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General Motivation

How to define non-perturbatively complete string theory?

e String theory is defined by perturbation theory

* Despite of several candidates for non-perturbative formulations
(SFT, Matrix theory...), we are still in the middle of the way:

How to deal with the huge amount of string-theory vacua?
Where is the true vacuum? Which are meta-stable vacua?
How they decay into other vacua? How much is the decay rate?

» Stokes phenomenon is a bottom-up approach:

How to reconstruct the non-perturbatively complete string theory
from its perturbation theory?

* Here we study non-critical string theory. In particular, we will
see that the multi-cut matrix models provide a nice toy model
for this fundamental investigation.



Plan of the talk

Motivation for Stokes phenomenon (from physics)
a) Perturbative knowledge from matrix models
b) Spectral curves in the multi-cut matrix models

(new feature related to Stokes phenomena)

Stokes phenomena and isomonodromy systems
a) Introduction to Stokes phenomenon (of Airy function)
b) General k x k ODE systems

Stokes phenomena in non-critical string theory
a) Multi-cut boundary condition
b) Quantum Integrability

Summary and discussion



Main references

e[somonodromy theory and Stokes phenomenon to matrix models (especially of
[Moore '91]; [Maldacena—Moore—Seiberg—Shih

Airy and Painlevé cases)

'05]

e[somonodromy theory, Stokes phenomenon and the Riemann—Hilbert (inverse
monodromy) method (Painlevé cases: 2x2, Poincaré index r=2,3):
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[Its—Novokshenov '91]; [Fokas-Its-Kapaev-Novokshenov'06]

Alexander R. Its
Victor Yu. Novokshenov

The Isomonodromic
Deformation Method in the
Theory of Painlevé Equations

Hl

Painlevé
Transcendents

The Riemann-Hilbert
Approach

Athanassios S. Fokas
Alexander R. Its

Andrei A. Kapaev
Victor Yu. Novokshenov

[FIKN]



Main references

e Stokes phenomena in general kxk isom?nodro sthtze%S_] correspon

"11];

[Chan—HI-Yeh 4 12, in preparation]
eSpectral curves in the multi—cut matrix models

[Chan—HI-Shih—Yeh '09] ;[Chan—-HI-Yeh 1
"10]

ding to
Ye Chan—HI-Yeh 3

matrix models (general Poincaré index) ,

[CISY]



1. Motivation for Stokes phenomenon
(from physics)

Ref) Spectral curves in the multi-cut matrix models:
[CISY ‘09] [CIY1 ‘10]



Perturbative knowledge from matrix models

(Non-critical) String theory

F=InZz = Z

possible WS
(genus: n=0,1,---)

Large N expansion of matrix models

Continuum limit
ZMM _ /dMeN’(PV(M) — n
N x N matrices 7 /S
F=InZyny = Z N2~

Feynman Graph: G

(genus: n=0,1,--) Triangulation (Lattice Gravity)

N |
g = N (Large N expansion < Perturbation theory of string coupling g)

Matrix models know the world beyond the perturbation theory



Non-perturbative corrections D-instanton Chemical Potential

]-"—anNZg% 2F _|_ZQ eXp ZQQn—I—b —2 (]

\_n=0 ) U y,
Y Y
perturbative corrections non-perturbative (instanton) corrections

Perturbative amplitudes of WS :
P ” n_ CFT

WS with Boundaries
= open string theory

The overall weight s (=Chemical Potentials) are out of the perturbation theory

Let’s see more from the matrix-model viewpoints



1tr 1 >
N x-M

Spectral curve Resolvent: W(x) = <

Diagonalization: LITMU = diag(A1,Aa, -+, AN)

Z= fdMe"NW(M) Z= de/\ H(/\l. — AP NIV
i>]

In Large N limit (= semi-classical) N-body problem in the potential V

V(n)

The Resolvent op. allows us to read this information
| Al ()
,:' PN X | [ Jeuts

AN x - M XA e ,
i : ,: Eigenvalue density

20 3 18 QNS Y S S
spectral curve W(x +1€) = > ¢

Position of Cuts = Position of Eigenvalues




Why is it important? Spectral curve < Perturbative string theory

Perturbative correlators

W (21,29, " ,2,) = <ﬁ itr . ! 3 >C Wrgg)(J) e

are all obtained recursively from the resolvent

4 Topological Recursions [Eynard’04 Eynard-Orantin ‘07] )
()
Wit = ZBfas,-K(ZO'Z) Wn+2 ,2,]) + ZZ W1+|1| 1—|—n [1| (z,]\ )}
[ h=0 Ic]

l
. Oy — 15 0 :
\_  Input: W, (z)—]\}l_r)rgowl(z) , Klzo,z) ~ WQ()(zo,z) :Bergman Kernel /
Therefore, we symbolically write the free energy as

Fpert(C) = In Zpert(C) = Z g*" 2 Fa(C) (C . spectral curve)



Why is it important? | Spectral curve << Perturbative string theory

Non-perturbative corrections ny+no+ng+ng = N

W(x)=<1tr 1 > [ | 4, PR
M /| D-instanton Chemical Potential

ZEC)= Y

ny+--+ng=N :
\ » y, with some free parameters

Summation over all the possible configurations




What is the geometric meaning of the D-instanton chemical potentials?
the Position of “Eigenvalue” Cuts

[CIY 2 ‘10]
| W(x+ie)—W(x —ie)|dx =—-2rmip(x)dx € iR

\\

\\\\\\ I
But, we can also add ><\ ) ,>< Require!
infinitely long cuts :D

This gwes’ c;anist‘ralnts_ ond]

04

Later

A S

& T—’s’yste?’ns on Stokes ‘mulﬁrliers
“Physical cuts” as “Stokes lines of ODE” —»> Stokes phenomenon!

Re[p(x) — ¢'(x)] =0 (& p(x)dx €R)

From the Inverse monodromy (Riemann-Hilbert) problem [FIKN]
3 | =~ Stokes multipliers s_{l,1,j}



Why this is interesting?
The multi-cut extension [Crinkovic-Moore ‘91];[Fukuma-HI ‘06];[HI ‘09] !
1) Different string theories (ST)

in spacetime [CIY 1 ‘10];[CIY 2 “10];[CIY 3 ‘11] B “soooN Pt
F(PQ)=Fst1(PQ) X Fsr2(PLQ) =0 werennnnn- e )

<

-———

ST1 / N
ST 1 ‘” ‘lﬁ 7;‘&' ”é \g\\ \\3‘\\.
‘ P 9 ST 2 < Gluing the spectral curves (STs)
Non-perturbatively (Today’s topic)

2) Different perturbative string-theory vacua in the landscape:

b

A [CISY ‘09]; [CIY 2 ‘10]
o=

W~

< the Riemann-Hilbert problem

@x@

> T ([FIKN] for PII, 2-cut)

We can study the string-theory landscape from the first principle!




2. Stokes phenomenon
and isomonodromy systems

Ref) Stokes phenomena and isomonodromy systems
[Moore ‘91] [FIKN‘06] [CIY 2 “10]



The ODE systems for determinant operators (FZZT-branes)

Wix) = <1iftrx —1M> j> Wix) = édligfxgxn
= (e

g~ 0(eN—o0)
YP(x) ~ eed x

The resolvent, i.e. the spectral curve: W (x) = axgo(x)

Generally, this satisfies the following kind of linear ODE systems:

3_ g k-cut <& k x k matrix Q
S aw(x) — Q(X)I/)(X)I | [Fukuma-HI ‘06J;[CIY 2 ‘10]

For simplicity, we W Poincaré index r
2(x) =2, T2 x °+--4+2

B O a0 = diag(l, w, a)2, oo a)k—l)




Stokes phenomenon of Airy function
2

airy function: (775 — {)¥(©) =0 () = 4i(Q), Bi(£)

Bi() = e5'Ai(e3™) + e 5'Ai(e 3 ™)
~ 1
{™2" + ﬁ(e‘*C*)]

¢ — oo ;
o502 oo(_1)n(E)nll"(n+%)l“(n+§)

) e zﬁci [;) 21 \4

w N

n!

Asymptotic expansion!
This expansion is valid in ¢ — 00, |arg({)| <7 -

|Ai(2))

0

(from Wikxipedia’)

D=



Stokes phenomenon of Airy function

1. Asymptotic expansions are only applied in specific
Airy function: angular domains (Stokes sectors)
2. Differences of the expansions in the intersections are ;mé«)
only by relatively and exponentially small terms
{ — +00 ; P T 1
_ZCE / \
. e 3 / \
A~ —— 1+ )
2/ 14 ‘o, >
(validin ¢ — oo, |arg({)| <fr )
|
i Stokes multiplier Stokes Data Stokes sectors
C — O Xe (relatively) Exponentially small !
[1 1. .
20 Stokes sectors




Stokes phenomenon of Airy function
2

airy function: (775 — {)¥(©) =0 () = 4i(Q), Bi(£)
Bi({) = e5'Ai(es ™) + e~ ¢ Ai(e5™Y)

C—> +o0o A
. //’ \\\\ e‘?ﬁ B
AiQ) L b ———[1+-]
g7 - =
y A
Keep usin
! P € Stokes sectors
14 - ]
- A
27T

(validin § — 00, | —arg({)| < —

3 \ >
Stokes sectors




Stokes phenomenon of the ODE of the matrix models

Q(X) = Qoxr_l + ler_z + e Qr_lj

0
ga?ﬂ(x) = 2(x)Y(x) [ 2,=07, Q=diag(l, 0% ,0 ")

1) Complete basis of the asymptotic solutions:
1

j 0 D) :
P() = PP (x) = g V() es? ) e

(] — 19 2: R k) In the following, we skip this

2) Stokes sectors

3) Stokes phenomena
(relatively and exponentially small terms)

Y



Stokes phenomenon of the ODE of the matrix models

Q(X) — Qoxr_l + ler_z + e + Qr—l

P(x) = 2(x)P(x) 2,=07, Q=diag(1,w,w* 0" ")

ga

1) Complete basis of the asymptotic solutions: Spectral curve

<~ Perturb. String Theor
P =0 (x) = x0() L7"0) y

asym r

(j=1,2,--,k) o0(x) = 100X 4.

Here it is convenient to introduce r
Wogm () = (W50 (), -+, Pl () :

— (X(l)(x)’ ... ,X(k)(x)) exp [gcp(X)],\ ]

General solutions: e( )
Ye(x) = W, (x)C RSO

Superposition of wavefunction with different perturbative string theories



Stokes phenomenon of the ODE of the matrix models

2) Stokes sectors, and Stokes matrices

E.g.)r=2,5x5, y=2 (Z_5 symmetric)

’ (i (21; ?1) éi) 3)'--9 Stokes sectors

4| (1 (3 [9) 8’ Dn (n:O)]-)”')zrk_]-)

(1143 v 5 ||

(13 () f’r) 2 ) q’lZ(x)zl\I’asym(x)

3 145 i) 4) i|:py, 1

5 30) 0 [ 4 {b Woem(0) = (M), -+, xP(x)) exp[—cp(x)] 17
5123 |G 1 |: §

(22 2 él; ?1) é) Canonical solutions (exact solutions)

ET2r T (o TS89

2|2 G[5 1 \Pn(x) = \Ijasym(x) (X — 00 € Dn)
M4 (B2 |5 KEERTEThE
T34 ] D]2 3 U, (x) ~ W X

GBIn (G4l 4 - 3(x) asym (%) Stokes matrices
s i | U ()=, (x
513121 ] 4 |p —

5 0 35 nilln Wolx)~W,om(x) n'."l n
2[5 [&[3)]1 §| _ larger H he dominance

L‘0(2) Lp(S) Lp(4) ¢(3) ap(l)
e? | <le <le¥ | <e? | <le




Stokes phenomenon of the ODE of the matrix models

3) How to read the Stokes matrices? :Prifile of exponents [CIY 2 “10]

E.g.) r=2, 5x 5, y=2 (Z_5 symmetric) Stokes matrices

Wy (x) =WPo(x)S Uo(x)=¥,(x)S,

Tbm [CIYZ ‘10]

\

EI(il]')l < S1,j,i - hon-trivial
- J

Set of Stokes multipliers !




Inverse monodromy (Riemann-Hilbert) problem [FIKN]

Direct monodromy problem

0
g 5=h(x) = 20 (x)
0 X

Inverse monodromy problem

Consistency (Algebraic problem)

Given: Stokes matrices \

Woii(x) = an(x@

.

)

|
I
|
I
|
|
Given £ (X) :
! | Special Stokes multipliers
|
WKE ' | which satisfy physical constraints
2rk—1 | 1 | 1 |
Solve {\Ijn(X)}nr:O i \Pasym(x) — %(X) €Xp I:gcp(x)jl
Sk i -
e I
Obtain ! | Obtain
S =v_ (), (x) ! - -1
n n+1 n ' 2(x)= ga_qlasym(x) . qlasym(x)
. : X

|
I

\ Analytic problem




Algebraic relations of the Stokes matrices

1.7 k —symmetry condition K\ ? ,/ (01 \\
- 40 0o 1
- —1 e ==y | =
Sn+2r =T Snr ;”}\\ L 0 1J
\ Pl <N 1 .
2. Hermiticity condition ) ) i
AN 1
S*=ArS)} AT ' a- R
n (2r—1)k—n T Pl BN ] ki 1 )
l’,l 1 \\\§

3. Monodromy Free condition st difficult part!

S05182 "+ Sark1 = I | ((Wale*™x) = w,(x))

4. Physical constraint: The multi-cut boundary condition

This helps us to obtain solutions for general (k,r)




3. Stokes phenomenon
in non-critical string theory

Ref) Stokes phenomena and quantum integrability
[CIY2 “10][CIY3 “11]



Multi-cut boundary condition

SN y
T Y S p——— * ) \) i l‘ll ( - *
i //I \\§<
3-cut case (gq=1) 2-cut case (gq=2: pureSUGRA)

(2
~ ¥

~Jl
I

~ e? V(50 Re(¢) > 0




Stokes phenomenon of Airy function
2

airy function: (775 — ()Y@ =0 () = 4i(Q), Bi(£)
Bi() = e5'Ai(e3™) + e 5l Ai(e 3 ™)

t

Nofwo

¢ — +00 <:
A~ S [1+---]

2/ 4 —— >
(validin ¢ — 00, |arg({)| < )

wWIN

{ — 00 X e™

Ai({) =~

6—3¢7 +5¢2

i ]

-

7'y
Dominant!
—>

------------.&—)

Domi&! \

Change of dominance
(Stokes line)




Stokes phenomenon of Airy function

ﬁiry system < (2,1) topological minimal string theory \

Ai(x) = (det(x — X)) ~ es*™ W (x) =8, (x)

W(x £ie)=F+/x

<~ Eigenvalue cMe matrix model ¢ ----¢

discontinuity

\Physical cuts = lines with dominance change (Stokes lines) [\VIVISS ‘05] /
N

{ — 00 x e™

Ai({) =~

2
+§§2

M1+

Dominant! \

b\

Change of dominance
(Stokes line)




Multi-cut boundary condition [CIY 2 ‘10]

E.g.)r=2,5x5, y=2 (Z_5 symmetric)

N

@191
2) | 1]9)
123

O

T 19

™~

18
17

N

[ L
=
g
L

=
>
q
S
:‘:w\@c‘éﬂu

Ol AN
N
—
= (]

Qgﬁﬁq
B
»S:i‘?\‘&’ﬂ ®
=
 ERS

~
s

-~

SniS)

’L/)C(x) — \I"()C(O) = \I—‘lC(l) — .= \Ijzrkc(Zrk)

~ o/y(1) (1) 2) .(n) 3) .(n) 4) .(n) 5) (1)
—‘/’gs;)zﬁ +¢£13})/C2 +ngs3)zc3 +¢gsy)lc4 +’l/)gs3),C5

oI 1| 9

[

Rl (3N
G
3]

O
T
~
=

o~
—

Il b, (x >0 €D,)
1

51231
| 153

-~

All the horizontal lines are Stokes lines!  All lines are candidates of the cuts!

le(p(Z)l < |e¢(5)| < |e¢(4)| < |e¢(3)| < |e¢(1)|




Multi-cut boundary condition [CIY 2 ‘10]

E.g.)r=2,5x5, y=2 (Z_5 symmetric)

= =] o
\_//_\\-//‘L\
XX
I
*
J
/,

2

1

T
13
(3(1)](5 < | 3
(3 51 4) i We choose “k” of them &
s -t ' ! i
5 @[3 4 %] . as physical cuts!
@[5 |G| y
(i (21; (1) éi) % > | k-cut & kxkmatrix Q
(4 (1 () CH .S [Fukuma-HI ‘06];[CIY 2 ‘10]
1432
CEEEE | | 50w a0 = =7, 00D

0 0 0

somel ) PO D) w9 + R g
51(2]3) 1) § D, #0 0 =0
ABRIIGEI N 2 (x = 00 € D)

Constraints on Sn ‘C(n) — SnC(n+1)|

ICSO(Z)I < |€L'0(5)| < |e(p(4)| < |e(p(3)| < |e¢(1)|




Multi-cut boundary condition

SN y
T Y S p——— * ) \) i l‘ll ( - *
i //I \\§<
3-cut case (gq=1) 2-cut case (gq=2: pureSUGRA)

(2
~ ¥

~Jl
I

~ e? V(50 Re(¢) > 0




The set of non-trivial Stokes multipliers?
Use Prifile of dominant exponents [CIY 2 “10]

E.g.) r=2,5x5, y=2 (Z_5 symmetric)

Wy (x) = Wo(x)S,

L [ [2)[B]5)

1 | (1 )

1) 1

B | N 2 Sy = L+(0,3.
i

b | o1) | A

1
1

& J
Y

Set of Stokes multipliers !

> i i)

\

El(il]’)l < S1,j,i - hon-trivial
o J




Quantum integrability [CIY 3 ‘11
E.g.)r=2,5x5, y=2 (Z_5 symmetric)

_]_vl?ﬂ IC(n) — SnC(rH_l)‘
o [(@nd i 1=

=121 cf) ODE/IM correspondence [Dorey-Tateo ‘98];[J. Suzuki ‘99]
the Stokes phenomena of special Schrodinger equations

T — — T| satisfy the T-systems of quantum integrable models
?; 35 l —> Then, the equation becomes T-systems:
5 | (2 o,
2]%5 - Ta,s(u + 1)Ta,s(u o 1)
il(_‘*—/ | = Tos41(WTg 51 () + Ty s(W)Toq 5(u)
(11 ~ wil How about the other Stokes multipliers?
; k=rm+1
= - U —_
.Tz’l(u iﬁ 215 4 I y -
o L d.s \ujj_?é U
: = 1.1 0 4 k-m k
T ‘ —
Set of Stokes multipliers ! Ta,s (u) +




Complementary Boundary cond. [CIY 3 “11]
Shift the BC ! Iz.,'(n) —g "é'(n_|_1)|

E.g.) r=2,5x5, y=2 (Z_5 symmetric)

This equation only includes the Stokes multipliers of

EIIABEIKEL:
7 o o

| | [,],1

| Q I

i| é, _{7; ?5) 5155 22)|i--' Then, the equation becomes T-systems:

i3 5/ 1)) 2 4)|i;> = =

G IET: & Tps(u+1)T,(u—1)

I 512130 (4|1 |: . —_ —_ _

I(_Q D) ] ._‘ — a,s+1(u)Ta,s—1(u) + Ta+1,s(u)Ta—1,s(u)

| :

i R K€ g)ﬁ_ with the boundary condition:

Al Ges 44 — 1

i ! (3 4) (5 2)I|B > ;WI k — rm Zl

(G0 l6la]2 | -

|Uil 51123 =TT, .

| -

] "a.s\ua_?’éu
Generally there are “r” such BCs | . s
(Coupled multiple T-systems) T, (uW)=1 fem k



Solutions for multi-cut cases
(Ex: r=2, k=2m+1):

/ m-7|m-6|m5|m-4|m-3|m2|m-1l| m 3 (5] 1) (2 —l)x
s |l 716|543 ]|2]|1 (513)1(2(1)] 4
m-7|me6fm5|m4im-3|m-2|m-1| m 3 (2 3) (4 1)
g8 | 716 |5 |al3]|2]1 (2151 @4]3)] 1 ]

0 0)\x 2 2)\*

[21=6, =), 1= 67, [ =),

2 (2p) -
951 P) = Sym[n, {w" } ;] tcv21o0yicvs 1)

(Characters of the anti-Symmetric representation of GL)
In addition, they are “coupled multiple T-systems”

{n(,o); n(,z)};.” , are written with Young diagrams (avalanches):
1 1 -
9 DIXIXIXIXIXIXIXIDXTX] 1O
6 DXIXIXIXIXIXIXTX] 8
1 DXDXIXIXIXIXIX] 7
2 XIXIXIXIX] 5
1 XIXIX] 3 .




Summary

The D-instanton chemical potentials are the missing
information in the perturbative string theory.

This information is responsible for the non-perturbative
relationship among perturbative string-theory vacua, and
important for study of the string-theory landscape from the
first principle.

In non-critical string theory, this information is described by the
positions of the physical cuts.

The multi-cut boundary conditions, which turn out to be T-
systems of quantum integrable systems, can give a part of the
constraints on the non-perturbative system

Although physical meaning of the complementary BC is still
unclear (in progress [CIY 4 ‘12]), it allows us to obtain explicit
expressions of the Stokes multipliers.



discussions

1. Physical meaning of the Compl. BCs?
- The system is described not only by the resolvent?
We need other degree of freedom to complete the system?
(= FZZT-Cardy branes? [CIY 3 ‘11]; [CIY4’12 in progress])

2. D-instanton chemical potentials are determined by “strange
constraints” which are expressed as quantum integrability.
Are there more natural explanations of the multi-cut BC?

(= Use Duality? Strong string-coupling description?
- Non-critical M theory?, Gauge theory?)




Thank you for your attention!



