## M.Phys Option in Theoretical Physics: C6. Problem Sheet 2 HT2018

**Question 9.** A lattice model for non-ideal gas is defined as follows. The sites *i* of a lattice may be empty or occupied by at most one atom, and the variable  $n_i$  takes the values  $n_i = 0$  and  $n_i = 1$  in the two cases. There is an attractive interaction energy *J* between atoms that occupy neighbouring sites, and a chemical potential  $\mu$ . The model Hamiltonian is

$$\mathcal{H} = -J \sum_{\langle ij \rangle} n_i n_j - \mu \sum_i n_i \,, \tag{1}$$

where  $\sum_{\langle ij \rangle}$  is a sum over neighbouring pairs of sites.

(a) Describe briefly how the *transfer matrix method* may be used to calculate the statistical-mechanical properties of one-dimensional lattice models with short range interactions. Illustrate your answer by explaining how the partition function for a one-dimensional version of the lattice gas, Eq. (1), defined on a lattice of N sites with periodic boundary conditions, may be evaluated using the matrix

$$\mathbf{T} = \begin{pmatrix} 1 & \mathrm{e}^{\beta\mu/2} \\ \mathrm{e}^{\beta\mu/2} & \mathrm{e}^{\beta(J+\mu)} \end{pmatrix} \,.$$

(b) Derive an expression for  $\langle n_i \rangle$  in the limit  $N \to \infty$ , in terms of elements of the eigenvectors of this matrix. (c) Show that

$$\langle n_i \rangle = \frac{1}{1 + \mathrm{e}^{-2\theta}} \,,$$

where

$$\sinh(\theta) = \exp(\beta J/2) \sinh(\beta [J+\mu]/2)$$

Sketch  $\langle n_i \rangle$  as a function of  $\mu$  for  $\beta J \gg 1$ , and comment on the physical significance of your result.

**Question 10.** The one-dimensional 3-state Potts model is defined as follows. At lattice sites i = 0, 1, ..., L "spin" variables  $\sigma_i$  take integer values  $\sigma_i = 1, 2, 3$ . The Hamiltonian is then given by

$$H = -J \sum_{i=0}^{L-1} \delta_{\sigma_i, \sigma_{i+1}},$$

where  $\delta_{a,b}$  is the Kronecker delta, J > 0.

(a) What are the ground states and first excited states for this model?

(b) Write down the transfer matrix for (2). Derive an expression for the free energy per site f in the limit of large L in terms of the transfer matrix eigenvalues. Show that vectors of the form  $(1, z, z^2)$  with  $z^3 = 1$  are eigenvectors, and hence find the corresponding eigenvalues. Show that at temperature T (with  $\beta = 1/k_BT$ ) and in the limit  $L \to \infty$ 

$$f = -k_B T \ln \left(3 + e^{\beta J} - 1\right).$$

(c) The boundary variable  $\sigma_0$  is fixed in the state  $\sigma_0 = 1$ . Derive an expression (for large *L*), that the variable at site  $\ell \gg 1$  is in the same state, in terms of the transfer matrix eigenvalues and eigenvectors. Show that your result has the form

$$\langle \delta_{\sigma_{\ell},1} \rangle = \frac{1}{3} + \frac{2}{3} e^{-\ell/\xi}.$$

How does  $\xi$  behave in the low and high temperature limits?

Question 11. Consider a one dimensional Ising model on an open chain with N sites, where N is odd. On all even sites a magnetic field 2h is applied, see Fig. 1. The energy is

$$E = -J \sum_{j=1}^{N-1} \sigma_j \sigma_{j+1} + 2h \sum_{j=1}^{(N-1)/2} \sigma_{2j}.$$
 (2)

(a) Show that the partition function can be written in the form



Figure 1: Open Ising chain with magnetic field applied to all even sites.

$$Z = \langle u | T^{(N-1)/2} | v \rangle \,.$$

where T is an appropriately constructed transfer matrix, and  $|u\rangle$  and  $|v\rangle$  two dimensional vectors. Give explicit expressions for T,  $|u\rangle$  and  $|v\rangle$ .

(b) Calculate Z for the case h = 0.

Question 12. Consider a Landau expansion of the free energy of the form

$$F = \frac{a}{2}m^2 + \frac{b}{4}m^4 + \frac{c}{6}m^6$$

with c > 0. Examine the phase diagram in the a-b plane, and show that there is a line of critical transitions a = 0, b > 0 which joins a line of first order transitions  $b = -4(ca/3)^{1/2}$  at a point a = b = 0 known as a tricritical point.

Supposing that a varies linearly with temperature and that b is independent of temperature, compare the value of the exponent  $\beta$  at the tricritical point with its value on the critical line.

From Yeomans, Statistical Mechanics of Phase Transitions

## Question 13.

(a) Discuss how an order parameter may be used to characterise symmetry breaking at a phase transition.
(b) Argue that the uniaxial ferromagnet-paramagnet transition can be described by by a Landau free energy of the form

$$F = \int d^3 \mathbf{r} \left[ \frac{1}{2} |\nabla \phi(\mathbf{r})|^2 - h\phi(\mathbf{r}) + \alpha_2 \phi^2(\mathbf{r}) + \alpha_3 \phi^3(\mathbf{r}) + \alpha_4 \phi^4(\mathbf{r}) \right].$$

What can you say about  $\alpha_4$ ?

(c) What is the nature of the transition for h = 0 if  $\alpha_3 \neq 0$ ? Explain your answer.

(d) Now assume that  $\alpha_3 = h = 0$ . Argue that close to the critical point

$$\alpha_2 = At$$
,  $t = \frac{T - T_c}{T_c}$  and  $A > 0$ 

(e) Derive the equation characterizing the saddle point solution for  $\alpha_3 = h = 0$ . What are the configurations  $\phi$  with the lowest free energy for h = 0, at  $T > T_c$  and at  $T < T_c$ ? Why are these **r** independent?

(f) Now consider more general solutions to the saddle point equation in the low-temperature phase. With suitable boundary conditions the saddle point solutions for the order parameter are functions of x only, i.e.  $\phi = \phi(x)$ . Show that in this case

$$E = \frac{1}{2} \left[ \frac{d\phi(x)}{dx} \right]^2 - \alpha_2 \phi^2 - \alpha_4 \phi^4$$

is independent of x. Construct a solution  $\phi(x)$  such that

$$\lim_{x \to \infty} \phi(x) = \phi_1 , \quad \lim_{x \to -\infty} \phi(x) = \phi_2,$$

where  $\phi_{1,2}$  are the solutions found in (d). Hint: determine E for such solutions first.

Question 14. A system with a real, two-component order parameter  $(\phi_1(\mathbf{r}), \phi_2(\mathbf{r}))$  has a free energy

$$F = \int d^{d}\mathbf{r} \left[ \frac{1}{2} |\nabla \phi_{1}(\mathbf{r})|^{2} + \frac{1}{2} |\nabla \phi_{2}(\mathbf{r})|^{2} - \frac{1}{2} \left( \phi_{1}^{2}(\mathbf{r}) + \phi_{2}^{2}(\mathbf{r}) \right) + \frac{1}{4} \left( \phi_{1}^{2}(\mathbf{r}) + \phi_{2}^{2}(\mathbf{r}) \right)^{2} \right] .$$

Find the order-parameter values  $\Phi_1, \Phi_2$  that minimise this free energy. Consider small fluctuations around such state, with  $(\phi_1(\mathbf{r}), \phi_2(\mathbf{r})) = (\Phi_1 + \varphi_1(\mathbf{r}), \Phi_2 + \varphi_2(\mathbf{r}))$  and expand F to second order in  $\varphi$ .

Assuming that the statistical weight of thermal fluctuations is proportional to  $\exp(-F)$ , calculate approximately the correlation function

$$\langle \varphi_1(\mathbf{r})\varphi_1(\mathbf{0})+\varphi_2(\mathbf{r})\varphi_2(\mathbf{0})\rangle$$

by evaluating a Gaussian functional integral. How does your result depend on the dimensionality d of the system?