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We will be interested in different observables of planar N = 4
super Yang-Mills.

A toy model for QCD: It can give non trivial information
about QCD but at the same time is more tractable.

Perturbative computations are much simpler.
The strong coupling regime can be studied through a weakly
coupled string sigma model.

Impressive developments over the last few years. Unexpected
structures, dualities and symmetries in many observables:

Wilson loops.
Scattering amplitudes.
Correlation functions.
Mixtures of them.
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N = 4 Super-Yang Mills (MSYM)

Most symmetric four dimensional (gauge) quantum field
theory.

SU(N) gauge group → fixed Lagrangian.

Conformal symmetry: SO(2, 4).

All particles are massless and in the adjoint representation:

A vector field (gluon/gauge field): Aµ.
Four complex fermions: ψA.
Six real scalars: ΦI , or three complex Z = Φ1 + iΦ2,...
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N = 4 Super-Yang Mills

Parametrized by N and g
YM

.

We will (mostly) focus in the planar limit: N � 1, λ = g2
YMN

fixed:

A(gYM ,N)→ A(λ)

Powerful tool to understand this theory: The AdS/CFT duality!
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AdS/CFT duality

AdS/CFT duality

Four dimensional maximally
SUSY Yang-Mills

( g
YM

, N ) ⇔

Type IIB string theory on
AdS5 × S5

( gs , R)

√
λ ≡

√
g2
YM

N =
R2

α′
1

N
≈ gs

SO(2, 4) conformal group↔ issommetry group of AdS5

The AdS/CFT is a very powerful computational tool!
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Consider F (λ):

The gauge theory is only good/reliable for λ� 1, where we
can use perturbation theory.

Gauge theory:

F (λ) = F (0) + λF (1) + λ2F (2) + ...

Systematic way to compute these terms, but the complexity
grows really fast!

What to do for large values of λ?
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Use AdS/CFT ! (remember R ≈ λ1/4)

String theory:

F (λ) =
√
λ F̃ (0) + F̃ (1) +

1√
λ
F̃ (2) + ...

Some geometrical computation!

In N = 4 SYM we have the luxury of the AdS/CFT duality.

We can compute quantities of N = 4 SYM at strong coupling
by doing geometrical computations on AdS .

Obstacle:

Which string theory observable corresponds to a given gauge
theory observable?
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Wilson loops

Wilson loops

For a loop C embedded in four dimensional space we define the
loop operator:

W (C) =
1

N
Tr P exp

(
i g

YM

∮
C
Aµdx

µ

)

Very interesting observables in gauge theories:

Phase acquired by an infinitely massive quark in the
fundamental representation moving along a loop.
An order parameter for confinement.

For any closed loop: a large class of observables!

e.g. in pure Yang-Mills, these operators and their products
form a complete basis of gauge invariant operators.
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Wilson loops in N = 4 Super-Yang Mills

In N = 4 Super-Yang Mills it is convenient to study slightly
different Wilson loops:

W (C) =
1

N
Tr P exp

(
i g

YM

∮
C

(Aµẋ
µ + |ẋ |ΦI θ

I )ds

)

The super-symmetric version of the ordinary Wilson loop (and
locally super-symmetric).

We have a coupling to the scalars. θI (I = 1, ..., 6) is a unit
vector in R6.

Weak coupling computation:

〈W (C)〉 = 1−λ
∮

ds

∮
ds ′ẋµ(s)ẋν(s ′)Gµν(x(s)−x(s ′))+...+O(λ2)
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AdS/CFT: Expectation value of Wilson loops at strong coupling!
(Maldacena, Rey)

We have a minimal area problem:

r=0

ds2 =
dx2

3+1+dr2

r2

We need to consider the minimal area
ending (at r = 0 ) on the Wilson loop.

〈W 〉 ∼ e−
√
λ

2π
Amin

Luis Fernando Alday Local and non-local observables in N = 4 SYM



MSYM possesses powerful symmetries:

SO(2, 4) group of conformal symmetries.
Super-symmetry.

In some cases, the answer is fixed by symmetries: some
Wilson loops can be computed to all values of the coupling!

Inversion, xµ → xµ

x2 : Circular W.L. ↔ Straight line.

The circular Wilson loop is known to all values of the coupling!
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Scattering Amplitudes

Another interesting observable: Gluon scattering amplitudes.

1

k2

k4

k6 k5

k3

k = A6(g
YM
,N, k1, ...)

Motivation: MSYM amplitudes can teach us about (and share
many features with) QCD amplitudes but they are much more
tractable.

Large class of on-shell (k2
i = 0) observables.

The kind of things you ”measure”.

In principle computable by Feynman diagrams (good luck with
that!).
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The amplitudes are IR divergent: use dimensional
regularization.

D = 4− 2ε→ A
(`)
n (ε) = 1/ε2` + ...

Exponentiation of IR divergences

An = eSdiv (ε) eFinite

Explicitly known!

QCD divergences have very similar structure.

What about the helicities?

A(±,+,+, ....,+) = 0

Simplest amplitudes, MHV: A(−,−,+, ...+)→ function of
kinematical invariants only.
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AdS/CFT: Scattering amplitudes at strong coupling (L.F.A., Maldacena)

Pretty complicated geometrical problem in AdS ...

Z = Z IR

2

3

1

6
5

4

ds2 =
dy2

3+1+dz2

z2

Fixed hyperplane (brane) at z = zIR
where open strings can end.

Scatter these open strings.

Classical solution very hard to find...
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Classical solution very hard to find...

Complicated change of coordinates y → x and z → 1/r :

ds2
original =

dy2
3+1 + dz2

z2
→ ds2

dual =
dx2

3+1 + dr2

r2

The original AdS translates into a dual AdS but the boundary
conditions simplify!
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Amplitudes at strong coupling → Minimal area in AdS!

ds2 =
dx2

3 − dt2 + dr2

r2

r = 0

1

k2 k3

k4
k5

k6

t

x

y

k1

k2 k3

k4

k5k6

k

An ≈ e−
√
λ

2π
Amin , λ� 1
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Surprises

At strong coupling, exactly the expectation value of a
polygonal light-like Wilson loop!

There is a SO(2, 4) symmetry associated to the ”dual” AdS
space: dual conformal symmetry!

The duality with Wilson loops (and dual conformal symmetry)
extends to all values of the coupling! (Henn, Korchemsky, Drummond, Sokatchev;

Brandhuber, Heslop, Travaglini)
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Amplitudes / Wilson loops duality

For MHV scattering amplitudes we have:

k1

k2 k3

k4

k6

k1

k2

k3k4

k6

k5
k5

=

Gluon Amplitude         =              Wilson Loop

Very unexpected from the perturbative point of view!

Led to analytic results for many amplitudes at two loops.

Proved and extended to super-amplitudes by twistors
techniques! (Caron-Huot; Mason, Skinner; Bullimore, Skinner). See talks by
Bullimore and Adamo!
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Amplitudes / Wilson loops duality

Surprising symmetry

Usual conformal symmetry of Wilson loops
⇓

Dual conformal symmetry of scattering amplitudes!

Nothing to do with the usual conformal symmetry.

Fixes the amplitude up to a function of the cross-ratios.

An = ef (λ)Aone−loop
n eR(cross−ratios)

For n = 4, 5 we cannot construct any cross-ratios, so the
symmetry is powerful enough to fix the amplitude for n = 4, 5!

Symmetries can be exploited much further!
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Correlation functions

New character in these developments: Correlation functions of
gauge invariant local operators:

〈O1(x1)O2(x2)...On(xn)〉

With

O1 = TrZDs
+Z , O2 = TrFµνψAX , ...

The natural observables in a conformal field theory.

Natural generalization of two very important problems.

Luis Fernando Alday Local and non-local observables in N = 4 SYM



Generalization of the spectral problem

Spectral problem:

Two point functions of single trace local operators in N = 4 SYM.

O1 = trZZXX − trZXZX , O2 = trZZXX + trZXZX

Conformal symmetry: 〈Oi (x1)Oj(x2)〉 =
δij

|x12|2∆i

Spectral problem: Compute ∆i to all values of the coupling!

∆1 = 4, ∆2 = 4 +
3

π2
λ+ ...

AdS/CFT

∆ at strong coupling: Energy of a particular string configuration.

∆1 = 4, ∆2 = 2λ1/4 + ...
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What about three-point functions?

Conformal symmetry

〈O1(x1)O2(x2)O3(x3)〉 =
C123

x∆1+∆2−∆3
12 x∆1+∆3−∆2

13 x∆2+∆3−∆1
23

We would like to compute C123(λ) to all values of the
coupling constant.

Knowing ∆i (λ) plus Cijk(λ) we could compute any correlation
function!

〈O1O2O3O4〉 →
∑
p

〈O1O2Op〉〈OpO3O4〉
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Generalization of scattering amplitudes

Also off-shell analogous of scattering amplitudes.

Richer objects, depend on more cross-ratios:
(xi−xj )2(xk−xl )2

(xi−xk )2(xj−xl )2

x1

x2
x3

x4

x5

x6

Six-point amplitude → 3 cross-ratios.

Six-point correlation function → 9 cross-ratios.
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Generically finite, correlation functions can develop divergences:

Usual OPE divergences when xi → xj .

Another divergence ( light-cone OPE ) when (xi − xj)
2 → 0.

Interesting: Consecutive distances become null at the same rate:

x2
i ,i+1 = ε2 → 0

x5

x4

x3

x2

x6

x1

The correlation function reproduces the null Wilson loop! [L.F.A,

Eden,Korchemsky, Maldacena, Sokatchev]
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Consider: 〈O(x1)...O(xn)〉.

O = Trφ2(x) with φ: real scalar field in the adjoint
representation

lim
x2
i,i+1→0

〈O(x1)...O(xn)〉 =
1∏n

i=1 x
2
i ,i+1

〈Tradj P exp

(
i g

∮
Cn
Aµdx

µ

)
〉

6

�
�
�
���

Leading divergence, already in
the free theory.

In the interacting theory also a finite
correction, since the scalar field is color
charged: approximated by a Wilson loop
in this limit.

Cn: Polygonal null path of n edges.

In the planar limit: Wadj(Cn) = W 2
fund(Cn).
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New duality: Correlation functions/Wilson loop

lim
x2
i,i+1→0

〈O(x1)...O(xn)〉
〈O(x1)...O(xn)〉0

= 〈Wn〉2fund

Valid for a generic conformal field theory in any dimension!

For N = 4 SYM has been extended to other local operators.

New tool to understand correlation functions:

Non-trivial constraints in correlation functions.

Led to new results for the four-point correlation function.
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Triality of dualities

Amplitudes/Correlation Functions/Wilson Loops in N = 4 SYM

x5

x4

x3

x2

x6

x1

Extended to general (not only MHV) amplitudes. [Eden, Heslop,

Korchemsky, Sokatchev; Adamo, Bullimore, Mason, Skinner]
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Correlation function of Wilson loops with local operators

Yet another observable: Correlation functions of Wilson loops and
local operators.

〈W (C)O(x)〉 = 〈O(x) Tr Pe ig
∮
C Aµdx

µ〉

They characterize the expansion of a Wilson loop in local
operators:

W (C) = 〈W (C)〉
∑
i

ciOi (x)

ci can be found from 〈W (C)Oj〉 and 〈OiOj〉.

〈W (C)O(x)〉 can be computed at strong coupling! (for a
large class of local operators) [Berenstein, Corrado, Fischler, Maldacena]
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AdS/CFT: Computation at strong coupling, two ingredients.

X

Classical solution (minimal
surface) corresponding to
〈W (C)〉 (parametrized by Xclas)

A particular propagator K∆(x),
which propagates from the
point x in the boundary to the
world-sheet of the classical
solution.

〈WO∆(x)〉
〈W 〉

=

∫
d2ζK∆(x(ζ)clas − x , r(ζ)clas)
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〈WnO∆(x)〉: Correlation functions of null polygonal Wilson loops
and local operators. [L.F.A., Buchbinder, Tseytlin; Tang, Roiban; Adamo]

Makes connection with previous developments:

lim
x2
i,i+1→0

〈O(x1)...O(xn)O(a)〉
〈O(x1)...O(xn)〉

=
〈WnO(a)〉
〈Wn〉

Somewhere between a correlation function and a Wilson loop.

Some properties of 〈WnO(a)〉 (e.g. behavior under conformal
transformations) are easier to understand starting from the
correlation function.

Easiest example, n = 4: it depends on a single cross-ratio!
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Several dualities between local and non-local observables in
N = 4 SYM.

Drastic advances in the computation of such observables.

Questions:

Can we use the integrability of planar N = 4 SYM to
compute these observables?

Integrability has been used to solve two related problems:
The spectral problem.
Scattering amplitudes/Wilson loops at strong coupling.
Some attempts for correlation functions.

What about 〈WnO∆(x)〉? at strong coupling we know 〈Wn〉
but without computing its classical solutions! can we use
integrability?

Can we extend this technology to other theories? e.g. QCD,
theories of gravity...
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