of
propagation. This result should be familiar to you from the study of sunglasses, and we now
see how it arises here.

To exploit this constraint one conveniently introduces a set of polarization vectors ε
(α)
µ (p)

with α = 0, 1, 2, 3 and the following properties. The vectors ε
(1)
µ and ε

(2)
µ are orthogonal to

both p and a vector n with n2 = 1 and n0 > 0. They furthermore are chosen such that they
satisfy ε(α) · ε(β) = −δαβ for α, β = 1, 2. The polarization vector ε

(3)
µ is taken to be in the p–n

plane, orthogonal to n and normalized to -1, i.e., n · ε(3) = 0 and (ε(3))2 = −1. Finally, one
defines ε(0) = n. With these conventions one has an orthogonal set of vectors satisfying

ε(α) · ε(β) = ηαβ , (1.158)

for α, β = 0, 1, 2, 3. This basis can be used to write

aµ(p) =
3∑

α=0

a(α)(p)ε(α)µ (p) . (1.159)

In fact, the basic idea behind all this “mumbo-jumbo” is that this specific choice of basis of
polarization vectors, allows to easily separate the directions transversal to p (corresponding to

ε
(1)
µ and ε

(2)
µ ) from the other two directions (corresponding to ε

(0)
µ and ε

(3)
µ ) that are longitudinal

to p. As an example, if we choose a spatial momentum p pointing in the z-directions, the
components of above vectors are explicitly given by

ε(α)µ = δαµ . (1.160)

In the general case, one has instead

ε(3)µ =
pµ
p0
− nµ . (1.161)

Clearly,

n · ε(3) =
np

p0
− n2 =

np

p0
− 1 = 0 =⇒ np

p0
= 1 , (1.162)

and thus

(ε(3))2 =
p2

p20
+ n2 − 2

np

p0
= 1− 2

np

p0
= −1 , (1.163)
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where we have used that our vector field is massless, i.e., p2 = 0. So (1.161) is indeed the
sought solution. Notice also that

ε(0)µ + ε(3)µ =
pµ
p0
. (1.164)

We now return to (1.157) and evaluate this sum inserting the expansion (1.159). By

definition the transversal components ε
(1)
µ and ε

(2)
µ do not contribute and we find

pµaµ(p) = (p · ε(0))a(0)(p) + (p · ε(3))a(3)(p) = p0
(
a(0)(p)− a(3)(p)

)
= 0 . (1.165)

Here we have used that
p · ε(0) = −p · ε(3) = p0 . (1.166)

Note that the first equality follows from (1.164) after contracting it with pµ, while the second
equality is a consequence of (1.162). From (1.165) it follows that a(0)(p) = a(3)(p). The
expansion (1.159) can thus be written as

aµ(p) = a(3)(p)
pµ
p0

+
2∑

α=1

a(α)(p)ε(α)µ (p) , (1.167)

and we are left with two transversal modes and a longitudinal one along the p direction
(remember that after (1.140) we already mentioned the fact that the time component A0 is
not dynamical, which reduces the number of independent dofs in Aµ from four to three). This
is still one more dof than a physical massless field, such as the photon, ought to have.

The trick to get rid of the remaining longitudinal component is to make use of the residual
gauge freedom (1.155) and to “gauge away” the term proportional to a(3)(p) in (1.167). Let
see how this works. Given that f also fulfils a Klein-Gordon equation, the most general
decomposition obviously reads

f(x) =

∫
d3p

(2π)3
1

2ωp

(
ξ(p)e−ipx + ξ∗(p)eipx

)
. (1.168)

A gauge transformation (1.150) with such a f corresponds to

aµ(p)→ a′µ(p) = aµ(p)− ipµξ(p) . (1.169)

But such a shift is exactly what is needed to remove the remaining longitudinal component
from (1.167) and we arrive at the correct physical answer. Needless to say that the reduc-
tion from apparent four dofs to actually two is intimately related to the gauge invariance of
(quantum) electrodynamics.13

A Massive Vector Field

What happens if we try to give our vector field Aµ a mass? We can try and add a term

1

2
m2AµA

µ , (1.170)

13Although we have presented a classical argument, an analogous argument also holds in the quantum theory.
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to our Lagrangian L = −1/4FµνF
µν , but immediately realize that such a term is not allowed

by gauge invariance (1.150). This is of course stupid, but let us ignore this unwanted feature
for a moment. The EOMs for the massive vector field would not be ∂µF

µν = 0, but

∂µF
µν +m2Aν = 0 . (1.171)

Applying ∂ν to this relation we conclude that ∂νA
ν = 0, since ∂ν∂µF

µν is trivially zero. We
can hence split the latter equation into two

(∂2 +m2)Aµ = 0 , ∂µA
µ = 0 . (1.172)

The first equation is a massive Klein-Gordon equation for Aµ with the general solution (1.156)
but ωp = (|p|2 + m2)1/2 instead of ωp = |p|. In order to satisfy the second equation we need
to impose the condition (1.157), which reduces the number of dofs from four to three. Can we
scrap another dof? Not this time - the mass term (1.170) breaks gauge invariance and thus we
do not have the freedom to use (1.155) and gauge it away. This means that a massive vector
field has three physical degrees of freedom, one more than a massless one.

Current Sources

In the discussion of the last two subsections we have always ignored the possible presence
of external sources by simply setting Jµ = 0 by hand. If we now include a source term,
the relevant Lagrangian leading to Maxwell’s theory has already been given in (1.144). By
applying (1.150), we see that a gauge transformation of such a term introduces an additional
piece into the action:

S → S −
∫
d4x (∂µf) Jµ = S +

∫
d4x f (∂µJ

µ) . (1.173)

As usual we have used integration by parts to arrive at the final answer. This result tells us
that the apparent breaking of gauge invariance by the term JµA

µ can be avoided, provided
that

∂µJ
µ = 0 . (1.174)

In other words, the vector field Aµ needs to couple to a conserved current Jµ. In a fundamental
theory, we expect the current Jµ to itself arise from fields, rather than simply being put in by
hand as an external source.

We now conclude the chapter on classical field theory by studying the simplest fundamental
theory of such a kind.

Scalar Electrodynamics And Abelian Higgs Mechanism

The goal of this final subsection is to write down an interesting theory involving a complex
scalar ϕ and a vector field Aµ. ’Interesting’ is defined to mean that the two fields interact,
which requires a Lagrangian involving terms with both ϕ and Aµ. The problem is now that in
general ϕ and Aµ do not transform trivially under a given symmetry. E.g., the complex scalar
ϕ transforms as (1.103) under a global U(1), while Aµ obeys the gauge transformation (1.150).
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The important point to notice is that both transformations involve only a single parameter,
namely α and f . However, α = const. is space-time independent, while f = f(x) is a function
of the space-time coordinate x. What happens if we generalize (1.103) by allowing the U(1)
symmetry to be local rather than global? Our fields ϕ and ϕ∗ then transform as

ϕ→ ϕ′ = eiα(x)ϕ , ϕ∗ → (ϕ′)∗ = e−iα(x)ϕ∗ . (1.175)

Since the scalar potential is polynomial in ϕ∗ϕ it is clearly invariant under these local U(1)
transformations. But as already noted after (1.105), for the kinetic term to be invariant, we
needed α = const. Explicitly, we have

∂µϕ→ ∂µ
(
eiα(x)ϕ

)
= eiα(x) (∂µ + i∂µα(x))ϕ . (1.176)

Obviously, the term involving ∂µα(x) will cause (∂µϕ
∗)(∂µϕ) to transform non-trivially un-

der (1.175). However, we still have the gauge transformation (1.150) of the vector field, which
also involves a term with a derivative. So let us see how (∂µ − iAµ)ϕ transforms. One finds

(∂µ − iAµ)ϕ→ eiα [(∂µ + i∂µα)− i(Aµ + ∂µf)]ϕ = eiα [(∂µ − iAµ) + i∂µ(α− f)]ϕ . (1.177)

This prompts us to realise that if we identify α(x) = f(x) then

Dµϕ = (∂µ − iAµ)ϕ , (1.178)

has the correct properties! It transforms as

(Dµϕ)∗(Dµϕ)→ (Dµϕ)∗(Dµϕ) , (1.179)

under
ϕ→ eiαϕ , Aµ → Aµ + ∂µα . (1.180)

In other words the new kinetic term (Dµϕ)∗(Dµϕ), with ∂µ replaced by the covariant derivative
Dµ, is gauge invariant. Notice that the covariant derivative (1.178) has dimension [Dµ] = 1
and involves a “minimal” coupling Aµϕ between the vector field Aµ and the scalar ϕ.

We can now combine our scalar and gauge field Lagrangian to obtain

L = (Dµϕ)∗(Dµϕ)− V (ϕ∗ϕ)− 1

4
FµνF

µν , V (ϕ∗ϕ) = V0 +m2ϕ∗ϕ+
λ

4
(ϕ∗ϕ)2 , (1.181)

which is the Lagrangian of scalar electrodynamics - describing a charged complex scalar coupled
to electromagnetism. Notice that in this new theory the role of Aµ is to facilitate the invariance
of the scalar field theory under local gauge transformations. In fact, if we would have started
from the global U(1) invariant scalar theory, with the task of finding its locally U(1) invariant
version, we would have necessarily been led to introducing a gauge field Aµ.

We will now use (1.181) as a toy model to study the spontaneous symmetry breaking of a
local U(1) symmetry. Since the scalar potential is identical to the one in the global case, we
can reuse all our old results. The case m2 ≥ 0 is again not very interesting since the symmetry
is unbroken, so let’s focus on the situation with m2 < 0. In the latter case the potential takes
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the form of a “Mexican hat” as in Figure 1.4. We parametrize ϕ around the minima in the
following way

ϕ =
1√
2

(v0 + h) eiχ , (1.182)

with v0 given in (1.110). It is straightforward to see that h corresponds to a real massive field,
while χ is a Goldstone mode (also a real field). We can now eliminate the Goldstone mode
from ϕ by choosing the specific gauge

ϕ→ ϕ′ = e−iχϕ =
1√
2

(v0 + h) . (1.183)

Under this transformation, we see from (1.180) that

Aµ → A′µ = Aµ − ∂µχ . (1.184)

Since the Lagrangian (1.181) is gauge invariant, we can as well write it in terms of primed
rather than unprimed fields. For the covariant derivative, one finds

(Dµϕ)′ =
1√
2

(
∂µh− i (v0 + h)A′µ

)
, (1.185)

and inserting this expression into (1.181) leads to

L =
1

2
(∂µh)2 +

1

2
A′µA

′µ (v20 + 2v0h+ h2
)
− V (h)− 1

4
F ′µνF

′µν , (1.186)

with

V (h) = V0 +
1

4
m2v20 −m2h2 +

λ

16

(
4v0h

3 + h4
)
. (1.187)

The most striking feature of this result is that the Goldstone mode χ has (magically) disap-
peared and we are only left with the fields h and A′µ. So did we loose a dof? No, because the
vector field is now no longer massless, but has a mass

mA′ = v0 . (1.188)

It has hence three dofs (as opposed to just two in the massless case), which explains the
disappearance of χ: the Goldstone boson has been “eaten” by the vector field and provides
the additional longitudinal component for the massive A′µ. This feature can also be inferred
from (1.184). Notice furthermore that the mass of h is given by

mh =
√
−2m2 , (1.189)

and that (1.186) and (1.187) have a rich structure of interactions: there are couplings of two
gauge fields to one and two massive scalars (A′A′h and A′A′h2) as well as cubic and quartic
self-couplings of the massive scalar (h3 and h4).

So let’s briefly summarize our main findings: we have learned that a spontaneously broken
local (or gauge) symmetry leads to a mass for the associated vector boson and the conversion
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of the Goldstone boson into the longitudinal component of the gauge field. This is the famous
Higgs mechanism that we already alluded to.

The Higgs mechanism had already appeared within superconductivity. This can be un-
derstood as the spontaneous breaking of electromagnetism within a superconductor, so that
the photon is effectively massive and the magnetic field is expelled from the interior of the
superconductor.

The massive scalar h left over in our model is called the Higgs scalar. The phenomenon
described above (but in its generalization to non-abelian gauge groups) is at work in the SM
of particle physics. In fact, since the SM symmetry breaking pattern is SU(2)L × U(1)Y →
U(1)em, there are three Goldstone bosons that give masses to three electroweak gauge bosons.
The masses of these particles are all proportional to the symmetry breaking scale (or vacuum
expectation value) v0. A detailed discussion of the breaking of the electroweak symmetry, while
worthwhile, is beyond the scope of this lecture, as it requires the introduction of non-abelian
gauge symmetries, but you will learn a bit more in one of the exercises.
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