
Introduction into PT-QM Deformed quantum spin chains Deformed Calogero models Def. KdV/Ito Conclusions

Introduction to non-Hermitian Hamiltonian
systems with PT symmetry, applications to

integrable systems

Andreas Fring

UK-Japan Winter school 2012, Oxford 5-8 January



Introduction into PT-QM Deformed quantum spin chains Deformed Calogero models Def. KdV/Ito Conclusions

Outline

1 Introduction to PT-quantum mechanics
2 PT-deformed quantum spin chains
3 PT-deformed Calogero-Moser-Sutherland models
4 PT-deformed KdV/Ito systems
5 Conclusions



Introduction into PT-QM Deformed quantum spin chains Deformed Calogero models Def. KdV/Ito Conclusions

Hermiticity is good to have for two reasons, but

Why is Hermiticity a good property to have?
Hermiticity ensures real energies
Schrödinger equation Hψ = Eψ

〈ψ|H |ψ〉 = E 〈ψ| ψ〉
〈ψ|H† |ψ〉 = E∗ 〈ψ| ψ〉

}
⇒ 0 = (E − E∗) 〈ψ| ψ〉

Hermiticity ensures conservation of probability densities

|ψ(t)〉 = e−iHt |ψ(0)〉

〈ψ(t)| ψ(t)〉 = 〈ψ(0)|eiH†te−iHt |ψ(0)〉 = 〈ψ(0)| ψ(0)〉

- Thus when H 6= H† one usually thinks of dissipation.
- However, these systems are usually open and do not possess

a self-consistent description.
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Hermiticity is only sufficient and not necessary for a consistent quantum theory

Hermiticity is not essential
Operators O which are left invariant under an antilinear
involution I and whose eigenfunctions Φ also respect this
symmetry,

[O, I] = 0 ∧ IΦ = Φ

have a real eigenvalue spectrum.
[E. Wigner, J. Math. Phys. 1 (1960) 409]

By defining a new metric also a consistent quantum
mechanical framework has been developed for theories
involving such operators.
[F. Scholtz, H. Geyer, F. Hahne, Ann. Phys. 213 (1992) 74,
C. Bender, S. Boettcher, Phys. Rev. Lett. 80 (1998) 5243,
A. Mostafazadeh, J. Math. Phys. 43 (2002) 2814]

In particular this also holds for O being non-Hermitian.
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There are plenty of well studied examples of non-Hermitian systems in the literature

"Recent" classical example

H =
1
2

p2 + x2(ix)ε for ε ≥ 0

[C.M. Bender, S. Boettcher, Phys. Rev. Lett. 80 (1998) 5243]
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Ubiquitous non-Hermitian Hamiltonians (examples from the literature)

A more classical example
Lattice Reggeon field theory:

H =
∑

~ı

[
∆a†~ıa~ı + iga†~ı (a~ı + a†~ı )a~ı + g̃

∑
~
(a†~ı+~ − a†~ı )(a~ı+~ − a~ı)

]
- a†~ı ,a~ı are creation and annihilation operators, ∆,g, g̃ ∈ R

[J.L. Cardy, R. Sugar, Phys. Rev. D12 (1975) 2514]
- for one site this is almost ix3

H = ∆a†a + iga†
(

a + a†
)

a

=
1
2

(
p̂2 + x̂2 − 1

)
+ i

g√
2

(x̂3 + p̂2x̂ − 2x̂ + i p̂)

with a = (ωx̂ + i p̂)/
√

2ω, a† = (ωx̂ − i p̂)/
√

2ω
[P. Assis and A.F., J. Phys. A41 (2008) 244001]
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Ubiquitous non-Hermitian Hamiltonians (examples from the literature)

quantum spin chains: (c=-22/5 CFT)

H =
1
2

∑N

i=1
σx

i + λσz
i σ

z
i+1 + ihσz

i λ,h ∈ R

[G. von Gehlen, J. Phys. A24 (1991) 5371]
affineToda field theory:

L =
1
2
∂µφ∂

µφ+
m2

β2

∑`

k=a
nk exp(βαk · φ)

a = 1 ≡ conformal field theory (Lie algebras)
a = 0 ≡ massive field theory (Kac-Moody algebras)
β ∈ R ≡ no backscattering
β ∈ iR ≡ backscattering (Yang-Baxter, quantum groups)
strings on AdS5 × S5-background

[A. Das, A. Melikyan, V. Rivelles, JHEP 09 (2007) 104]
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Ubiquitous non-Hermitian Hamiltonians (examples from the literature)

deformed space-time structure
- deformed Heisenberg canonical commutation relations

aa† − q2a†a = qg(N), with N = a†a

X = αa† + βa, P = iγa† − iδa, α, β, γ, δ ∈ R

[X ,P] = i~qg(N)(αδ + βγ)

+
i~(q2 − 1)

αδ + βγ

(
δγX 2 + αβ P2 + iαδXP − iβγPX

)
- limit: β → α, δ → γ, g(N)→ 0, q → e2τγ2

, γ → 0

[X ,P] = i~
(

1 + τP2
)

- representation: X = (1 + τp2
0)x0, P = p0, [x0,p0] = i~
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Ubiquitous non-Hermitian Hamiltonians (examples from the literature)

- with the standard inner product X is not Hermitian

X † = X + 2τ i~P and P† = P

-⇒ H(X ,P) is in general not Hermitian
- example harmonic oscillator:

Hho =
P2

2m
+

mω2

2
X 2,

=
p2

0
2m

+
mω2

2
(1 + τp2

0)x0(1 + τp2
0)x0,

=
p2

0
2m

+
mω2

2

[
(1 + τp2

0)2x2
0 + 2i~τp0(1 + τp2

0)x0

]
.

[B. Bagchi and A.F., Phys. Lett. A373 (2009) 4307]
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Ubiquitous non-Hermitian Hamiltonians (examples from the literature)

"dynamical" noncommutative space-time
Replace

[x0, y0] = iθ, [x0,px0 ] = i~, [y0,py0 ] = i~,
[px0 ,py0 ] = 0, [x0,py0 ] = 0, [y0,px0 ] = 0,

with θ ∈ R, by

[X ,Y ] = iθ(1 + τY 2) [X ,Px ] = i~(1 + τY 2)
[Y ,Py ] = i~(1 + τY 2) [X ,Py ] = 2iτY (θPy + ~X )
[Px ,Py ] = 0 [Y ,Px ] = 0

⇒ Non-Hermitian representation

X = (1 + τy2
0 )x0 Y = y0 Px = px0 Py = (1 + τy2

0 )py0

X † = X + 2iτθY Y † = Y P†y = Py − 2iτ~Y P†x = Px

[A.F., L. Gouba, F. Scholtz, J.Phys. A43 (2010) 345401]
[A.F., L. Gouba, B. Bagchi, J.Phys. A43 (2010) 425202]



Introduction into PT-QM Deformed quantum spin chains Deformed Calogero models Def. KdV/Ito Conclusions

Spectral analysis

How to explain the reality of the spectrum?
1 Pseudo/Quasi-Hermiticity
2 Supersymmetry (Darboux transformations)
3 PT -symmetry
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Spectral analysis: Pseudo/Quasi-Hermiticity

Pseudo/Quasi-Hermiticity

h = ηHη−1 = h† = (η−1)†H†η† ⇔ H†ρ = ρH ρ = η†η (*)

H† = ρHρ−1 H†ρ = ρH H† = ρHρ−1

positivity of ρ X X ×
ρ Hermitian X X X
ρ invertible X × X
terminology (*) quasi-Herm. pseudo-Herm.
spectrum of H real could be real real
definite metric guaranteed guaranteed not conclusive

• quasi-Hermiticity: [J. Dieudonné, Proc. Int. Symp. (1961) 115]
[F. Scholtz, H. Geyer, F. Hahne, Ann. Phys. 213 (1992) 74]

• pseudo-Hermiticity: [M. Froissart, Nuovo Cim. 14 (1959) 197]
[A. Mostafazadeh, J. Math. Phys. 43 (2002) 2814]
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Spectral analysis: Supersymmetry (Darboux transformation)

Supersymmetry (Darboux transformation)
Decompose Hamiltonian H as:

H = H+ ⊕ H− = QQ̃ ⊕ Q̃Q

• intertwining operators: QH− = H+Q and Q̃H+ = H−Q̃

⇒ [H,Q] = [H, Q̃] = 0

• realization: Q = d
dx + W and Q̃ = − d

dx + W

⇒ H± = −∆ + W 2 ±W ′ = −∆ + V±

• ground state: H−Φ−n = εnΦ−n and H−Φ−m = 0
⇒isospectral Hamiltonians

Hm
± = −∆ + V m

± + Em Hm
±Φ±n = EnΦ±n for n > m
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Spectral analysis: PT -symmetry

Unbroken PT -symmetry guarantees real eigenvalues (QM)

PT -symmetry: PT : x → −x p → p i → −i
(P : x → −x ,p → −p; T : x → x ,p → −p, i → −i)

PT is an anti-linear operator:

PT (λΦ + µΨ) = λ∗PT Φ + µ∗PT Ψ λ, µ ∈ C

Real eigenvalues from unbroken PT -symmetry:

[H,PT ] = 0 ∧ PT Φ = Φ ⇒ ε = ε∗ for HΦ = εΦ

Proof :
εΦ = HΦ = HPT Φ = PT HΦ = PT εΦ = ε∗PT Φ = ε∗Φ

PT-symmetry is only an example of an antilinear involution
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Quantum mechanical framework

How to formulate a quantum mechanical framework?
1 orthogonality
2 observables
3 uniqueness
4 technicalities (new metric etc)
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QM framework: Orthogonality

Orthogonality
• Take h to be a Hermitian and diagonalisable Hamiltonian:

〈φn |hφm〉 = 〈hφn|φm〉

〈φn |hφm〉 = εm 〈φn |φm〉
〈hφn |φm〉 = ε∗n 〈φn| φm〉

}
⇒ 0 = (εm − ε∗n) 〈φn |φm〉

⇒ n = m : εn = ε∗n n 6= m : 〈φn |φm〉 = 0
• Take H to be a non-Hermitian Hamiltonian:

H |Φn〉 = εn|Φn〉

- reality and orthogonality no longer guaranteed. Define

〈Φn |Φm〉η := 〈Φn |η2Φm〉

- when 〈Φn |HΦm〉η = 〈HΦn |Φm〉η ⇒ 〈Φn |Φm〉η = δn,m
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QM framework: H is Hermitian with respect to new metric

H is Hermitian with respect to new metric
• Assume pseudo-Hermiticity:

h = ηHη−1 = h† = (η−1)†H†η† ⇔ H†η†η = η†ηH

Φ = η−1φ η† = η

⇒ H is Hermitian with respect to the new metric
Proof :

〈Ψ |HΦ〉η = 〈Ψ |η2HΦ〉 = 〈η−1ψ|η2Hη−1φ〉 = 〈ψ |ηHη−1φ〉 =

〈ψ |hφ〉 = 〈hψ|φ〉 = 〈ηHη−1ψ|φ〉 = 〈HΨ|ηφ〉 = 〈HΨ|η2Φ
〉

= 〈HΨ|Φ〉η

⇒ Eigenvalues of H are real, eigenstates are orthogonal
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〈ψ |hφ〉 = 〈hψ|φ〉 = 〈ηHη−1ψ|φ〉 = 〈HΨ|ηφ〉 = 〈HΨ|η2Φ
〉

= 〈HΨ|Φ〉η

⇒ Eigenvalues of H are real, eigenstates are orthogonal
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QM framework: a more algebraic construction of the new metric

CPT -metric
[Bender, Brody, Jones, Phys. Rev. Lett. 89 (2002) 270401]

〈Ψ|Φ〉CPT := (CPT |Ψ〉)T · |Φ〉

In position space: C(x , y) =
∑

n Φn(x)Φn(y)
Very formal as normally one does not know Φn(x) ∀n
Algebraic approach: Solve
C2 = I [H, C] = 0 [C,PT ] = 0 [H,PT ] = 0
Relation C and metric (same as pseudo-Hermiticity)

C = ρ−1P

Proof : P2 = I H† = T HT

ρH = PCH = PHC = PPT HPT C = T HT PC = H†PC = H†ρ



Introduction into PT-QM Deformed quantum spin chains Deformed Calogero models Def. KdV/Ito Conclusions

QM framework: a more algebraic construction of the new metric

CPT -metric
[Bender, Brody, Jones, Phys. Rev. Lett. 89 (2002) 270401]

〈Ψ|Φ〉CPT := (CPT |Ψ〉)T · |Φ〉

In position space: C(x , y) =
∑

n Φn(x)Φn(y)
Very formal as normally one does not know Φn(x) ∀n
Algebraic approach: Solve
C2 = I [H, C] = 0 [C,PT ] = 0 [H,PT ] = 0
Relation C and metric (same as pseudo-Hermiticity)

C = ρ−1P

Proof : P2 = I H† = T HT

ρH = PCH = PHC = PPT HPT C = T HT PC = H†PC = H†ρ



Introduction into PT-QM Deformed quantum spin chains Deformed Calogero models Def. KdV/Ito Conclusions

QM framework: a more algebraic construction of the new metric

CPT -metric
[Bender, Brody, Jones, Phys. Rev. Lett. 89 (2002) 270401]

〈Ψ|Φ〉CPT := (CPT |Ψ〉)T · |Φ〉

In position space: C(x , y) =
∑

n Φn(x)Φn(y)
Very formal as normally one does not know Φn(x) ∀n
Algebraic approach: Solve
C2 = I [H, C] = 0 [C,PT ] = 0 [H,PT ] = 0
Relation C and metric (same as pseudo-Hermiticity)

C = ρ−1P

Proof : P2 = I H† = T HT

ρH = PCH = PHC = PPT HPT C = T HT PC = H†PC = H†ρ



Introduction into PT-QM Deformed quantum spin chains Deformed Calogero models Def. KdV/Ito Conclusions

QM framework: a more algebraic construction of the new metric

CPT -metric
[Bender, Brody, Jones, Phys. Rev. Lett. 89 (2002) 270401]

〈Ψ|Φ〉CPT := (CPT |Ψ〉)T · |Φ〉

In position space: C(x , y) =
∑

n Φn(x)Φn(y)
Very formal as normally one does not know Φn(x) ∀n
Algebraic approach: Solve
C2 = I [H, C] = 0 [C,PT ] = 0 [H,PT ] = 0
Relation C and metric (same as pseudo-Hermiticity)

C = ρ−1P

Proof : P2 = I H† = T HT

ρH = PCH = PHC = PPT HPT C = T HT PC = H†PC = H†ρ



Introduction into PT-QM Deformed quantum spin chains Deformed Calogero models Def. KdV/Ito Conclusions

QM framework: a more algebraic construction of the new metric

CPT -metric
[Bender, Brody, Jones, Phys. Rev. Lett. 89 (2002) 270401]

〈Ψ|Φ〉CPT := (CPT |Ψ〉)T · |Φ〉

In position space: C(x , y) =
∑

n Φn(x)Φn(y)
Very formal as normally one does not know Φn(x) ∀n
Algebraic approach: Solve
C2 = I [H, C] = 0 [C,PT ] = 0 [H,PT ] = 0
Relation C and metric (same as pseudo-Hermiticity)

C = ρ−1P

Proof : P2 = I H† = T HT

ρH = PCH = PHC = PPT HPT C = T HT PC = H†PC = H†ρ



Introduction into PT-QM Deformed quantum spin chains Deformed Calogero models Def. KdV/Ito Conclusions

QM framework: a more algebraic construction of the new metric

CPT -metric
[Bender, Brody, Jones, Phys. Rev. Lett. 89 (2002) 270401]

〈Ψ|Φ〉CPT := (CPT |Ψ〉)T · |Φ〉

In position space: C(x , y) =
∑

n Φn(x)Φn(y)
Very formal as normally one does not know Φn(x) ∀n
Algebraic approach: Solve
C2 = I [H, C] = 0 [C,PT ] = 0 [H,PT ] = 0
Relation C and metric (same as pseudo-Hermiticity)

C = ρ−1P

Proof : P2 = I H† = T HT

ρH = PCH = PHC = PPT HPT C = T HT PC = H†PC = H†ρ



Introduction into PT-QM Deformed quantum spin chains Deformed Calogero models Def. KdV/Ito Conclusions

QM framework: a more algebraic construction of the new metric

CPT -metric
[Bender, Brody, Jones, Phys. Rev. Lett. 89 (2002) 270401]

〈Ψ|Φ〉CPT := (CPT |Ψ〉)T · |Φ〉

In position space: C(x , y) =
∑

n Φn(x)Φn(y)
Very formal as normally one does not know Φn(x) ∀n
Algebraic approach: Solve
C2 = I [H, C] = 0 [C,PT ] = 0 [H,PT ] = 0
Relation C and metric (same as pseudo-Hermiticity)

C = ρ−1P

Proof : P2 = I H† = T HT

ρH = PCH = PHC = PPT HPT C = T HT PC = H†PC = H†ρ



Introduction into PT-QM Deformed quantum spin chains Deformed Calogero models Def. KdV/Ito Conclusions

QM framework: a more algebraic construction of the new metric

CPT -metric
[Bender, Brody, Jones, Phys. Rev. Lett. 89 (2002) 270401]

〈Ψ|Φ〉CPT := (CPT |Ψ〉)T · |Φ〉

In position space: C(x , y) =
∑

n Φn(x)Φn(y)
Very formal as normally one does not know Φn(x) ∀n
Algebraic approach: Solve
C2 = I [H, C] = 0 [C,PT ] = 0 [H,PT ] = 0
Relation C and metric (same as pseudo-Hermiticity)

C = ρ−1P

Proof : P2 = I H† = T HT

ρH = PCH = PHC = PPT HPT C = T HT PC = H†PC = H†ρ



Introduction into PT-QM Deformed quantum spin chains Deformed Calogero models Def. KdV/Ito Conclusions

QM framework: a more algebraic construction of the new metric

CPT -metric
[Bender, Brody, Jones, Phys. Rev. Lett. 89 (2002) 270401]

〈Ψ|Φ〉CPT := (CPT |Ψ〉)T · |Φ〉

In position space: C(x , y) =
∑

n Φn(x)Φn(y)
Very formal as normally one does not know Φn(x) ∀n
Algebraic approach: Solve
C2 = I [H, C] = 0 [C,PT ] = 0 [H,PT ] = 0
Relation C and metric (same as pseudo-Hermiticity)

C = ρ−1P

Proof : P2 = I H† = T HT

ρH = PCH = PHC = PPT HPT C = T HT PC = H†PC = H†ρ



Introduction into PT-QM Deformed quantum spin chains Deformed Calogero models Def. KdV/Ito Conclusions

QM framework: a more algebraic construction of the new metric

CPT -metric
[Bender, Brody, Jones, Phys. Rev. Lett. 89 (2002) 270401]

〈Ψ|Φ〉CPT := (CPT |Ψ〉)T · |Φ〉

In position space: C(x , y) =
∑

n Φn(x)Φn(y)
Very formal as normally one does not know Φn(x) ∀n
Algebraic approach: Solve
C2 = I [H, C] = 0 [C,PT ] = 0 [H,PT ] = 0
Relation C and metric (same as pseudo-Hermiticity)

C = ρ−1P

Proof : P2 = I H† = T HT

ρH = PCH = PHC = PPT HPT C = T HT PC = H†PC = H†ρ



Introduction into PT-QM Deformed quantum spin chains Deformed Calogero models Def. KdV/Ito Conclusions

QM framework: a more algebraic construction of the new metric

CPT -metric
[Bender, Brody, Jones, Phys. Rev. Lett. 89 (2002) 270401]

〈Ψ|Φ〉CPT := (CPT |Ψ〉)T · |Φ〉

In position space: C(x , y) =
∑

n Φn(x)Φn(y)
Very formal as normally one does not know Φn(x) ∀n
Algebraic approach: Solve
C2 = I [H, C] = 0 [C,PT ] = 0 [H,PT ] = 0
Relation C and metric (same as pseudo-Hermiticity)

C = ρ−1P

Proof : P2 = I H† = T HT

ρH = PCH = PHC = PPT HPT C = T HT PC = H†PC = H†ρ



Introduction into PT-QM Deformed quantum spin chains Deformed Calogero models Def. KdV/Ito Conclusions

QM framework: a more algebraic construction of the new metric

CPT -metric
[Bender, Brody, Jones, Phys. Rev. Lett. 89 (2002) 270401]

〈Ψ|Φ〉CPT := (CPT |Ψ〉)T · |Φ〉

In position space: C(x , y) =
∑

n Φn(x)Φn(y)
Very formal as normally one does not know Φn(x) ∀n
Algebraic approach: Solve
C2 = I [H, C] = 0 [C,PT ] = 0 [H,PT ] = 0
Relation C and metric (same as pseudo-Hermiticity)

C = ρ−1P

Proof : P2 = I H† = T HT

ρH = PCH = PHC = PPT HPT C = T HT PC = H†PC = H†ρ



Introduction into PT-QM Deformed quantum spin chains Deformed Calogero models Def. KdV/Ito Conclusions

QM framework: Observables

Observables
Observables are Hermitian with respect to the new metric

〈Φn |OΦm〉η = 〈OΦn |Φm〉η

O = η−1oη ⇔ O† = ρOρ−1

- o is an observable in the Hermitian system
- O is an observable in the non-Hermitian system
Ambiguities:
Given H the metric is not uniquely defined for unknown h.
⇒ Given only H the observables are not uniquely defined.

This is different in the Hermitian case.
- Fixing one more observable achieves uniqueness.

[Scholtz, Geyer, Hahne, , Ann. Phys. 213 (1992) 74]
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QM framework: Observables

General technique:

Given H
{

either solve ηHη−1 = h for η ⇒ ρ = η†η

or solve H† = ρHρ−1 for ρ ⇒ η =
√
ρ

involves complicated commutation relations
often this can only be solved perturbatively

Note:
Thus, this is not re-inventing or disputing the validity of
quantum mechanics.
We only give up the restrictive requirement that
Hamiltonians have to be Hermitian.

[C. Bender, Rep. Prog. Phys. 70 (2007) 947]
[A. Mostafazadeh, Int. J. Geom. Meth. Phys. 7 (2010) 1191]
[P. Assis, Non-Hermitian Hamiltonians in Field Theory,
VDM Verlag Dr Müller Saarbrücken (2010)]
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Deformed quantum spin chains

Ising quantum spin chain of length N

H = −1
2

N∑
i=1

(σz
i + λσx

i σ
x
i+1 + iκσx

i ) κ, λ ∈ R

in a magnetic field in the z-direction and in a longitudinal
imaginary field in the x-direction

H acts on the Hilbert space of the form (C2)⊗N

σx ,y ,z
i := I⊗ I⊗ . . .⊗σx ,y ,z ⊗ . . .⊗ I⊗ I

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
H is a perturbation of theM5,2-model (c=-22/5)

in theMp,q-series of minimal conformal field theories
non-unitary for p − q > 1⇒ non-Hermitian Hamiltonians
[G. von Gehlen, J. Phys. A24 (1991) 5371]
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Deformed quantum spin chains (Different realizations for PT -symmetry)

PT -symmetry for spin chains
"macro-reflections": [Korff, Weston, J. Phys. A40 (2007)]
P ′ : σx ,y ,z

i → σx ,y ,z
N+1−i

P ′ :↗1 −−↘2 −−↖3 −− . . .−−↑N−2 −−↑N−1 −−↙N
→ ↙1 −−↑2 −−↑3 −− . . .−−↖N−2 −−↘N−1 −−↗N

but with T : i → −i [P ′T ,H] 6= 0
"site-by-site reflections":
[Castro-Alvaredo, A.F., J.Phys. A42 (2009) 465211]

P =
∏N

i=1
σz

i , with P2 = I⊗N

P : (σx
i , σ

y
i , σ

z
i )→ (−σx

i ,−σ
y
i , σ

z
i )

P :↗1 −−↘2 −−↖3 −− . . .−−↑N−2 −−↑N−1 −−↙N
→ ↙1 −−↖2 −−↘3 −− . . .−−↓N−2 −−↓N−1 −−↗N

⇒ [PT ,H] = 0
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Deformed quantum spin chains (Different realizations for PT -symmetry)
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Deformed quantum spin chains (Different realizations for PT -symmetry)

• Alternative definitions for parity:

Px :=
∏N

i=1
σx

i Py :=
∏N

i=1
σy

i

Px : (σx
i , σ

y
i , σ

z
i )→ (σx

i ,−σ
y
i ,−σ

z
i )

Py : (σx
i , σ

y
i , σ

z
i )→ (−σx

i , σ
y
i ,−σ

z
i )

[PT ,H] = 0, [PxT ,H] 6= 0, [PyT ,H] 6= 0,
[
P ′T ,H

]
6= 0

• XXZ-spin-chain in a magnetic field

HXXZ =
1
2

N−1∑
i=1

[
(σx

i σ
x
i+1 + σy

i σ
y
i+1 + ∆+(σz

i σ
z
i+1 − 1)

]
+

∆−
2

(σz
1−σz

N),

∆± = (q ± q−1)/2 ⇒ H†XXZ 6= HXXZ for q /∈ R

[PT ,HXXZ ] 6= 0 [PxT ,HXXZ ] = 0 [PyT ,HXXZ ] = 0
[
P ′T ,HXXZ

]
= 0

These possibilities reflect the ambiguities in the observables.
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Deformed quantum spin chains (Spectral analysis)

PT -symmetry⇒ domains in the parameter space of λ and κ

Broken and unbroken PT -symmetry

[PT ,H] = 0
∧

PT Φ(λ, κ)

{
= Φ(λ, κ) for (λ, κ) ∈ UPT
6= Φ(λ, κ) for (λ, κ) ∈ UbPT

(λ, κ) ∈ U PT ⇒ real eigenvalues
(λ, κ) ∈ UbPT ⇒ eigenvalues in complex conjugate pairs



Introduction into PT-QM Deformed quantum spin chains Deformed Calogero models Def. KdV/Ito Conclusions

Deformed quantum spin chains (Exact Results, N = 2)

The two site Hamiltonian

H = −1
2

[σz
1 + σz

2 + 2λσx
1σ

x
2 + iκ (σx

2 + σx
1)]

= −1
2

[σz ⊗ I + I⊗ σz + 2λσx ⊗ σx + iκ (I⊗ σx + σx ⊗ I)]

= −


−1 iκ

2
iκ
2 λ

iκ
2 0 λ iκ

2
iκ
2 λ 0 iκ

2
λ iκ

2
iκ
2 −1


with periodic boundary condition σx

N+1 = σx
1

domain of unbroken PT -symmetry:
char. polynomial factorises into 1st and 3rd order
discriminant: ∆ = r2 − q3

q =
1
9

(
−3κ2 + 4λ2 + 3

)
, r =

λ

27

(
18κ2 + 8λ2 + 9

)
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Deformed quantum spin chains (Exact Results, N = 2)

UPT =
{
λ, κ : κ6 + 8λ2κ4 − 3κ4 + 16λ4κ2 + 20λ2κ2 + 3κ2 − λ2 ≤ 1

}
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Deformed quantum spin chains (Exact Results, N = 2)

Real eigenvalues:
[
θ = arccos

(
r/q3/2)]

ε1 = λ, ε2 = 2q
1
2 cos

(
θ
3

)
− λ

3 , ε3/4 = 2q
1
2 cos

(
θ
3 + π ∓ 1π

3

)
− λ

3

Avoided level crossing:
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Deformed quantum spin chains (Exact Results, N = 2)

Right eigenvectors of H :

|Φ1〉 = (0,−1,−1,0) |Φn〉 = (γn,−αn,−αn, βn) n = 2,3,4

αn = iκ (λ− εn + 1)
βn = κ2 + 2λ2 + 2λεn
γn = −κ2 − 2ε2

n + 2λ− 2λεn + 2εn

signature: s = (+,−,+,−)

P |Φn〉 = sn |Ψn〉

from relating left and right eigenvectors
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Deformed quantum spin chains (Exact Results, N = 2)

C-operator:

C =
∑

n

sn |Φn〉 〈Ψn|

=


C5 −C3 −C3 C4
−C3 −C1 − 1 −C1 C2
−C3 −C1 −C1 − 1 C2
C4 C2 C2 2(C1 + 1)− C5



C1 =
α2

4
N2

4
− α2

2
N2

2
− α2

3
N2

3
− 1

2 , C2 = α4β4
N2

4
− α2β2

N2
2
− α3β3

N2
3
,

C3 = α2γ2
N2

2
+

α3γ3
N2

3
− α4γ4

N2
4
, C4 = β2γ2

N2
2

+
β3γ3
N2

3
− β4γ4

N2
4
,

C5 =
γ2

2
N2

2
+

γ2
3

N2
3
− γ2

4
N2

4

N1 =
√

2, Nn =
√

2α2
n + β2

n + γ2
n for n =,2,3,4
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Deformed quantum spin chains (Exact Results, N = 2)

metric operator:

ρ = PC =


C5 −C3 −C3 C4
C3 1 + C1 C1 −C2
C3 C1 1 + C1 −C2
C4 C2 C2 2(1 + C1)− C5


• since iαi , β i , γ i ∈ R

⇒ C1, iC2, iC3,C4,C5 ∈ R
⇒ ρ is Hermitian ρ = ρ†

• EV of ρ:

y1 = y2 = 1, y3/4 = 1 + 2C1 ± 2
√

C1(1 + C1)

since C1 > 0 ⇒ ρ is positive
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Deformed quantum spin chains (Exact Results, N = 2)

square root of the metric operator:

η = ρ1/2 = UD1/2U−1

where D = diag(y1,y2,, y3,, y4), U = {r1, r2, r3, r4}

|r1〉 = (0,−1,1,0)
|r2〉 = (C4,0,0,1− C5),∣∣r3/4

〉
= (γ̃3/4, α̃3/4, α̃3/4, β̃3/4)

α̃3/4 = y3/4(C3C4 + C2(−4C1 + C5 − 1))/2− C3C4

β̃3/4 = −C2
3 − C1 − C1C5 +

(
C2

3 + C1(4C1 − C5 + 3)
)

y3/4,
γ̃3/4 = C1C4 − C2C3 + (C2C3 + C1C4)y3/4
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Deformed quantum spin chains (Exact Results, N = 2)

isospectral Hermitian counterpart:

h = ηHη−1

= µ1σx ⊗ σx + µ2σy ⊗ σy + µ3σz ⊗ σz + µ4(σz ⊗ I + I⊗ σz)

µ1, µ2, µ3, µ4 ∈ R

for λ = 0.1, κ = 0.5:

h =


−0.829536 0 0 −0.0606492
0 −0.0341687 −0.1341687 0
0 −0.1341687 −0.0341687 0
−0.0606492 0 0 0.897873
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Deformed quantum spin chains (Exact Results, N = 2)

The magnetization in the z-direction for N = 2:
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Deformed quantum spin chains (N 6= 2, perturbation theory)

Perturbation theory about the Hermitian part

H(λ, κ) = h0(λ) + iκh1 h0 = h†0,h1 = h†1 κ ∈ R

assume η = η† = eq/2 ⇒ solve for q

H† = eqHe−q = H+[q,H]+
1
2

[q, [q,H]]+
1
3!

[q, [q, [q,H]]]+· · ·

for c(`+1)
q (h0) = [q, . . . [q, [q,h0]] . . .] = 0 closed formulae:

h = h0+

[ `
2 ]∑

n=1

(−1)nEn

4n(2n)!
c(2n)

q (h0) H = h0−
[ `+1

2 ]∑
n=1

κ2n−1

(2n − 1)!
c(2n−1)

q (h0)

En ≡ Euler numbers, e.g. E1 = 1, E2 = 5, E3 = 61, . . .

κn =
1
2n

∑[(n+1)/2]

m=1
(−1)n+m

(
n

2m

)
Em

κ1 = 1/2, κ3 = −1/4, κ5 = 1/2, κ7 = −17/8, . . .
[C. F. de Morisson Faria, A.F., J. Phys. A39 (2006) 9269]
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Deformed quantum spin chains (N 6= 2, perturbation theory)

further assumption

q =
∞∑

k=1

κ2k−1q2k−1

solve recursively:

[h0,q1] = 2ih1

[h0,q3] =
i
6

[q1, [q1,h1]]

[h0,q5] =
i
6

[q1, [q3,h1]] +
i
6

[q3, [q1,h1]]− i
360

[q1, [q1, [q1, [q1,h1]]]]

Here

h0(λ) = −
∑N

i=1
(σz

i + λσx
i σ

x
i+1)/2, h1 = −

∑N

i=1
σx

i /2

Perturbation theory in λ

H(λ, κ) = h0(κ) + λh1 h0 6= h†0,h1 = h†1 λ ∈ R
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Deformed quantum spin chains (N 6= 2, perturbation theory)

exact result for N = 2 :

λ = 0.1, κ = 0.5:

h =


−0.829536 0 0 −0.0606492
0 −0.0341687 −0.1341687 0
0 −0.1341687 −0.0341687 0
−0.0606492 0 0 0.897873


λ = 0.9, κ = 0.1:

h =


−0.985439 0 0 −0.890532
0 −0.0094167 −0.909417 0
0 −0.909417 −0.0094167 0
−0.890532 0 0 1.00427
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Deformed quantum spin chains (N 6= 2, perturbation theory)

perturbative result 4th order for N = 2 :

λ = 0.1, κ = 0.5:

h =


−0.829534 0 0 −0.0606716
0 −0.0341688 −0.134169 0
0 −0.134169 −0.0341688 0
−0.0606716 0 0 0.897872


λ = 0.9, κ = 0.1:

h =


−0.985439 0 0 −0.890532
0 −0.0094167 −0.909417 0
0 −0.909417 −0.0094167 0
−0.890532 0 0 1.00427
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Deformed quantum spin chains (N 6= 2, perturbation theory)

- new notation:

SN
a1a2...ap :=

N∑
k=1

σa1
k σ

a2
k+1 . . . σ

ap
k+p−1, ai = x , y , z,u; i = 1, . . . ,p ≤ N

with σu = I to allow for non-local interactions
- for instance:

H(λ, κ) = −1
2

N∑
j=1

(σz
j + λσx

j σ
x
j+1 + iκσx

j ), λ, κ ∈ R

= −1
2

(SN
z + λSN

xx )− iκ
1
2

SN
x

- perturbative result for N = 3 :

h = µ3
xx (λ, κ)S3

xx + µ3
yy (λ, κ)S3

yy + µ3
zz(λ, κ)S3

zz + µ3
z(λ, κ)S3

z

+µ3
xxz(λ, κ)S3

xxz + µ3
yyz(λ, κ)S3

yyz + µ3
zzz(λ, κ)S3

zzz
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Deformed quantum spin chains (N 6= 2, perturbation theory)

- perturbative result for N = 4 :

h = µ4
xx (λ, κ)S4

xx + ν4
xx (λ, κ)S4

xux + µ4
yy (λ, κ)S4

yy + ν4
yy (λ, κ)S4

yuy

+µ4
zz(λ, κ)S4

zz + ν4
zz(λ, κ)S4

zuz + µ4
z(λ, κ)S4

z + µ4
xzx (λ, κ)S4

xzx

+µ4
xxz(λ, κ)(S4

xxz + S4
zxx ) + µ4

yyz(λ, κ)(S4
yyz + S4

zyy )

+µ4
yzy (λ, κ)S4

yzy + µ4
zzz(λ, κ)S4

zzz + µ4
xxxx (λ, κ)S4

xxxx

+µ4
yyyy (λ, κ)S4

yyyy + µ4
zzzz(λ, κ)S4

zzzz + µ4
xxyy (λ, κ)S4

xxyy

+µ4
xyxy (λ, κ)S4

xyxy + µ4
zzyy (λ, κ)S4

zzyy + µ4
zyzy (λ, κ)S4

zyzy

+µ4
xxzz(λ, κ)S4

xxzz + µ4
xzxz(λ, κ)S4

xzxz

non-local terms
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PT-invariant Calogero-Moser-Sutherland models

Three possibilities to obtain PT-invariant Calogero models
1 Extended Calogero-Moser-Sutherland models
2 From constraint field equations
3 Deformed Calogero-Moser-Sutherland models
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Extended Calogero-Moser-Sutherland models

Calogero-Moser-Sutherland models (extended)

HBK =
p2

2
+
ω2

2

∑
i
q2

i +
g2

2

∑
i 6=k

1
(qi − qk )2 +i g̃

∑
i 6=k

1
(qi − qk )

pi

with g, g̃ ∈ R,q,p ∈ R`+1

[B. Basu-Mallick, A. Kundu, Phys. Rev. B62 (2000) 9927]

1 Representation independent formulation?
2 Other potentials apart from the rational one?
3 Other algebras apart from An, Bn or Coxeter groups?
4 Is it possible to include more coupling constants?
5 Are the extensions still integrable?
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Extended Calogero-Moser-Sutherland models

- Generalize Hamiltonian to:

Hµ =
1
2

p2 +
1
2

∑
α∈∆

g2
αV (α · q) + iµ · p

· Now ∆ is any root system
· µ = 1/2

∑
α∈∆ g̃αf (α · q)α, f (x) = 1/x V (x) = f 2(x)

[A. F., Mod. Phys. Lett. A21 (2006) 691, Acta P. 47 (2007) 44]
- Not so obvious that one can re-write

Hµ =
1
2

(p+iµ)2+
1
2

∑
α∈∆

ĝ2
αV (α·q), ĝ2

α =

{
g2

s + α2
s g̃2

s α ∈ ∆s
g2

l + α2
l g̃2

l α ∈ ∆l

⇒ Hµ = η−1hCalη with η = e−q·µ

- integrability follows trivially L̇ = [L,M]: L(p)→ L(p + iµ)
- computing backwards for any CMS-potential

Hµ =
1
2

p2 +
1
2

∑
α∈∆

ĝ2
αV (α · q) + iµ · p − 1

2
µ2

- µ2 = α2
s g̃2

s
∑
α∈∆s

V (α · q) +α2
l g̃2

l
∑
α∈∆l

V (α · q) only for V rational
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Extended Calogero-Moser-Sutherland models
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Constrained field equations→ complex Calogero models

From real fields to complex particle systems

i) No restrictions
e.g. Benjamin-Ono equation

ut + uux + λHuxx = 0 (*)

H ≡ Hilbert transform, i.e. Hu(x) = P
π

∫∞
−∞

u(x)
z−x dz

Then

u(x , t) =
λ

2

∑̀
k=1

(
i

x − zk
− i

x − z∗k

)
∈ R

satisfies (*) iff zk obeys the An-Calogero equ. of motion

z̈k =
λ2

2

∑
k 6=j

(zj − zk )−3

[H. Chen, N. Pereira, Phys. Fluids 22 (1979) 187]
[talk by J. Feinberg, PHHQP workshop VI, 2007, London ]
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Constrained field equations→ complex Calogero models

ii) restrict to submanifold
Theorem: [Airault, McKean, Moser, CPAM, (1977) 95 ]
Given a Hamiltonian H(x1, . . . , xn, ẋ1, . . . , ẋn) with flow

xi = ∂H/∂ẋi and ẍi = −∂H/∂xi i = 1, . . . ,n

and conserved charges Ij in involution with H,i.e.
{Ij ,H} = 0. Then the locus of grad I = 0 is invariant.
Example: Boussinesq equation

vtt = a(v2)xx + bvxxxx + vxx (**)

Then
v(x , t) = c

∑`

k=1
(x − zk )−2

satisfies (**) iff b=1/12, c=-a/2 and zk obeys

z̈k = 2
∑

j 6=k
(zj − zk )−3 ⇔ z̈k = −∂H

∂zi

żk = 1−
∑

j 6=k
(zj − zk )−2 ⇔ grad(I3 − I1) = 0



Introduction into PT-QM Deformed quantum spin chains Deformed Calogero models Def. KdV/Ito Conclusions

Constrained field equations→ complex Calogero models

ii) restrict to submanifold
Theorem: [Airault, McKean, Moser, CPAM, (1977) 95 ]
Given a Hamiltonian H(x1, . . . , xn, ẋ1, . . . , ẋn) with flow
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Constrained field equations→ complex Calogero models

[P. Assis and A.F., J. Phys. A42 (2009) 425206]
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Calogero-Moser-Sutherland models (deformed)

Consider

Antilinearly invariant deformed Calogero model

HPT CMS =
p2

2
+

m2

16

∑
α∈∆s

(α · q̃)2 +
1
2

∑
α∈∆

gαV (α · q̃), m,gα ∈ R
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Calogero-Moser-Sutherland models (deformed)

Define deformed coordinates (A2)

q1 → q̃1 = q1 cosh ε + i
√

3(q2 − q3) sinh ε
q2 → q̃2 = q2 cosh ε + i

√
3(q3 − q1) sinh ε

q3 → q̃3 = q3 cosh ε + i
√

3(q1 − q2) sinh ε

With standard 3D representation for the simple A2-roots
α1 = {1,−1,0}, α2 = {0,1,−1}, qij := qi − qj compute

α1 · q̃ = q12 cosh ε− ı√
3

(q13 + q23) sinh ε,

α2 · q̃ = q23 cosh ε− ı√
3

(q21 + q31) sinh ε,

(α1 + α2) · q̃ = q13 cosh ε+
ı√
3

(q12 + q32) sinh ε.

Symmetries:

S1 : q1 ↔ q2, q3 ↔ q3, ı→ −ı,
S2 : q2 ↔ q3, q1 ↔ q1, ı→ −ı.
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Calogero-Moser-Sutherland models (deformed)

Note, this Hamiltonian also results from deforming the roots:

α1 → α̃1 = α1 cosh ε + i
√

3 sinh ελ2

α2 → α̃2 = α2 cosh ε − i
√

3 sinh ελ1

Thus

HPT CMS =
p2

2
+

m2

16

∑
α̃∈∆̃s

(α̃ · q)2 +
1
2

∑
α̃∈∆̃

gα̃V (α̃ · q), m,gα̃ ∈ R

=
p2

2
+

m2

16

∑
α∈∆s

(α · q̃)2 +
1
2

∑
α∈∆

gαV (α · q̃), m,gα ∈ R

Symmetries:

σε1 : α̃1 ↔ −α̃1, α̃2 ↔ α̃1 + α̃2 ⇔ q1 ↔ q2, q3 ↔ q3, ı→ −ı
σε2 : α̃2 ↔ −α̃2, α̃1 ↔ α̃1 + α̃2 ⇔ q2 ↔ q3, q1 ↔ q1, ı→ −ı
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General strategy, the construction procedure

Construction of antilinear deformations
Involution ∈ W ≡ Coxeter group⇒ deform in antilinear way
Find a linear deformation map:

δ : ∆→ ∆̃(ε) α 7→ α̃ = θεα

αi ∈ ∆ ⊂ Rn, α̃i(ε) ∈ ∆̃(ε) ⊂ Rn ⊕ ıRn, ε ∈ R
Find a second map that leaves ∆̃(ε) invariant

$ : ∆̃(ε)→ ∆̃(ε), α̃ 7→ ωα̃

(i) $ : α̃ = µ1α1 + µ2α2 7→ µ∗1ωα1 + µ∗2ωα2 for µ1, µ2 ∈ C
(ii) $ ◦$ = I
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General strategy, the construction procedure

Make the following assumptions
(i) ω decomposes as

ω = τ ω̂ = ω̂τ

with ω̂ ∈ W, ω̂2 = I and complex conjugation τ
(ii) there are at least two different ωi with i = 1,2, . . .
(iii) there is a similarity transformation

ωi := θεω̂iθ
−1
ε = τ ω̂i , for i = 1, . . . , κ ≥ 2

(iv) θε is an isometry for the inner products on ∆̃(ε) therefore

θ∗ε = θ−1
ε and det θε = ±1

(v) in the limit ε→ 0 we recover the undeformed case

lim
ε→0

θε = I
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Solutions for complex root systems

Many solutions were constructed
∆̃(ε) for A3

θε = r0I + r2σ
2 + ır1

(
σ − σ3

)
with explicit representation

σ1 =

 −1 0 0
1 1 0
0 0 1

 , σ2 =

 1 1 0
0 −1 0
0 1 1

 ,

σ3 =

 1 0 0
0 1 1
0 0 −1

 , σ =

 −1 −1 0
1 1 1
0 −1 −1

 ,

σ− = σ1σ3, σ+ = σ2, σ = σ−σ+

θε =

 r0 − ır1 −2ır1 −ır1 − r2
2ır1 r0 − r2 + 2ır1 2ır1

−ır1 − r2 −2ır1 r0 − ır1
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Solutions for complex root systems

all constraints require

(r0 + r2)
[
(r0 + r2)2 − 4r2

1

]
= 1

r0 − r2 + 2r1 = (r0 − r2 + 2r1) (r0 + r2)

(r0 + r2) = (r0 − r2)2 − 4r2
1

these are solved by

r0(ε) = cosh ε, r1(ε) = ±
√

cosh2 ε− cosh ε, r2(ε) = 1−cosh ε

⇒ simple deformed roots

α̃1 =cosh εα1 + (cosh ε− 1)α3−ı
√

2
√

cosh ε sinh
( ε

2

)
(α1+2α2+α3) ,

α̃2 =(2 cosh ε− 1)α2 + 2ı
√

2
√

cosh ε sinh
( ε

2

)
(α1 + α2 + α3) ,

α̃3 =cosh εα3 + (cosh ε− 1)α1−ı
√

2
√

cosh ε sinh
( ε

2

)
(α1+2α2+α3) .

remaining positive roots
α̃4 := α̃1 + α̃2, α̃5 := α̃2 + α̃3, α̃6 := α̃1 + α̃2 + α̃3.
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Solutions for complex root systems

∆̃(ε) for A4n−1-subseries
closed solution

θε = r0I + r2nσ
2n + ırn

(
σn − σ−n) ,

- with r2n = 1− r0, rn = ±
√

r2
0 − r0

- useful choice r0 = cosh ε
∆̃(ε) for E6

θε =



r0 −2ır2 0 −2ır2 −2ır2 −ır2
2ır2 r0 + ır2 2ır2 2ır2 2ır2 2ır2
0 2ır2 r0 + 2ır2 4ır2 3ır2 2ır2
−2ır2 −2ır2 −4ır2 r0 − 5ır2 −4ır2 −2ır2
2ır2 2ır2 3ır2 4ır2 r0 + 2ır2 0
−ır2 −2ır2 −2ır2 −2ır2 0 r0


r2 = ±1/

√
3
√

r2
0 − 1 , r0 = cosh ε

∆̃(ε) for B2n+1-subseries
no solution based on factorisation of the Coxeter element
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Solutions for complex root systems

with different ωi we find for instance for B2n+1

α̃2j−1 = cosh εα2j−1 + i sinh ε

α2j−1 + 2
∑̀
k=2j

αk

 for j = 1, . . . ,n,

α̃2j = cosh εα2j − i sinh ε

2j+2∑
k=2j

αk + 2
∑̀

k=2j+3

2αk

 for j = 1, . . . ,n − 1,

α̃`−1 = cosh ε(α`−1 + α`)− α` − i sinh ε (α`−2 + α`−1 + α`) ,

α̃` = α`.

in dual space

θ?ε =


R

R 0
R

0
. . .

1

 with R =

(
cosh ε i sinh ε
−i sinh ε cosh ε

)
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Construction of new models

For any model based on roots, these deformed roots can be
used to define new invariant models simply by

α→ α̃.

For instance Calogero models:
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Properties of invariant CMS-models

• Physical properties (A2, G2)
The deformed model can be solved by separation of
variables as the undeformed case.
Some restrictions cease to exist, as the wavefunctions are
now regularized.
⇒ modified energy spectrum:

E = 2 |ω| (2n + λ+ 1)

becomes

E±n` = 2|ω|
[
2n + 6(κ±s + κ±l + `) + 1

]
for n, ` ∈ N0,

with κ±s/l = (1±
√

1 + 4gs/l)/4

[A. Fring and M. Znojil, J. Phys. A41 (2008) 194010]
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The generic case

• generalized Calogero Hamiltionian (undeformed)

HC(p,q) =
p2

2
+
ω2

4

∑
α∈∆+

(α · q)2 +
∑
α∈∆+

gα
(α · q)2 ,

• define the variables

z :=
∏
α∈∆+

(α · q) and r2 :=
1

ĥt`

∑
α∈∆+

(α · q)2,

ĥ ≡ dual Coxeter number, t` ≡ `-th symmetrizer of I
• Ansatz:

ψ(q)→ ψ(z, r) = zκ+1/2ϕ(r)

⇒ solution for κ = 1/2
√

1 + 4g.

ϕn(r) = cn exp

−
√

ĥt`
2
ω

2
r2

La
n

√ ĥt`
2
ωr2

 .

La
n(x) ≡ Laguerre polynomial, a =

(
2 + h + h

√
1 + 4g

)
l/4− 1
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The generic case

• eigenenergies

En =
1
4

[(
2 + h + h

√
1 + 4g

)
l + 8n

]√ ĥt`
2
ω

• anyonic exchange factors

ψ(q1, . . . ,qi ,qj , . . .qn) = eıπsψ(q1, . . . ,qj ,qi , . . .qn), for 1 ≤ i , j ≤ n,

with
s =

1
2

+
1
2

√
1 + 4g

∵ r is symmetric and z antisymmetric
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The generic case

The construction is based on the identities:∑
α,β∈∆+

α · β
(α · q)(β · q)

=
∑
α∈∆+

α2

(α · q)2 ,

∑
α,β∈∆+

(α · β)
(α · q)

(β · q)
=

ĥh`
2

t`,∑
α,β∈∆+

(α · β) (α · q)(β · q) = ĥt`
∑
α∈∆+

(α · q)2,

∑
α∈∆+

α2 = `ĥt`.

Strong evidence on a case-by-case level, but no rigorous proof.
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The generic case

• antilinearly deformed Calogero Hamiltionian

HadC(p,q) =
p2

2
+
ω2

4

∑
α̃∈∆̃+

(α̃ · q)2 +
∑
α̃∈∆+

gα̃
(α̃ · q)2

• define the variables

z̃ :=
∏
α̃∈∆̃+

(α̃ · q) and r̃2 :=
1

ĥt`

∑
α̃∈∆̃+

(α̃ · q)2

• Ansatz
ψ(q)→ ψ(z̃, r̃) = z̃sϕ(r̃)

when identies still hold⇒

ψ(q) = ψ(z̃, r) = z̃sϕn(r)

eigenenergies with different constraints (only performed for
ground state)
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ĥt`

∑
α̃∈∆̃+

(α̃ · q)2

• Ansatz
ψ(q)→ ψ(z̃, r̃) = z̃sϕ(r̃)

when identies still hold⇒

ψ(q) = ψ(z̃, r) = z̃sϕn(r)

eigenenergies with different constraints (only performed for
ground state)



Introduction into PT-QM Deformed quantum spin chains Deformed Calogero models Def. KdV/Ito Conclusions

The generic case

• antilinearly deformed Calogero Hamiltionian

HadC(p,q) =
p2

2
+
ω2

4

∑
α̃∈∆̃+

(α̃ · q)2 +
∑
α̃∈∆+

gα̃
(α̃ · q)2

• define the variables

z̃ :=
∏
α̃∈∆̃+

(α̃ · q) and r̃2 :=
1
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Anyonic exchange factors

Deformed A3-models

• potential from deformed Coxeter group factors
α1 = {1,−1,0,0}, α2 = {0,1,−1,0}, α3 = {0,0,1,−1}

α̃1 · q = q43 + cosh ε(q12 + q34)− ı
√

2 cosh ε sinh
ε

2
(q13 + q24)

α̃2 · q = q23(2 cosh ε− 1) + ı2
√

2 cosh ε sinh
ε

2
q14

α̃3 · q = q21 + cosh ε(q12 + q34)− ı
√

2 cosh ε sinh
ε

2
(q13 + q24)

α̃4 · q = q42 + cosh ε(q13 + q24) + ı
√

2 cosh ε sinh
ε

2
(q12 + q34)

α̃5 · q = q31 + cosh ε(q13 + q24) + ı
√

2 cosh ε sinh
ε

2
(q12 + q34)

α̃6 · q = q14(2 cosh ε− 1)− ı
√

2 cosh ε sinh
ε

2
q23

notation qij = qi − qj , No longer singular for qij = 0
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Anyonic exchange factors

• PT -symmetry for α̃

σε− : α̃1 → −α̃1, α̃2 → α̃6, α̃3 → −α̃3, α̃4 → α̃5, α̃5 → α̃4, α̃6 → α̃2

σε+ : α̃1 → α̃4, α̃2 → −α̃2, α̃3 → α̃5, α̃4 → α̃1, α̃5 → α̃3, α̃6 → α̃6

• PT -symmetry in dual space

σε− : q1 → q2, q2 → q1, q3 → q4, q4 → q3, ı→ −ı
σε+ : q1 → q1, q2 → q3, q3 → q2, q4 → q4, ı→ −ı

⇒

σε−z̃(q1,q2,q3,q4) = z̃∗(q2,q1,q4,q3) = z̃(q1,q2,q3,q4)

σε+z̃(q1,q2,q3,q4) = z̃∗(q1,q3,q2,q4) = −z̃(q1,q2,q3,q4)

ψ(q1,q2,q3,q4) = eıπsψ(q2,q4,q1,q3).
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Anyonic exchange factors

Anyonic exchange factors in the 4-particle scattering process

u u u uw x y z

q1 q2 q3 q4
= eıπs u u u uw x y z

q2 q4 q1 q3

u uu ux y z

q2 = q3q1 q4
= eıπs u uu ux y z

q2 q1 = q4 q3

uu uux y

q1 = q2 q3 = q4
= eıπs uu uux y

q1 = q3 q2 = q4

uuu ux y

q1 = q2 = q3 q4
= u uuux y

q4 q1 = q2 = q3
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Hermitian isospectral counterparts and metric

Find Hermitian counterpart h, Dyson map η and metric ρ:

h = ηHη−1 = h† = (η−1)†H†η† ⇔ H†ρ = ρH with ρ = η†η

Some B`-models correspond to complex rotations(
z̃i

z̃j

)
= Rij

(
zi

zj

)
= ηij

(
zi

zj

)
η−1

ij , for z ∈ {x ,p}, ηij = eε(xi pj−xj pi )

For instance for:

θ?ε =


R

R 0
R

0
. . .

1

 with R =

(
cosh ε i sinh ε
−i sinh ε cosh ε

)

we have
H0(p, x) = ηHε(p, x)η−1

with
η = η−1

12 η
−1
34 η

−1
56 . . . η

−1
(`−2)(`−1)
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Hermitian isospectral counterparts and metric

Find Hermitian counterpart h, Dyson map η and metric ρ:

h = ηHη−1 = h† = (η−1)†H†η† ⇔ H†ρ = ρH with ρ = η†η

Some B`-models correspond to complex rotations(
z̃i

z̃j

)
= Rij

(
zi

zj

)
= ηij

(
zi

zj

)
η−1
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Hermitian isospectral counterparts and metric

For B5

θ?ε =


r0 −iϑ iϑ 1− r0 0
iϑ r0 1− r0 −iϑ 0
−iϑ 1− r0 r0 iϑ 0

1− r0 iϑ −iϑ r0 0
0 0 0 0 1

 .

we find

x̃ = θ?εx = R−1
24 R13R34R−1

12 x = ηxη−1, with η = η−1
24 η13η34η

−1
12 .

In general this is an open problem.
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General deformation prescription:
PT -anti-symmetric quantities:

PT : φ(x , t) 7→ −φ(x , t) ⇒ δε : φ(x , t) 7→ −i[iφ(x , t)]ε

Two possibilities for the KdV Hamiltonian

δ+
ε : ux 7→ ux ,ε := −i(iux )ε or δ−ε : u 7→ uε := −i(iu)ε,

such that

H+
ε = −β

6
u3− γ

1 + ε
(iux )ε+1 H−ε =

β

(1 + ε)(2 + ε)
(iu)ε+2+

γ

2
u2

x

with equations of motion

ut + βuux + γuxxx ,ε = 0 ut + iβuεux + γuxxx = 0
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TheH+
ε -models

Broken PT -symmetric rational solutions for H+
1/3

Different Riemann sheets for A = (1− i)/4, c = 1, β = 2 + 2i
and γ = 3
(a) u(1)

(b) u(2)
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TheH+
ε -models

PT -symmetric trigonometric/hyperbolic solutions

A = 4,B = 2, c = 1, β = 2 and γ = 3
(a) H+

−1/2

(b) H+
−2/3
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TheH+
ε -models

Broken PT -symmetric trigonometric solutions for H+
−1/2

(a) Spontaneously broken PT -symmetry with A = 4 + i ,
B = 2− 2i , c = 1, β = 3/10 and γ = 3
(b) broken PT -symmetry with A = 4, B = 2, c = 1, β = 3/10
and γ = 3 + i
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TheH+
ε -models

Elliptic solutions for H+
−1/2:

(a) PT -symmetric with A = 1, B = 3, C = 6, β = 3/10, γ = −3
and c = 1
(b) spontaneously broken PT -symmetry with A = 1 + i ,
B = 3− i , C = 6, β = 3/10, γ = −3 and c = 1
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TheH−ε -models

The H−ε -models
Integrating twice gives now:

u2
ζ =

2
γ

(
κ2 + κ1u +

c
2

u2 − β iε

(1 + ε)(2 + ε)
u2+ε

)
=: λQ(u)

where
λ = − 2βiε

γ(1 + ε)(2 + ε)

For κ1 = κ2 = 0

u (ζ) =

 c(ε+ 1)(ε+ 2)

iεβ
[
cosh

(√
cε(ζ−ζ0)√

γ

)
+ 1
]
1/ε
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TheH−ε -models

H−2 :
≡ complex version of the modified KdV-equation
H−4 :
assume Q(u) = u2(u2 − B2)(u2 − C2), possible for

κ1 = κ2 = 0, B = iC and C4 =
15c
β

eigenvalues of Jacobian:

j1 = ±i
√

rλr2
B exp

[
i
2

(4θB + θλ)

]
j2 = ∓i

√
rλr2

B exp
[
− i

2
(4θB + θλ)

]
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TheH−ε -models

Broken PT -symmetric solution for H−4 :

(a) star node at the origin for c = 1, β = 2 + i3, γ = 1 and
B = (15/2 + i3)1/4

(b) centre at the origin for c = 1, β = 2 + i3, γ = −1 and
B = (30/13− i45/13)1/4
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Relation to quantum mechanical Hamiltonians

Reduction to quantum mechanical Hamiltonians:
Again we can relate to simple quantum mechanical models:
The identification

u → x , ζ → t , κ1 = 0, κ2 = γE , and β = γg(1+ε)(2+ε)

relates H−ε to

H = E =
1
2

p2 − c
2γ

x2 + gx2(ix)ε

For c = 0 these are the "classical models" studied in
[C. Bender, S. Boettcher, Phys. Rev. Lett. 80 (1998) 5243]
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Relation to quantum mechanical Hamiltonians

Reduction of the H−2 -model

H−2 [u] =
β

12
u4 +

γ

2
u2

x

Twice integrated equation of motion:

u2
ζ =

2
γ

(
κ2 + κ1u +

c
2

u2 + β
1

12
u4
)

=: λQ(u)

Reduction u → x , ζ → t

κ1 = −γτ, κ2 = γEx , β = −3γg and c = −γω2

Quartic harmonic oscillator of the form

H = Ex =
1
2

p2 + τx +
ω2

2
x2 +

g
4

x4

Boundary cond.: κ1 = τ = 0, lim
ζ→∞

u(ζ) = 0, lim
ζ→∞

ux (ζ) =
√

2Ex

[A.G. Anderson, C. Bender, U. Morone, arXiv:1102.4822]

Note: Ex 6= Eu(a)



Introduction into PT-QM Deformed quantum spin chains Deformed Calogero models Def. KdV/Ito Conclusions

Relation to quantum mechanical Hamiltonians

Reduction of the H−2 -model

H−2 [u] =
β

12
u4 +

γ

2
u2

x

Twice integrated equation of motion:

u2
ζ =

2
γ

(
κ2 + κ1u +

c
2

u2 + β
1

12
u4
)

=: λQ(u)

Reduction u → x , ζ → t

κ1 = −γτ, κ2 = γEx , β = −3γg and c = −γω2

Quartic harmonic oscillator of the form

H = Ex =
1
2

p2 + τx +
ω2

2
x2 +

g
4

x4

Boundary cond.: κ1 = τ = 0, lim
ζ→∞

u(ζ) = 0, lim
ζ→∞

ux (ζ) =
√

2Ex

[A.G. Anderson, C. Bender, U. Morone, arXiv:1102.4822]

Note: Ex 6= Eu(a)



Introduction into PT-QM Deformed quantum spin chains Deformed Calogero models Def. KdV/Ito Conclusions

Relation to quantum mechanical Hamiltonians

Reduction of the H−2 -model

H−2 [u] =
β

12
u4 +

γ

2
u2

x

Twice integrated equation of motion:

u2
ζ =

2
γ

(
κ2 + κ1u +

c
2

u2 + β
1

12
u4
)

=: λQ(u)

Reduction u → x , ζ → t

κ1 = −γτ, κ2 = γEx , β = −3γg and c = −γω2

Quartic harmonic oscillator of the form

H = Ex =
1
2

p2 + τx +
ω2

2
x2 +

g
4

x4

Boundary cond.: κ1 = τ = 0, lim
ζ→∞

u(ζ) = 0, lim
ζ→∞

ux (ζ) =
√

2Ex

[A.G. Anderson, C. Bender, U. Morone, arXiv:1102.4822]

Note: Ex 6= Eu(a)



Introduction into PT-QM Deformed quantum spin chains Deformed Calogero models Def. KdV/Ito Conclusions

Ito type systems

Ito type systems and its deformations
Coupled nonlinear system

ut + αvvx + βuux + γuxxx = 0, α, β, γ ∈ C,
vt + δ(uv)x + φvxxx = 0, δ, φ ∈ C

Hamiltonian for δ = α

HI = −α
2

uv2 − β

6
u3 +

γ

2
u2

x +
φ

2
v2

x

PT -symmetries:

PT ++ : x 7→ −x , t 7→ −t , i 7→ −i ,u 7→ u, v 7→ v for α, β, γ, φ ∈ R
PT +− : x 7→ −x , t 7→ −t , i 7→ −i ,u 7→ u, v 7→ −v for α, β, γ, φ ∈ R
PT −+ : x 7→ −x , t 7→ −t , i 7→ −i ,u 7→ −u, v 7→ v for iα, iβ, γ, φ ∈ R
PT −− : x 7→ −x , t 7→ −t , i 7→ −i ,u 7→ −u, v 7→ −v for iα, iβ, γ, φ ∈ R
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Deformed models

Deformed models

H++
ε,µ = −α

2
uv2 − β

6
u3 − γ

1 + ε
(iux )ε+1 − φ

1 + µ
(ivx )µ+1

H+−
ε,µ =

α

1 + µ
u(iv)µ+1 − β

6
u3 − γ

1 + ε
(iux )ε+1 +

φ

2
v2

x

H−+
ε,µ = −α

2
uv2 − iβ

(1 + ε)(2 + ε)
(iu)2+ε +

γ

2
u2

x −
φ

1 + µ
(ivx )µ+1

H−−ε,µ =
α

1 + µ
u(iv)µ+1 − iβ

(1 + ε)(2 + ε)
(iu)2+ε +

γ

2
u2

x +
φ

2
v2

x

with equations of motion

ut + αvvx + βuux + γuxxx ,ε = 0, ut + αvµvx + βuux + γuxxx ,ε = 0,
vt + α(uv)x + φvxxx ,µ = 0, vt + α(uvµ)x + φvxxx = 0,

ut + αvvx + βuεux + γuxxx = 0, ut + αvµvx + βuεux + γuxxx = 0,
vt + α(uv)x + φvxxx ,µ = 0, vt + α(uvµ)x + φvxxx = 0.
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Some general conclusions
Non-Hermitian Hamiltonians describe physical systems
within a self-consistent quantum mechanical framework.
One can use this possibility to explore deformations of well
studied models, e.g. integrable systems.
There exist now experiments in optics for the broken
PT-regime.



Introduction into PT-QM Deformed quantum spin chains Deformed Calogero models Def. KdV/Ito Conclusions

Some general conclusions
Non-Hermitian Hamiltonians describe physical systems
within a self-consistent quantum mechanical framework.
One can use this possibility to explore deformations of well
studied models, e.g. integrable systems.
There exist now experiments in optics for the broken
PT-regime.



Introduction into PT-QM Deformed quantum spin chains Deformed Calogero models Def. KdV/Ito Conclusions

Some general conclusions
Non-Hermitian Hamiltonians describe physical systems
within a self-consistent quantum mechanical framework.
One can use this possibility to explore deformations of well
studied models, e.g. integrable systems.
There exist now experiments in optics for the broken
PT-regime.



Introduction into PT-QM Deformed quantum spin chains Deformed Calogero models Def. KdV/Ito Conclusions

Some general conclusions
Non-Hermitian Hamiltonians describe physical systems
within a self-consistent quantum mechanical framework.
One can use this possibility to explore deformations of well
studied models, e.g. integrable systems.
There exist now experiments in optics for the broken
PT-regime.



Introduction into PT-QM Deformed quantum spin chains Deformed Calogero models Def. KdV/Ito Conclusions

Special issue on quantum physics with non-Hermitian
operators to be published in Journal of Physics A:
Mathematical and Theoretical

guest editors:
Carl Bender, Andreas Fring, Uwe Guenther, Hugh Jones

The deadline for contributed papers will be 31 March 2012.
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Thank you for your attention
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