
M.Phys Option in Theoretical Physics: C6. Problem Sheet 4 - Michaelmas Vacation

Question 1. Consider paths X = X(τ), where τ is a parameter, and the functional

l[X] =

∫ τ1

τ0

dτ n(X)

√
dX

dτ
· dX
dτ

,

where n = n(X) is a function. (The minima of this functional can be interpreted as light rays propagating in a
medium with refractive index n.)
a) Vary the above functional and derive the differential equation which has to be satisfied by minimal paths X.
b) Consider a two-dimensional situation with paths X(τ) = (X(τ), Y (τ)) in the x, y plane and a function
n = n0 + (n1 − n0) θ(x). (The Heaviside function θ(x) is defined to be 0 for x < 0 and 1 for x ≥ 0. Re-
call that θ′(x) = δ(x).) Solve the differential equation in a) for this situation, using the coordinate x as parameter
τ along the path.
c) Show that the solution in b) leads to the standard law for refraction at the boundary between two media with
refractive indices n0 and n1.

Question 2.
a) Evaluate the Gaussian integral ∫ ∞

−∞
dx e−

1
2 zx

2

(1)

for a complex constant z. What is the requirement on z for the integral to exist?
b) The gamma function Γ is defined by

Γ(s+ 1) =

∫ ∞
0

dxxse−x .

c) Show that Γ(1) = 1 and Γ(s+ 1) = sΓ(s). (Hence Γ(n+ 1) = n!)
d) Take s to be real and positive. Evaluate Γ(s + 1) in the steepest descent approximation: write the integrand
in the form ef(x) and argue that for large s � 1 the dominant contribution to the integral arises from the minima
of f(x). Expand the function to quadratic order around the minimum, argue that you may extend the integration
boundaries to ±∞, and then carry out the resulting integral. Your result is known as Stirling’s approximation: it
tells what n! is when n becomes large.
e)∗ The following extension is for complex analysis afficionados, so simply omit it if you haven’t taken the short
option. Take s to be complex with positive real part. Deform the contour in a suitable way, so that you can again
apply a steepest descent approximation. Ponder the name of the method. What is Stirling’s approximation for
complex s?

Question 3. Consider a free QM particle moving in one dimension. The Hamiltonian is

H = − ~2

2m

d2

dx2
. (2)

We have shown in the lecture that the propagator can be represented in the form

〈xN |e−
i
~ tH |x0〉 = lim

N→∞

[ m

2πi~ε

]N
2

∫
dx1 . . . dxN−1 exp

(
iε

~

N−1∑
n=0

m

2

(
xn+1 − xn

ε

)2
)
. (3)

a) Change variables from xj to yj = xj − xN to bring it to the form

〈xN |e−
i
~ tH |x0〉 = lim

N→∞

[ m

2πi~ε

]N
2

∫
dy exp

(
−1

2
yTAy + JT · y

)
e
im
2~ε (x0−xN )2 . (4)

Give expressions for J and A.
b) Carry out the integrals over yj to get an expression for the propagator in terms of A and J.
c) Work out the eigenvalues λn and eigenvectors an of the matrix A. You may find helpful hints in the lecture
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notes.
d) What is det(A)? A useful identity you may use is

N−1∏
j=1

2 sin(πj/2N) =
√
N. (5)

Now work out JTA−1J by working in the eigenbasis of A−1 (Hint: write this as JTA−1J = JTOTOA−1OTOJ,
where OTO = 1 and OA−1OT is a diagonal matrix you have already calculated above.). A useful identity you
may use is

N−1∑
j=1

cos2(πj/2N) =
N − 1

2
. (6)

e) Use the result you have obtained to write an explicit expression for the propagator.

Question 4. Denote the propagator by

K(t, x; t′x′) = 〈x|e− i
~H(t−t′)|x′〉. (7)

Show that the wave function ψ(t, x) = 〈x|Ψ(t)〉, where |Ψ(t)〉 is a solution to the time-dependent Schrödinger
equation

i~
∂

∂t
|Ψ(t)〉 = H|Ψ(t)〉, (8)

fulfils the integral equation

ψ(t, x) =

∫ ∞
−∞

dx′ K(t, x; t′x′) ψ(t′, x′). (9)

Question 5. Diffraction through a slit. A free particle starting at x = 0 when t = 0 is determined to pass between
x0 − b and x0 + b at time T . We wish to calculate the probabilty of finding the particle at position x at time
t = T + τ .
a) Argue on the basis of Qu 5. that the (un-normalized) wave function can be written in the form

ψ(T + τ, x) =

∫ b

−b
dy K(T + τ, x;T, x0 + y) K(T, x0 + y; 0, 0) , (10)

where
K(t, x; t′x′) = 〈x|e− i

~H(t−t′)|x′〉. (11)

b) Using that the propagation for 0 ≤ t < T and T ≤ t < T + τ is that of a free particle, obtain an explicit integral
representation for the wave function.
c) Show that the wave function can be expressed in terms of the Fresnel integrals

C(x) =

∫ x

0

dy cos(πy2/2) , S(x) =

∫ x

0

dy sin(πy2/2) . (12)

Hint: make a substitution z = αy + β with suitably chosen α and β.
Derive an expression for the ratio P (T +τ, x)/P (T +τ, x0), where P (T +τ, x)dx is the probability of finding

the particle in the interval [x, x+ dx] at time T + τ .
d) (optional) If you can get hold of Mathematica (the default assumption is that you will not), plot the result as a
function of the dimensionless parameter x/[b(1 + τ/T )] for x0 = 0 and different values of the ratio

γ =
mb2(1 + τ/T )

~τ
. (13)

Discuss your findings.

Question 6. In this question the objective is to evaluate the Feynman path integral in one of the relatively few
cases, besides those treated in lectures, for which exact results can be obtained. The system we consider consists
of a particle of mass m moving on a circle of circumference L. The quantum Hamiltonian is

H = − ~2

2m

d2

dx2
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and wavefunctions obey ψ(x+ L) = ψ(x). We want to determine the imaginary time propagator

〈x1| exp(−βH)|x2〉 .

a) What are the eigenstates and eigenvalues of H? As we are dealing with a free particle, we can determine the
propagator as in the lectures in a simple way by inserting resolutions of the identity in terms of the eigenstates of
H . Show that this leads to the following result

〈x1| exp(−βH)|x2〉 =

∞∑
n=−∞

1

L
exp

(
−β(2πn)2~2

2mL2
+ 2πin

[x1 − x2]

L

)
. (14)

b) Next, approach this using a path integral in which paths x(τ) for 0 ≤ τ ≤ β~ satisfy the boundary conditions
x(0) = x1 and x(β~) = x2. The special feature of a particle moving on a circle is that such paths may wind any
integer number l times around the circle. To build in this feature, write

x(τ) = x1 +
τ

β~
[(x2 − x1) + lL] + s(τ),

where the contribution s(τ) obeys the simpler boundary conditions s(0) = s(β~) = 0 and does not wrap around
the circle. Show that the Euclidean action for the system on such a path is

S[x(τ)] = Sl + S[s(τ)] where Sl =
m

2β~
[(x2 − x1) + lL]2 and S[s(τ)] =

∫ β~

0

dτ
m

2

(
ds

dτ

)2

.

c) using the results of b) show that

〈x1| exp(−βH)|x2〉 = Z0

∞∑
l=−∞

exp

(
− m

2β~2
[(x1 − x2) + lL]2

)
, (15)

where Z0 is the diagonal matrix element 〈x|e−βH |x〉 for a free particle (i.e. without periodic boundary conditions)
moving in one dimension.
d) Argue on the basis of the result you obtained in Qu 3. for the propagator of a free particle that

Z0 =

(
m

2πβ~2

)1/2

. (16)

e) Show that the expressions in Eq. (14) and Eq. (15) are indeed equal. To do so, you should use the Poisson
summation formula

∞∑
l=−∞

δ(y − l) =

∞∑
n=−∞

e−2πiny

(think about how to justify this). Introduce the left hand side of this expression into Eq. (15) by using the relation,
valid for any smooth function f(y),

∞∑
l=−∞

f(l) =

∫ ∞
−∞

dy

∞∑
l=−∞

δ(y − l)f(y) ,

substitute the right hand side of the summation formula, carry out the (Gaussian) integral on y, and hence establish
the required equality.
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