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& KPZ



A Random Surface

[Courtesy of G. Chapuy (2009)]



A Random Quadrangulation



Random Quadrangulation& Random Planar Map

Random MatricesBIPZ ’78; Ambjørn, Durhuus, Fr̈ohlich, Jonsson

’83-85; David ’85; Boulatov, Kazakov, Kostov, Migdal ’85...

Bijective Combinatorics Cori, Vauquelin ’81;Schaeffer ’97; Angel,

Schramm ’03; Bouttier, Di Francesco, Guitter ’04; Le Gall, Miermont...



Random Quadrangulations & Schaeffer Bijection
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Courtesy of E. Guitter (2009)



Random Quadrangulation& Conformal Map toD

In the continuum scaling limit:Liouville Quantum Gravity
A.M. Polyakov ’81

Correlation Functions Seiberg, ’90; Goulian, Li ’91; Ginsparg,

Moore ’93; Dorn, Otto ’94; Takhtajan ’95; Teschner ’95; Zamolodchikov2

’96; Fateev-ZZ ’00; Ponsot, Teschner ’02; Kostov, Ponsot, Serban ’04...



Random Quadrangulation& Random Sets & Paths

Ising, SAW,O(N) & Potts models:Random Matrix Models
Kazakov ’86;D. & Kostov ’88; Kostov; Daul; Eynard, Zinn-Justin2...

Bijective Combinatorics Chassaing & Schaeffer ’02;

Bousquet-Ḿelou & Schaeffer ’02; BDFG ’02; Bernardi & B.-M. ’09...

Continuum:Liouville Gravity & Conformal Field Theory



Thirty Years Ago—“There are methods and formulae in
science, which serve as master-keys to many apparently
different problems. The resources of such things have to be
refilled from time to time. In my opinion at the present time
we have to develop an art of handling sums over random
surfaces. These sums replace the old-fashioned (and
extremely useful) sums over random paths. The replacement
is necessary, because today gauge invariance plays the central
role in physics. Elementary excitations in gauge theories are
formed by the flux lines (closed in the absence of charges)
and the time development of these lines forms the world
surfaces. All transition amplitudes are given by the sums over
all possible surfaces with fixed boundary.”

A.M. POLYAKOV , Quantum geometry of bosonic strings,
Phys. Lett.B 103(3), 207–210 (1981).



Liouville Field Theory(POLYAKOV ’81)
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d2z

√

ĝ
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Background metriĉg & curvatureR̂

Quantum random metric:gab= eγhĝab

Quantum area:A =
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Q =
2
γ
+

γ
2
=

√

25−c
6

, c6 1

γ =
1√
6

(√
25−c−

√
1−c

)

=
√

κ∧16/κ 6 2 (SLEκ)



GAUSSIAN FREE FIELD

In order to separate out what is quite simple from what is complex,

and to arrange these matters methodically, we ought, in the case of every series

in which we have deduced certain facts the one from the other,to notice

which fact is simple, and to mark the interval, greater, less, or equal,

which separates all the others from this.

RENÉ DESCARTES, Rules for the Direction of the Mind, VI (1628-1629).



Gaussian Free Field (GFF)
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Distribution hwith Gaussian weightexp
[

−1
2(h,h)∇

]

, and
Dirichlet inner product in domainD

( f1, f2)∇ := (2π)−1
∫

D
∇ f1(z) ·∇ f2(z)d

2z

= Cov
(

(h, f1)∇,(h, f2)∇
)

♦ STARRING THE GFF! (Courtesy of N.-G. Kang)♦





L IOUVILLE QG

RANDOM MEASURE

dµ= “eγhd2z”
♦

THE EMERGENCE OFQUANTUM GRAVITY

(Courtesy of N.-G. Kang)

♦







Euclidean (Lebesgue) Measure(γ = 0)

Euclidean squares ofsame Lebesgue areaε2



Discrete Quantum Gravity Measure(γ = 1)

Random measure dµ= eγhd2z, γ = 1 with h discrete GFFon
a fine torus lattice. Euclidean squares ofsimilar quantum area
6 δ (= 2−12× total area).



Discrete Quantum Gravity Measure(γ = 3/2)

Euclidean squares ofsimilar quantum areaδ



GFF REGULARIZATION
& POTENTIAL THEORY

(Courtesy of N.-G. Kang)



Regularization: Circular Average of the GFF
hε(z) mean value ofh on circle ∂Bε(z)

D

z
0ε

εB(z)
’ε

ε

(h,ρ) :=
∫

D
h(y)ρ(y)d2y

hε(z) := (h,ρz
ε) = (h, f z

ε)∇

ρz
ε(·) uniform Dirac dist. of mass1 on circle∂Bε(z)



GFF Circular Average & Logarithmic Potential

−logf ~~

D

ε

B(z)

ε

ε

z

ε’ε

hε(z) := (h, f z
ε)∇

f z
ε(·) := − log(| ·−z|∨ ε)+Gz(·)

Gz(·) harmonic extension oflog| ·−z| in D



Potential & Covariance

D

z

ε0
z

ε

ε
1

B(z) 1

2εB(y)
2

ε

Cov
(

hε1(z),hε2(y)
)

= Cov
[

(h, f z
ε1
)∇,(h, f y

ε2)∇
]

= ( f z
ε1
, f y

ε2
)∇

hε(z) := (h, f z
ε)∇

f z
ε(·) := − log(| ·−z|∨ ε)+Gz(·)



• Regularization
hε(z) mean value ofh on circle ∂Bε(z)

• Variance

Varhε(z) = ( f z
ε, f z

ε)∇ = f z
ε(z) = log[C(z,D)/ε]

C(z,D) conformal radius ofD viewed fromz

hε(z) Gaussian random variable

Eeγhε(z) = eγ2Varhε(z)/2 =

(

C(z,D)

ε

)γ2/2



STOCHASTIC QUANTUM
AREA

dµε := exp
[

γhε(z)
]

εγ2/2d2z

converges to a random measure asε → 0 for

γ < 2

(Høegh-Krohn, ’71)



Boundary Liouville Quantum Gravity

D

0

D

D

ε

B(z)ε

• GFF withfree boundary conditionson ∂D;
• Half-circle averageŝhε(z).



QUANTUM AREA MEASURE

dµε := exp
[

γhε(z)
]

εγ2/2d2z

converges to a random measure asε → 0 for γ < 2.

QUANTUM BOUNDARY MEASURE

dµ̂ε := exp
[ γ

2
ĥε(z)

]

εγ2/4dz

converges to aboundaryrandom measure asε → 0

for γ < 2.
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KPZ RELATION

Knizhnik, Polyakov, Zamolodchikov ’88



“Dynamics of 2d gravity is very rich and even now not
completely explored. One of the problems was the field
-dependent cut-off which one must use in order to preserve
general covariance on the world sheet. I tried to overcome
this difficulty by using a different gauge. I found, quite
unexpectedly, the emergence of the SL(2,R) current algebra
and, in a subsequent joint paper by Sasha Zamolodchikov,
Dima Knizhnik and myself, this symmetry allowed us to find
the fractal dimensions of minimal models dressed by the
gravitational field. This work had a tragic element. Dima, my
fantastically talented graduate student, died of a sudden heart
failure before the work was done. I didn’t even know that he
was working on this subject. But after his death Sasha and I
read his notes and received a crucial insight, which allowed
us to finish the work.”

A.M. POLYAKOV, From Quarks to Strings, arXiv:0812.0183.



“A few years before this work Kazakov and David suggested
that the discrete version of 2d gravity can be described by the
various matrix models. It was hard to be certain that these
models really have a continuous limit described by the
Liouville theory, there were no proofs of this conjecture.To
our surprise we found that the anomalous dimensions coming
from our theory coincide with the ones computed from the
matrix model. That left no doubts that in the case of the
minimal models the Liouville description is equivalent to the
matrix one. This relation received a lot of attention.”

A.M. POLYAKOV, From Quarks to Strings, arXiv:0812.0183.



Scaling Exponents of (Random) Fractals inH

SAW in half plane - 1,000,000 steps 

ε

~
1

x2

x1

x

Probabilities & Hausdorff Dimensions(e.g.,SLEκ)

P≍ ε2x, P̃≍ εx̃, D = 2−2x2 (= 1+κ/8)



Discrete Quantum Gravity Measure(γ = 3/2)

Euclidean squares ofsimilar quantum areaδ



Quantum Gravity Scaling Exponents

P≍ δ∆, P̃≍ δ̃ ∆̃



KPZ ’88
x and∆ (x̃ and∆̃) are related by theKPZ formula

x=

(

1− γ2

4

)

∆+
γ2

4
∆2

KPZ is a Theorem [D. & Sheffield, ’08]

PRL102, 150603 (2009) & Invent. Math.185, 333 (2011)

Kazakov ’86; D. & Kostov ’88[Random matrices]
David; Distler & Kawai ’88 [Liouville field theory]
Benjamini & Schramm ’08; Rhodes & Vargas ’11[Math]
David & Bauer ’09



GFF & Brownian Motion

D

z
0ε

εB(z)
’ε

ε

• hε(z) mean value ofh on circle∂Bε(z)

• Definet :=−logε, B t := hε=e−t(z); for z fixed,

the law ofB t is standard Brownian motion in t

Var
[

(hε −hε′)(z)
]

= |log(ε/ε′)|= |t − t ′|= Var
[

B t−B t ′
]



GFF Liouville Weighted Measure

hε(z) = (h, f z
ε)∇ Varhε(z) = ( f z

ε, f z
ε)∇

exp

[

−1
2
(h,h)∇ + γ(h, f z

ε)∇

]

= exp

[

−1
2
(h′,h′)∇ +

γ2

2
( f z

ε, f z
ε)∇

]

= exp

[

−1
2
(h′,h′)∇

]

Eeγhε(z)

h
(in law)
= h′+ γ f z

ε (h′ standard GFF)

hε(z) = B t + γ f z
ε(z) •



Quantum Ball & Brownian Motion

Quantum area

• δ := exp
[

γhε(z)
]

πε2+γ2/2

Givenz, hε(z) is standard Brownian motionB t , t =−logε,
plus the deterministic term:-γ logε = γ t

δ = exp(γB t −at) , a := 2− γ2/2

− logδ = at − γB t (B. M. & drift)



TA t

A

Thestochastic areaof ball Bε(z) equalsδ atstopping timeTA

− logεA = TA := inf{t : at − γB t = A}
A :=− logδ > 0, a = 2− γ2/2> 0 (γ < 2)



Probability Distribution(γ =
√

8/3) [A= 2; 20; 200]

( )tA
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 /A
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t

PA(t)dt := P(TA ∈ [t, t +dt])

PA(t) =
A√
2π t3

exp

[

− 1
2t

(A−at)2
]



EUCLIDEAN SCALING EXPONENT

X a (random) fractal ofEuclidean scaling exponentx
(Hausdorff dimension 2−2x):

P{Bε(z)∩X 6= /0} ≍ ε2x

uniformly in z.

QUANTUM SCALING EXPONENT

Quantum scaling exponent∆ of X when(h,z) andX are
sampledindependentlyfrom thequantum gravity measure
andfrom the law ofX:

E P{BεA(z)∩X 6= /0} ≍ E
[

εA
2x]≍ δ∆



KPZ Theorem
Stochastic probability & stopping time

− logεA = TA = inf{t : at − γB t = A=− logδ}
εA

2x = exp(−2xTA)

BROWNIAN MARTINGALE & L ARGE DEVIATIONS

E
[

εA
2x] = E

[

e−2xTA
]

= exp(−∆A) = δ∆

2x = a∆+
γ2

2
∆2, a= 2− γ2

2
(KPZ)



Brownian Exponential Martingale Lemma

TA =− logεA is the first timet such that

at − γB t = A,

B t standard Brownian motion (B0 = 0). Consider for anyβ
theBrownian exponential martingale

E
[

exp(−βB t −β2t/2)
]

= E [exp(−βB0] = 1.



At the stopping timet = TA <+∞ in particular:

E
[

exp(−βBTA −β2TA/2)
]

= 1

By definitionγBTA = aTA−A, whence

E
(

exp[−(aβ/γ+β2/2)TA]
)

= exp(−βA/γ)

= E [exp(−2xTA)] 2x := aβ/γ+β2/2

∆ := β/γ; = a∆+
γ2

2
∆2



L IOUVILLE QUANTUM DUALITY

γ > 2, γ′ = 4/γ < 2





L IOUVILLE QUANTUM DUALITY

Baby-Universes: Das, Dhar, Sengupta, Wadia ’90; Jain &
Mathur 92; Korchemsky ’92; Alvarez-Gaumé, Barb́on,
Crnkovíc ’93; Durhuus ’94; Ambjørn, Durhuus, Jonsson ’94

The Other Branch of Gravity, Klebanov ’95

Dual Dimensions

γ > 2, γ′ = 4/γ < 2

∆γ −1 :=
4
γ2(∆γ ′ −1)

D. & Sheffield,PRL 102, 150603 (2009)



QG Measure(γ = 2)



QG Measure(γ = 5)



QG Measure(γ = 10)



Duality: γ > 2, γ′ := 4/γ < 2

γ & γ ′-Quantum Balls

Qγ ′ = Qγ :=
2
γ
+

γ
2

µγ ′(Bε(z)) = εγ ′Qeγ ′hε(z) = µγ(Bε(z))
γ ′/γ = µ4/γ2

γ

δ ′ = δ4/γ2



Dual Dimensions
Ball covering offractalX

Nγ ′(δ ′,X) = Nγ(δ,X)

δ ′∆γ ′−1 = δ(4/γ2)(∆γ ′−1) = δ∆γ−1

∆γ−1 :=
4
γ2(∆γ ′ −1)

“The other branch of gravity,”I. Klebanov, ’95



Brownian Approach to Duality

E[exp(−2xTA)1TA<∞] = exp(−βγ A) = δ∆γ

βγ(x) := (a2
γ +4x)1/2−aγ, ∆γ := βγ/γ

aγ :=
2
γ
− γ

2
< 0

P(TA < ∞) = E[1TA<∞] = δ∆γ(0) = δ1−4/γ2
= δ/δ′,

E[exp(−2xTA)1TA<∞]

E[1TA<∞]
= δ∆γ × δ′

δ
= δ ′∆γ ′ .
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