The Turn on of LCLS: The X-Ray Free Electron Laser at SLAC

Persis S. Drell Director SLAC National Accelerator Laboratory

What are X-rays Good For ?

877

Static "Structure" Combined with Dynamic "Function"

NATIONAL ACCELERATOR LABORATORY

What We Can Do With An 'Ultra-Fast, Ultra-Bright' X-ray Source

- Make movies of the chemistry in action
- Study the structure and time-resolved function of single molecules e.g. proteins
- Do 3D imaging and dynamical studies of the bio-world
- Solve the (transient) structure of water and other liquids
- Characterize the transient states of matter created by radiation, pressure, fields, etc.

A New Generation of X-ray Sources

- Goal is atomic resolution in energy, space and time
- Current focus is on dynamics
 Goal is femtosecond or better resolution
- Technical Options
 - Energy Recovery Linacs (ERLs)
 - In R&D at Cornell and other places
 - Free Electron Lasers (FELs)
 - First X-ray FEL has just come into operation

Talk Outline

- X-ray FEL basics
 - How does a SASE FEL work?
 - Parameters of the SLAC LCLS
- LCLS Construction and Early Performance
- Early Experiments at LCLS
- Looking Forward

FEL Basics

An FEL is Not Your Ordinary LASER

- Process of generation of radiation is different that conventional laser*
- Radiation product: Intense, coherent radiation output definitely LASER like
 - Complete tunability because electrons are free from atoms

*Light amplification by stimulated emission of radiation

Synchrotron Radiation from Undulator in Storage Ring

• Electron bunch is "stored" in ring and used over and over

• Each bunch contains $N_{\rm e} \sim 10^9$ electrons • electrons emit spontaneously and photons are not coherent

Concept of a Free Electron X-ray Laser

- Replace storage ring by a linear accelerator allows compression of electron bunch use once, then throw away
- Send electron bunch through a very long undulator

Electron Beam is Key to FEL Success

- FEL requires extremely bright e- beam
 - High Peak Current
 - Low emittance (6-D phase space volume)
 - Performance depends exponentially on e- beam quality
- For LCLS
 - 3kA e⁻ beam
 - 6 x 10⁹ e⁻ in ~30 μ m sphere

Linac Coherent Light Source (LCLS)

- •Output of ~1000 microbunches results in ~1fs coherent spike of radiation
- •Typical FEL pulse (10¹² photons) made of few hundred coherent spikes
- •Where coherence or short pulse length is critical, initial strategy is to isolate one coherent spike in the FEL pulse
 - •Ultimately \rightarrow seeding

Avg. Field Power vs. Z 1.E+11 1.E-1Ø 1.E-09 **Saturation** 1.6+08 Power (watts) 1.E÷07 1.E≠Ø5 **Exponential Gain Regime** 1.E±05 1.E+04 1.E+03 20 40 60 зø 100 Z {m.} **Undulator Regime** 3 60-1 1.09.0 50.000 86.96 7 85/4 2 60-16 L 19662 6 E 60-14 **₽** ∎-4 0 1 ec-1e 5 40-49 8.60-66 0,0 0,0 1,0 2.6 2.5 88 85 18 2.6 65 1.1 2.6 **Electron Bunch** Time Time Time/(fs ífs **Micro-Bunching**

Free-Electron Lasers

- 1977- First operation of a free-electron laser at Stanford University
 - Deacon, et al. PRL v. 38, no.16, pp. 892-894
- Today
 - 22 free-electron lasers operating worldwide
 - 19 FELs proposed or in construction
- Before LCLS turn on, shortest wavelength FEL was FLASH @ DESY
 - 6.5 nm -- 50 nm
- Compare
 - 0.15nm 1.5 nm design goal for LCLS

Design Parameters for LCLS

FEL Fundamental	1.5	15	Α
Electron Beam Energy	14.3	14.5	GeV
Normalized RMS Slice Emittance	1.2	1.2	μ m
Peak Current	3.4	3.4	kA
Bunch/Pulse Length	<230	<230	fs
Saturation Length	87	25	m
FEL Fundamental Saturation Power @ exit	8	17	GW
FEL Photons per Pulse	1	29	10 ¹²
Peak Brightness @ Undulator Exit	0,8	0.06	10 ^{33*}
Transverse Coherence	Full	Full	
RMS Projected x-ray bandwidth	0.13	0.47	%

* photons/sec/mm²/mrad²/0.1%-BW

LCLS Construction and Early Performance

SLAC National Accelerator Laboratory

SLAC National Accelerator Laboratory

LCLS Undulator Hall: 132 meters

NATI

First electrons 12/2008 Install Undulators 3/2009 First Lasing 4/10/2009

TITITI

April 10, 2009– The Lasing Campaign

First Performance Exceeds Expectation

- Typical x-ray beam energy > 1 mJ or > 10¹² photons per pulse
- Typical x-ray pulse duration at 300pC charge ~ 100 fs (FWHM).
- X-ray pulse duration at 20 pC charge < **10 fs**
- Saturation at 65 m (anticipated 87 m)

LCLS Performance

	Baseline performance	Current performance
Photon energy range	830 to 8300 eV	480 to 10,000 eV
FEL pulse length	230 fs	5 - 500 fs
FEL pulse energy	up to 2 mJ	up to 4 mJ

- 120 fs pump probe synchronization has been achieved
- Further improvements are underway

Early Experiments with LCLS: Early results and future dreams

SLAC National Accelerator Laboratory

LCLS Experimental Halls

only first of six stations used so far

Tentative instrument operation scheme

Atomic Molecular Optical (AMO) Instrument

NATIONAL ACCELERATOR LABORATORY

AMO Control Room

LCLS 2-Year Science Strategy

- First round of experiments are largely proof of principle
- Currently beam time is awarded to maximize number of user groups and diversity of experiments (no program proposals)
- Plan is to follow this scheme for another year until all stations are operating and new fields are tested
- In 2012 start to identify and invest in science areas where LCLS will have critical impact
- Start to schedule more strategically, identify program proposals

What have we learned so far?

- Multi-Photon processes within atoms and molecules have been observed → Provides new spectroscopic signatures
- Concept of `probe-before-destroy' works \rightarrow Opens the door for imaging of nanocrystals and nanostructures
- Concept of single shot imaging of individual viruses & cells works but major improvements are needed to have an impact
 → 3D imaging of the bio-world
- Soft x-ray single shot spectroscopy and imaging of solids & surfaces is possible. Despite large cross sections, ultra-short pulses can beat electronic "damage" (i.e. changes in valence configurations, densities)
- The fact that LCLS has performed much better than the baseline parameters (pulse length, energy range) already proves to be critical for many experiments!

X-ray Free-Electron Lasers May Enable Atomic-Resolution Imaging of Biological Macromolecules

- What happens to molecules or particles irradiated by intense FEL pulses?
- Can we hope to obtain the atomic positions?
- How does achievable resolution depend on
 pulse fluence?

•molecule or particle size?

• Can we measure ultrafast dynamics in time and space domains, and observe reactions, reaction intermediates, and products?

Probe Before Destroy: Femtosecond Nanocrystalography

Crystallography Achieves Atomic Resolution But Requires Crystals

AL ACCELERATOR LABORATO

- Radiation damage is spread out over
 10¹⁰ identical unit cells
- Diffraction from unit cells adds up coherently to form strong Bragg peaks
- > 60,000 structures solved (in protein data bank), but ~15,000 distinct structures
- The bottleneck is in growing crystals of large enough size to diffract well for a tolerable X-ray dose (<50 MGy)
- The larger the unit cell volume, the greater the required dose

Femtosecond X-ray protein nanocrystallography Nature 09750

Henry N. Chapman^{1,2}, Petra Fromme³, Anton Barty¹, Thomas A. White¹, Richard A. Kirian⁴, Andrew Aquila¹, Mark S. Hunter³, Joachim Schulz¹, Daniel P. DePonte¹, Uwe Weierstall⁴, R. Bruce Doak⁴, Filipe R. N. C. Maia⁵, Andrew V. Martin¹, Ilme Schlichting^{6,7}, Lukas Lomb⁷, Nicola Coppola¹, Robert L. Shoeman⁷, Sascha W. Epp^{6,8}, Robert Hartmann⁹, Daniel Rolles^{6,7}, Artem Rudenko^{6,8}, Lutz Foucar^{6,7}, Nils Kimmel¹⁰, Georg Weidenspointner^{11,10}, Peter Holl⁹, Mengning Liang¹, Miriam Barthelmess¹², Carl Caleman¹, Sébastien Boutet¹³, Michael J. Bogan¹⁴, Jacek Krzywinski¹³, Christoph Bostedt¹³, Saša Bajt¹², Lars Gumprecht¹, Benedikt Rudek^{6,8}, Benjamin Erk^{6,8}, Carlo Schmidt^{6,8}, André Hömke^{6,8}, Christian Reich⁹, Daniel Pietschner¹⁰, Lothar Strüder^{6,10}, Günter Hauser¹⁰, Hubert Gorke¹⁵, Joachim Ullrich^{6,8}, Sven Herrmann¹⁰, Gerhard Schaller¹⁰, Florian Schopper¹⁰, Heike Soltau⁹, Kai-Uwe Kühnel⁸, Marc Messerschmidt¹³, John D. Bozek¹³, Stefan P. Hau-Riege¹⁶, Matthias Frank¹⁶, Christina Y. Hampton¹⁴, Raymond G. Sierra¹⁴, Dmitri Starodub¹⁴, Garth J. Williams¹³, Janos Hajdu⁵, Nicusor Timneanu⁵, M. Marvin Seibert⁵, Jakob Andreasson⁵, Andrea Rocker⁵, Olof Jönsson⁵, Martin Svenda⁵, Stephan Stern¹, Karol Nass², Robert Andritschke¹⁰, Claus-Dieter Schröter⁸, Faton Krasniqi^{6,7}, Mario Bott⁷, Kevin E. Schmidt⁴, Xiaoyu Wang⁴, Ingo Grotjohann³, James M. Holton¹⁷, Thomas R. M. Barends⁷, Richard Neutze¹⁸, Stefano Marchesini¹⁷, Raimund Fromme³, Sebastian Schorb¹⁹, Daniela Rupp¹⁹, Marcus Adolph¹⁹, Tais Gorkhover¹⁹, Inger Andersson²⁰, Helmut Hirsemann¹², Guillaume Potdevin¹², Heinz Graafsma¹², Björn Nilsson¹² & John C. H. Spence⁴

¹Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany. ²University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany. ³Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, USA. ⁴Department of Physics, Arizona State University, Tempe, Arizona 85287, USA. ⁵Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden. ⁶Max Planck Advanced Study Group, Center for Free-Electron Laser Science, Notkestrasse 85, 22607 Hamburg, Germany. ⁷Max-Planck-Institut für Medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany. ⁸Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany. ⁹PNSensor GmbH, Otto-Hahn-Ring 6, 81739 München, Germany. ¹⁰Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 München, Germany. ¹¹Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstrasse, 85741 Garching, Germany. ¹²Photon Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany. ¹³LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA. ¹⁴Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA. ¹⁸Department of Chemistry, 7000 East Avenue, Mail Stop L-211, Livermore, California 94551, USA. ¹⁷Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. ¹⁸Department of Chemistry, Biochemistry and Biophysics, University of Gothenburg, SE-405 30 Gothenburg, Sweden. ⁹Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany. ²⁰Department of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala Biomedical Centre, Box 590, S-751 24 Uppsala, Sweden.

Nanocrystallography carried out in a flowing water microjet

- Single pulse diffraction from Photosystem 1 nanocrystals at LCLS
- *E* = 1.8 keV
- <10, 60, 200 fs pulse

- 2 mJ pulse energy
- patterns collected at 30 Hz
- hit rate >50%
- 5 Tb data in one night!

CAMP Chamber Max Plank CFEL ASG

Small Angle Diffraction (Far Detector)

- Coherence of beam is evident
- Crystals are sub micron size

Wide Angle Diffraction (Near Detector)

- Structure determination of large macromolecules requires indexing each pattern
- For PS1, have merged indexed patterns into a 3D diffraction pattern
- 8.5Å resolution with 1.8 keV photons; experiments at shorter wavelength (9 keV) underway

Electron Density Map for PS I

Calculated from 70fs LCLS data

Conventional synchrotron data truncated to 8.5 A resolution

Preliminary analysis shows degradation of the sample at longer pulse durations

Photosystem I radial average of diffracted intensity 0.6

Conclusions from Nanocrystal Imaging Experiments

- Femtosecond nanocrystallography opens up a new route for small or radiation sensitive single-crystal structure determination
- High-quality diffraction patterns can be collected at the pulse rate of the LCLS
- "Diffraction before destruction" concept validated to sub-nanometer resolution
- Nanocrystallography is immediately extendible to femtosecond time-resolved measurements of photoinduced dynamics
- We are seeing the first 'killer ap' for LCLS

Strategy for the Future Page 40

Single shot imaging of individual viruses & cells

Single mimivirus particles intercepted and imaged with an X-ray laser Nature 09748

M. Marvin Seibert¹*, Tomas Ekeberg¹*, Filipe R. N. C. Maia¹*, Martin Svenda¹, Jakob Andreasson¹, Olof Jönsson¹, Duško Odić¹, Bianca Iwan¹, Andrea Rocker¹, Daniel Westphal¹, Max Hantke¹, Daniel P. DePonte², Anton Barty², Joachim Schulz², Lars Gumprecht², Nicola Coppola², Andrew Aquila², Mengning Liang², Thomas A. White², Andrew Martin², Carl Caleman^{1,2}, Stephan Stern^{2,3}, Chantal Abergel⁴, Virginie Seltzer⁴, Jean-Michel Claverie⁴, Christoph Bostedt⁵, John D. Bozek⁵, Sébastien Boutet⁵, A. Alan Miahnahri⁵, Marc Messerschmidt⁵, Jacek Krzywinski⁵, Garth Williams⁵, Keith O. Hodgson⁵, Michael J. Bogan⁶, Christina Y. Hampton⁶, Raymond G. Sierra⁶, Dmitri Starodub⁶, Inger Andersson⁷, Saša Bajt⁸, Miriam Barthelmess⁸, John C. H. Spence⁹, Petra Fromme¹⁰, Uwe Weierstall⁹, Richard Kirian⁹, Mark Hunter¹⁰, R. Bruce Doak⁹, Stefano Marchesini¹¹, Stefan P. Hau-Riege¹², Matthias Frank¹², Robert L. Shoeman¹³, Lukas Lomb¹³, Sascha W. Epp^{14,15}, Robert Hartmann¹⁶, Daniel Rolles^{13,14}, Artem Rudenko^{14,15}, Carlo Schmidt^{14,15}, Lutz Foucar^{13,14}, Nils Kimmel^{17,18}, Peter Holl¹⁶, Benedikt Rudek^{14,15}, Benjamin Erk^{14,15}, André Hömke^{14,15}, Christian Reich¹⁶, Daniel Pietschner^{17,18}, Georg Weidenspointner^{17,18}, Lothar Strüder^{14,17,18,19}, Günter Hauser^{17,18}, Hubert Gorke²⁰, Joachim Ullrich^{14,15}, Robert Andritschke^{17,18}, Claus-Dieter Schröter¹⁵, Faton Krasniql^{13,14}, Mario Bott¹³, Sebastian Schorb²¹, Daniela Rupp²¹, Marcus Adolph²¹, Tais Gorkhover²¹, Helmut Hirsemann⁸, Guillaume Potdevin⁸, Heinz Graafsma⁸, Björn Nilsson⁸, Henry N. Chapman^{2,3} & Janos Hajdu¹

¹Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden. ²Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany. ³University of Hamburg, Notkestrasse 85, 22607 Hamburg, Germany. ⁴Information Génomique et Structurale, CNRS-UPR2589, Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, Parc Scientifique de Luminy, Case 934, 13288 Marseille Cedex 9, France. ⁵LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA. ⁶Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA. ⁶Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA. ⁶Department of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala Biomedical Centre, Box 590, S-751 24 Uppsala, Sweden. ⁸Photon Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany. ⁹Department of Physics, PSF470, Arizona State University, Tempe, Arizona 85287-1604, USA. ¹⁰Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. ¹²Lawrence Livermore National Laboratory, 7000 East Avenue, Mail Stop L-211, Livermore, California 94551, USA. ¹³Max-Planck-Institut für Medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany. ¹⁴Max Planck Advanced Study Group, Center for Free-Electron Laser Science, Notkestrasse 85, 22607 Hamburg, Germany. ¹⁵Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany. ¹⁶PNSensor GmbH, Römerstrasse 28, 80803 München, Germany. ¹⁷Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 München, Germany. ¹⁸Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstrasse, 85741 Garching, Germany. ¹⁹Universität Siegen, Emmy-Noether Campus, Walter Flex Strasse 3, 57068 Siegen, Germany. ²⁰Forschungszentrum Jülich, Institut ZEL,

*These authors contributed equally to this work.

Artist's impression of acanthamoeba polyphaga mimivirus

Capsid

Fibrils

400nm

Core

Inner Membranes

- dsDNA virus
- 90% coding capacity
- 10% Junk DNA
- 1.2 million base pairs
- ~911 protein coding genes
- additional genes (inc. aminoactyl tRNA synthetases; sugar, lipid, and amino acid metabolism)

The Experimental Setup

Single Shot Images of Mimivirus from LCLS

- 2-D reconstructions of Single shot LCLS images (32 nm resolution)
- Reveal inhomogeneous interior structure of virion which does not follow the pseudo-icosahedral shell

Looking Forward: LCLS-II and Beyond

Desired Extensions to LCLS-I

- Extended spectral range down to the carbon absorption edge at 280eV
 - study of chemical transformations of key carbon based molecular complexes
- Extension to harder x-rays >10 keV
 - study of thick 3D materials with increased xray penetration & spatial resolution
- Ultrashort x-ray pulses < 1 fs
 - explore attosecond temporal region for molecular dynamics
- Variable polarization
 - allows separation of charge and spin effects

nte

- Enhanced intensity in narrow energy window through seeding
 - improved signal to noise
- Combination of THz excitation with x-ray probe
 - understanding and control of thermally induced chemical reactions

Light excitation: photosynthesis

The Competition

LCLS Upgrades: What we Envision

- 3 injectors up to 360 Hz & 3 linac sections up to 14 GeV each
- 4 seeded undulator x-ray sources
- 10 experimental stations operating simultaneously

Summary

- Near term is very exciting
 - LCLS-I is in operation
 - Operation with capability undreamt of before first lasing (4/10/09)
 - LCLS-II is moving forward
 - Adding capability and capacity undreamt of before 4/10/09
- A new scientific frontier is being opened
 - Time of extraordinary opportunity
 - Structure \rightarrow Dynamics @ fs scale
 - Observation \rightarrow Understanding \rightarrow Control
- Biggest surprises are yet to come!

