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Introduction

This talk is about scattering amplitudes in four-dimensional gauge

theories.
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Scattering amplitudes are fundamental observables and exhibit a

tremendous amount of structure.



N = 4 Super Yang-Mills Theory

N = 4 SYM is the most symmetric gauge theory in four dimensions.

AdS/CFT

N = 4 SYM ⇐⇒ Type IIB strings on AdS5×S
5

T −Duality

AdS

The theory is integrable in the planar limit N → ∞.

� Can we compute scattering amplitudes for any value of the ’t Hooft

coupling λ?



Kinematics 1

Scattering amplitudes are functions of the four-momenta {pµi } of the

incoming particles.
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These variables are constrained by

1)

�

i

pµi = 0 2) p2i = 0

encoding momentum conservation and on-shell condition.

� How can we solve these constraints?



Kinematics II

� Solve momentum conservation by dual coordinates

pµi = xµi+1 − xµi

forming a null polygon.
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� Solve null condition by introducing spinors

pαα̇ = pµσαα̇
µ =

�
p0 + p3 p1 − ip2

p1 + ip2 p0 − p3

�

det pαα̇ = 0 ⇒ pαα̇ = λαλ̄α̇



Twistor Space

Twistor space is CP3
with homogeneous coordinates ZA

= (λα, µα̇
).

Incidence Relations
µα̇

= ixαα̇λα
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Space-time Twistor Space

Conformal structure of space-time ↔ Complex structure on twistor space



Momentum Twistors Hodges

Any ordered set (Z1, . . . ,Zn) in twistor space determines a null polygon.

incidence relations
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� For N = 4 SYM promote twistor space to superspace CP3|4
with

homogeneous coordinates

ZA
= (ZA,χa

)



Examples

Removing momentum and supermomentum conserving delta-functions:

� The tree-level MHV amplitude is

AMHV
n =

1

�12��23� . . . �n1�

� All other amplitudes are of the form

A = AMHV
n ×

�

k=0

Mn,k

where Mn,k is of order χ4k
in the fermions.



Symmetries of Tree-level Amplitudes

Tree amplitudes are invariant under superconformal and dual
superconformal symmetries.
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They generate an infinite dimensional Yangian symmetry of psu(2, 2|4).

� This is the hallmark of integrability!



Symmetries of Loop Amplitudes

Dual superconformal symmetry is broken in loop amplitudes.

� The generators

D =
1

2

�
λα

∂

∂λα
− µα̇ ∂

∂µα̇

�
Kαα̇

= µα̇ ∂

∂λα

are broken by IR divergences.

� The generators

Q̄ α̇
a
= χa ∂

∂µα̇
Sαa

= χa ∂

∂λα

are broken even for finite IR safe quantities.

Anomalies
Understanding the anomalies is key to unlocking the S-matrix!



Amplitude–Wilson Loop Duality I

MHV amplitudes are dual to null polygonal Wilson loops.

T −Duality

AdS

Amplitude–WL Duality

MMHV
n =

�
trf P exp

�
A
�

� Discovered at strong coupling via T-duality in AdS/CFT. Alday, Maldacena

� Subsequently observed at weak coupling. Drummond, Henn, Korchemsky, Sokatchev



Amplitude–Wilson Loop Duality II
In twistor space we have a ‘holomorphic’ Wilson loop. Mason, Skinner
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Amplitude–WL Duality

Mn =
�
trP exp

�
ω ∧A

�

The extension beyond MHV is immediate in twistor space: CP3 → CP3|4
.

The action is then holomorphic Chern-Simons + interactions.

� S(A) =
�
Ω ∧ (A ∧ ∂̄A+

2
3A ∧A ∧A) + λ {interactions}



Loop Equations
Deformations of Wilson loop contour governed by loop equations.
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The expectation value
�
trP exp

�
ω ∧A

�
develops simple poles and

factorises when the curve intersects itself.
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Proof of Duality Bullimore, Skinner

Wilson loops have the same singularities as scattering amplitudes!



Yangian Symmetry from the Wilson loop

Integrate over the deformation parameter to derive recursion relations.

Mn = Mn−1 +

�

L,R
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=
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� Tree-level amplitudes are Yangian invariant Drummond, Henn, Plefka

� The integrands of loop corrections are Yangian invariant. Arkani-Hamed,

Bourjaily, Cachazo, Caron-Huot, Trnka

� What happens to the symmetries when we perform the integrals?



The D and K Anomaly

The symmetries D and K are broken by UV divergences of cusps.

Conformal Ward identities determine that Alday, Maldacena; Drummond, Henn, Korchemsky,

Sokatchev

Mn,k = e f (λ)M
1−loop
n × Rn,k

where f (λ) is the cusp anomalous dimension.

� The ration function Rn,k is dual conformal invariant.

� This completely fixes the answer for n = 4, 5.

The Ratio Function

The ratio function Rn,k is not dual super-conformal invariant.



The Q̄ Anomaly

The dual supersymmetry generators

Q̄ =

�

i

χi
∂

∂µi
and S =

�

i

χi
∂

∂λi

are broken in loop amplitudes even for the ratio function

Q̄ Rn,k �= 0 S Rn,k �= 0 .

The anomaly has a very different origin...

The Q̄ Anomaly Bullimore, Skinner

Q̄ = χ ∂
∂µ generates susy transformations of the self-dual theory only.



Perturbation Theory

To match perturbation theory must expand around the self-dual sector on

Wilson loop side.

Self–Dual YM

L = tr
�
GαβFαβ − λ

2G
αβGαβ

�
λ −→ 0

� Expectation value in self-dual theory is dual to all tree amplitudes

M(0)
n =

�
DX Wn e−S1(X )

� Expand around self-dual sector to generate loop expansion

Mn =

�
DX Wn e−S1(X )−λS2(X )

= M(0)
n + λM(1)

n + λ2 M(2)
n + · · ·



The Complete Q̄ Generator

The complete Q̄-generator has an exact one-loop correction

Q̄ = Q̄(0)
+ λ Q̄(1)

= χ
∂

∂µ
+ ?

� The correction does not have a geometric action on superspace.

� However its action on the component fields is well known:

�
Q̄(1),A

�
= i ψ

�
Q̄(1), ψ̄

�
= − i

2
[φ , φ ]

� This is enough to determine the anomaly.



The Q̄ Ward Identity

The anomaly is found by a standard Ward identity argument

n�

i=1

χi
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∂µi
Mn =
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Q̄(0),Wn
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= −
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Q̄(1),Wn

� �

=

�
dx tr

�
(ψ(x) + · · · )P exp

�
A
�

� The field insertions are excitations of GKP string with same

quantum numbers as Q̄.

� Connection to AdS/CFT and Integrability.



Descent Equations Bullimore, Skinner

In twistor space all excitations are repackaged into a universal collinear

limit operation
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� Expand in λ and compute loop corrections from tree amplitudes!

� However, both sides are divergent and need regularization...



The Ratio Function Caron-Huot, He

Divergences are controlled by D/K anomaly Mn,k = e−Γ(λ)M1−loop
n × Rn,k .

Derive equation for the ratio function
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2
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� Manifest transcendentality 2� for ratio function at �-loops.

� Powerful computational tool for small k .



Summary

� Compute scattering amplitudes in planar N = 4 SYM.

� Scattering amplitudes are dual to supersymmetric null polygonal

Wilson loops.

� Yangian symmetry at tree-level.

� Symmetries broken at loop-level but anomalies are useful.

� New progress in understanding Q̄ and S anomalies.

� Do these anomalies completely determine the ratio functions Rk,n?

� Connection to AdS/CFT and Integrability?


