## Beyond the Higgs discovery The coming of age of ATLAS and the CERN LHC

Dave Charlton University of Birmingham

24<sup>th</sup> Ockham Lecture, Merton College 15 May 2017

## Beyond the Higgs discovery The coming of age of ATLAS and the CERN LHC

## Dave Charlton University of Birmingham

## Outline

Where we start: the Higgs discovery The LHC and ATLAS - coming of age The Higgs boson, beyond the discovery Beyond the Higgs A look to the future



# Where we start: the Standard Model

D Charlton / Birmingham - May 2017 - Ockham Lecture

3

# The Standard Model, SM





# Force-carriers

Fermions

**Bosons** 

D Charlton / Birmingham - May 2017 - Ockham Lecture

## Higgs Discovery (ATLAS and CMS) July 4<sup>th</sup> 2012 (CERN and Melbourne)

10+

110 115 120 125 130 125 140 145 140

mum excess observ

Expected from SM Hours and

Global significance: 41-43 o (for LEE over









m<sub>yy</sub> [GeV]





### Fully reconstruct $H \rightarrow ZZ^* \rightarrow 4\ell$ final state

"Golden channel" - excellent mass resolution and signal/background~1





m<sub>H</sub> [GeV]









# Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC $\approx$ >7200 citations

#### ATLAS Collaboration\*

This paper is dedicated to the memory of our ATLAS colleagues who did not live to see the full impact and significance of their contributions to the experiment.

#### ARTICLE INFO

Article history: Received 31 July 2012 Received in revised form 8 August 2012 Accepted 11 August 2012 Available online 14 August 2012 Editor: W.-D. Schlatter

#### ABSTRACT

A search for the Standard Model Higgs boson in proton-proton collisions with the ATLAS detector at the LHC is presented. The datasets used correspond to integrated luminosities of approximately 4.8 fb<sup>-1</sup> collected at  $\sqrt{s} = 7$  TeV in 2011 and 5.8 fb<sup>-1</sup> at  $\sqrt{s} = 8$  TeV in 2012. Individual searches in the channels  $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ ,  $H \rightarrow \gamma\gamma$  and  $H \rightarrow WW^{(*)} \rightarrow ev\mu\nu$  in the 8 TeV data are combined with previously published results of searches for  $H \rightarrow ZZ^{(*)}$ ,  $WW^{(*)}$ ,  $b\bar{b}$  and  $\tau^+\tau^-$  in the 7 TeV data and results from improved analyses of the  $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$  and  $H \rightarrow \gamma\gamma$  channels in the 7 TeV data. Clear evidence for the production of a neutral boson with a measured mass of  $126.0\pm0.4$  (stat) $\pm0.4$  (sys) GeV is presented. This observation, which has a significance of 5.9 standard deviations, corresponding to a background fluctuation probability of  $1.7 \times 10^{-9}$ , is compatible with the production and decay of the Standard Model Higgs boson.

© 2012 CERN. Published by Elsevier B.V. Open access under CC BY-NC-ND license.

#### 1. Introduction

120–135 GeV; using the existing LHC constraints, the observed local significances for  $m_H = 125$  GeV are 2.7 $\sigma$  for CDF [14], 1.1 $\sigma$  for

(25)

# Questions crystallise...

About the identity of the H(125) particle

- Is it a Higgs boson?
- Is it unique?
- Does it couple to the vector bosons with the right coupling strength and structure?
- Is it also responsible for giving mass to the fermions?
- Is the H(125) the only mechanism for electroweak symmetry-breaking?





# Questions crystallise...

About the identity of the H(125) particle

- Is it a Higgs boson?
- Is it unique?
- Does it couple to the vector bosons with the right coupling strength and structure?
- Is it also responsible for giving mass to the fermions?
- Is the H(125) the only mechanism for electroweak symmetry-breaking?





We can now study these questions via precision measurements of the Higgs sector, and of EWSB in general

# Questions crystallise...

About the identity of the H(125) particle

- Is it a Higgs boson?
- Is it unique?
- Does it couple to the vector bosons with the right coupling strength and structure?
- Is it also responsible for giving mass to the fermions?
- Is the H(125) the only mechanism for electroweak symmetry-breaking?





• Why is the H so light?



Divergent corrections to the H mass from loops, cut off only if new physics enters at a mass scale close to the electroweak scale

"Hierarchy problem" / fine-tuning

# ...others are not addressed

Hard questions that we often forget to ask

- Why 3 generations of (light) fermions?
- Why such *different* fermion masses?
- The gauge theory descriptions of the electroweak and strong (QCD) sectors of the Standard Model are so similar
  - Where is grand unification?
  - Extra dimensions of space-time? Branes ...?
- Baryon asymmetry?
- Dark matter & energy?





# ...others are not addressed

Hard questions that we often forget to ask

- Why 3 generations of (light) fermions?
- Why such *different* fermion masses?
- The gauge theory descriptions of the electroweak and strong (QCD) sectors of the Standard Model are so similar
  - Where is grand unification?
  - Extra dimensions of space-time? Branes ...?
- Baryon asymmetry?
- Dark matter & energy?

Searching for new physics at the TeV scale may gain further insight to these questions - and to the hierarchy problem





# The LHC and ATLAS Coming of Age

-ale a a a a

## Large Hadron Collider

Proton-proton & heavy-ion collisions

Lake Geneva

CMS

SUISSE

FRANCE

LHC ring: 27 km circumference ~100 m underground CERN main site

ALICE

Airpor

CERN Prévessin

and a

ATLAS

HCb-

LHC 27 km







CERN/LHCC/92-4 LHCC/I 2 1 October 1992





# ATLAS

Letter of Intent for a General-Purpose pp Experiment at the

Large Hadron Collider at CERN

Abstract

The ATLAS collaboration proposes to build a general purpose proton-proton detector for the Large Hadron Collider, capable of exploring the new energy regime which will become accessible. The detector would be fully operational at the startup of the new accelerator. The detector concept, the research and development work under way to optimize the detector design, and its proposed implementation are described, together with examples of its lierateur Linéaire, IN2P3-CNRS, Orsay, France discovery potential.

The early days: ATLAS Collaboration formed in 1992

R&D in the 1990's - construction started in 1997

Installation into cavern from 2003

#### Members of the ATLAS Collaboration Lol: 88 Institutions

eton, R.L.Chase, J.C.Chollet, P.Delebecque, V.Dubois, A.Ducorps, C.de la Taille, L.Fayard, D.Fournier, A.Hrisoho, L.Iconomidou-Fayard, Ph.Jean, B.Merkel, J.Noppe, G.Parrour, P.Petroff, J.P.Repellin, A.Schaffer, N.Seguin, L.Serin, G.Unal, J.J.Veillet

Oslo University, Oslo, Norway T.Buran, E.Nygaard, S.Stapnes

Physics Department, Oxford University, Oxford, United Kingdom J.H.Bibby, J.F.Harris, R.J.Hawkings, A.R.Holmes, P.B.Renton, A.R.Weidberg

Pierre & Marie Curie and Paris VII Universities and IN2P3-CNRS, Paris, France S.Dagoret, D.Imbault, G.Hansl-Kozanecka, H.Lebbolo, P.Neyman, R.Zitoun





Adelaide, Albany, Alberta, NIKHEF Amsterdam, Ankara, LAPP Annecy, Argonne NL, Arizona, UT Arlington, Athens, NTU Athens, UT Austin, Baku, IFAE Barcelona, Belgrade, Bergen, Berkeley LBL and UC, HU Berlin, Bern, Birmingham, UAN Bogota, Bologna, Bonn, Boston, Brandeis, Bratislava/SAS Kosice, Brazil Cluster, Brookhaven NL, Buenos Aires, Bucharest, Cambridge, Carleton, CERN, China IHEP-NJU-THU, China USTC-SDU-SJTU, Chicago, Chile, Clermont-Ferrand, Columbia, NBI Copenhagen, Cosenza, AGH UST Cracow, IFJ PAN Cracow, SMU Dallas, UT Dallas, DESY, Dortmund, TU Dresden, JINR Dubna, Duke, Edinburgh, Frascati, Freiburg, Geneva, Genoa, Giessen, Glasgow, Göttingen, LPSC Grenoble, Technion Haifa, Harvard, Heidelberg, Hiroshima IT, Hong Kong, NTHU Hsinchu, Indiana, Innsbruck, Iowa SU, Iowa, UC Irvine, Istanbul Bogazici, KEK, Kobe, Kyoto, Kyoto UE, Kyushu, Lancaster, UN La Plata, Lecce, Lisbon LIP, Liverpool, Ljubljana, QM London, RH London, UC London, Louisiana Tech, Lund, UA Madrid, Mainz, Manchester, CPPM Marseille, Massachusetts, MIT, Melbourne, Michigan SU, Milano, Minsk NAS, Minsk NCPHEP, Montreal, McGill Montreal, RUPHE Morocco, FIAN Moscow, ITEP Moscow, MEPH Moscow, MSU Moscow, Munich LMU, MPI Munich, Nagasaki IAS, Nagoya, Naples, New Mexico, New York, Nijmegen, Northern Illinois University, Novosibirsk BINP-NSU, NPI Petersburg, Ohio SU, Okayama, Oklahoma, Oklahoma SU, Olomouc, Oregon, LAL Orsay, Osaka, Oslo, **Oxford**, Paris VI and VII, Pavia, Pennsylvania, Pisa, Pittsburgh, CAS Prague, CU Prague, TU Prague, IHEP Protvino, Rome I, Rome II, Rome III, RAL-STFC, DAPNIA Saclay, Santa Cruz UC, Sheffield, Shinshu, Siegen, Simon Fraser Burnaby, SLAC, South Africa Cluster, Stockholm, KTH Stockholm, Stony Brook, Sydney, Sussex, AS Taipei, Tbilisi, Tel Aviv, Thessaloniki, Tokyo ICEPP, Tokyo MU, Tokyo Tech, Tomsk SU, Toronto, Trento, TRIUMF, Tsukuba, Tufts, Udine/ICTP, Uppsala, UI Urbana, Valencia, UBC Vancouver, Victoria, Warwick, Waseda, Washington, Weizmann Rehovot, FH Wiener Neustadt, Wisconsin, Wuppertal, Würzburg, Yale, Yere

## **ATLAS Detector**

7000t, 45m long x 25m diameter Si+transition radiation tracker, 2T solenoid, LAr sampling calorimetry, large air-core toroid muon spectrometer



~110 M channels, with timing capable of separating particles from adjacent bunch-crossings (25ns)



# The first decade of LHC operation





Proton-proton centre-of-mass energy  $\int s = 2 E_{beam}$ LHC design  $\int s = 14$  TeV High-lumi LH



# Why we push √s

Partons (quarks, gluons) within the proton carry only a fraction, x, of the momentum of the proton

- Probability distribution described by parton density function (pdf), f(x,Q<sup>2</sup>)
- Parton-parton centre-of-mass energy

 $\sqrt{\hat{s}} = \sqrt{x_1 x_2 s} \sim Q$ 

High  $\sqrt{\hat{s}}$  collisions are very rare



# ATLAS

# Why we push *I*s

Partons (quarks, gluons) within the proton carry only a fraction, x, of the momentum of the proton

- Probability distribution described by parton density function (pdf), f(x,Q<sup>2</sup>)
- Parton-parton centre-of-mass energy

 $\sqrt{\hat{s}} = \sqrt{x_1 x_2 s} \sim Q$ 

High  $\sqrt{\hat{s}}$  collisions are very rare

• Parton-parton luminosity integrates over  $x_1, x_2$  for a fixed  $\hat{s}$  $\rightarrow \left(\frac{dL(a,b)}{d\hat{s}}\right)$ 



# Why we push √s





# Why we push √s







1344

boxes

# The first decade of LHC operation



150 fb<sup>-1</sup>

We are here Half-way through the "standard lumi LHC" era in time, still close to the start in terms of integrated luminosity

Run-1: little

data and low

energy!

8 TeV

75%

nominal

luminosity

30 fb<sup>-1</sup>

2012

7 TeV

2011

LS1

splice consolidation

button collimators

R2E project

experiment

beam pipes

2013

2014

Run 1

300 fb<sup>-1</sup>

# 2016 - a great production year



## Integrated luminosity $\int Ldt$ drives the signal event yield $N_{obs}$



# 2016 - a great production year







## Peak luminosity well above design

Gradual and sustained increase in luminosity over the year

 Good prospects to be get close to 2x10<sup>34</sup>cm<sup>-2</sup>s<sup>-1</sup> (=twice design) in 2017, if LHC cooling can take it



Production operation: many days with similar samples of 0.4-0.5 fb<sup>-1</sup> delivered

• With scheduled & unscheduled stops "as usual"..!

# 2017 - hot off the press





# 2017 - hot off the press





10 May - beams colliding again at 13 TeV

Expect to match or exceed 2016 sample in each of 2017 and 2018

# The Higgs boson, beyond the discovery
# H(125) production & decay



A 125 GeV Higgs boson is a convenient object experimentally - many production and decay modes should be measurable

- Is it the Standard Model Higgs or not?
- Production and decay processes probe couplings of H to different particles



# H(125) production modes

Combined analysis of Run-1 data: H(125) production & decays

With assumptions about decays, we can probe the different production processes (normalised rates " $\mu$ " (=1 in SM))





- Parameter value
- Able to separate statistically the ggF and VBF processes
- Not yet VH or ttH at  $5\sigma$
- Observing ttH production is a key Run-2 goal

These are not yet precision measurements but few percent errors should be obtainable with the expected LHC samples

# H(125) production & decay



A 125 GeV Higgs boson is a convenient object experimentally - many production and decay modes should be observable

- Is it the Standard Model Higgs or not?
- Production and decay processes probe couplings of H to different particles



# H(125) decay modes

Combining ATLAS and CMS Run-1 data, observed (at >5 $\sigma$  significance)

- Н→үү
- H→ZZ\*(→4ℓ (ℓ=e,µ))
- H→WW\*(→ℓ∨ℓ∨)
- Η→ττ

Run-1 data not yet sensitive to the dominant  $H \rightarrow bb$ , or most rare, decays, e.g. to second generation fermions  $H \rightarrow \mu\mu$ , cc, ss





Decay signal strengths relative to Standard Model " $\mu$ " (=1 in SM)



## H(125) coupling strengths

Combined analysis of Run-1 data: H(125) production & decays

Recast coupling strength results in terms of the strength of the couplings of the H to each particle type

Characteristic of the Higgs is that it couples to mass...







## Mass of the H("125")



Recall that  $m_{\mu}$  is a free parameter in the Standard Model

- To measure  $m_{_{H}}$ , we use  $\gamma\gamma$  and  $4\ell$  decays, where we can reconstruct the mass event-by-event with high resolution
- Requires excellent understanding of energy scales for lepton/photons



Calibrate detector performance relative to simulations using very large and clean samples of decays of particles of known mass, here:  $J/\psi, \Upsilon, Z \rightarrow ee/\mu\mu$ 

# Mass of the H("125")



Recall that  $m_{\mu}$  is a free parameter in the Standard Model

- To measure  $m_{_{\!H}}$ , we use  $\gamma\gamma$  and 4 $\ell$  decays, where we can reconstruct the mass event-by-event with high resolution
- Requires excellent understanding of energy scales for lepton/photons



Already a precision measurement: 2 per-mille relative error dominated by statistical not systematic uncertainties

## Measuring H(125) at 13 TeV in Run-2







(SM: 55.5 <sup>+2.4</sup>-3.4 pb)

## New: H→4ℓ full 2015+2016 statistics









Run Number: 304431, Event Number: 2206548301

Date: 2016-07-25 05:01:07 UTC





Candidate H→ZZ\*→ eeµµ from 2016

Standard feature of Run-2 data - very high "pileup", typically 30 pp interactions per bunch crossing

## Homing in on new H channels





## Homing in on new H channels





## Event selected in ttH multilepton analysis



Run: 300571 Event: 905997537 2016-05-31 12:01:03 CEST

ATLAS

# $H \rightarrow \mu \mu$ - rare decay - 2<sup>nd</sup> generation





#### Inclusive distribution

dimuon invariant mass  $m(\mu\mu)$ 

Full 2015+2016 data, look for a peak in dimuon mass spectrum

Analyse multiple event categories
 → improves sensitivity (not shown)

No excess observed  $\rightarrow$  place limits on signal strength  $\mu_s$ relative to Standard Model, combining also with (weaker) Run-1 results:

> μ<sub>s</sub> < 2.8 at 95% CL (2.9 expected)

SM sensitivity requires a lot more data





#### $\overline{Q} \quad pp \to ft$

7 TeV, 4.6 fb<sup>-1</sup>, Eur. Phys. J. C 74:3109 (2014) 8 TeV, 20.3 fb<sup>-1</sup>, Eur. Phys. J. C 74:3109 (2014) 13 TeV, 3.2 fb<sup>-1</sup>, arXiv:1606.02699

 $\begin{array}{c} \hline pp \rightarrow tq \\ \hline 7 \ {\rm TeV}, \ 4.6 \ {\rm fb}^{-1}, \ {\rm PRD} \ 90, \ 112006 \ (2014) \\ 8 \ {\rm TeV}, \ 20.3 \ {\rm fb}^{-1}, \ {\rm arXiv}: 1702.02859 \\ \hline 13 \ {\rm TeV}, \ 3.2 \ {\rm fb}^{-1}, \ {\rm arXiv}: 1609.03920 \\ \end{array}$ 

#### $\underbrace{pp}{7} \xrightarrow{pp \to WW}$ 7 TeV, 4.6 fb<sup>-1</sup>, PRD 87, 112001 (2013) 8 TeV, 20.3 fb<sup>-1</sup>, JHEP 09 029 (2016) 13 TeV, 3.2 fb<sup>-1</sup>, arXiv:1702.04519

 $\begin{array}{c} \hline pp \rightarrow WZ \\ 7 \text{ TeV, } 4.6 \text{ fb}^{-1}, \text{ Eur. Phys. J. C (2012) } 72:2173 \\ 8 \text{ TeV, } 20.3 \text{ fb}^{-1}, \text{ PRD } 93, 092004 \ (2016) \\ 13 \text{ TeV, } 3.2 \text{ fb}^{-1}, \text{ Phys. Lett. B } 762 \ (2016) \\ \end{array}$ 

#### $\bigcirc pp \rightarrow H$

7 TeV, 4.5 fb<sup>-1</sup>, Eur. Phys. J. C76 (2016) 6 8 TeV, 20.3 fb<sup>-1</sup>, Eur. Phys. J. C76 (2016) 6 13 TeV, 13.3 fb<sup>-1</sup>, ATLAS-CONF-2016-081

#### $\overline{\Delta}$ pp $\rightarrow ZZ$

7 TeV, 4.6 fb<sup>-1</sup>, JHEP 03, 128 (2013) 8 TeV, 20.3 fb<sup>-1</sup>, JHEP 01, 099 (2017) 13 TeV, 3.2 fb<sup>-1</sup>, PRL 116, 101801 (2016)





J. C76 (2016) 6 . J. C76 (2016) 6 CONF-2016-081

128 (2013) 099 (2017) 101801 (2016)

I. Precision measurements (W, Z, top, ... ...)

- Testing QCD predictions and event generator models
- Some cases probe for new physics in loops

10

II. Direct searches for new particles, new symmetries, and new interactions

## Precise W, Z production measurements



## Detailed studies performed with 2011 data at 7 TeV: $W^{+}$ , $W^{-}$ , Z in e, $\mu$ decays



High statistics data well described by simulation

Backgrounds under excellent control



## Precise W, Z production measurements

## Detailed studies performed with 2011 data at 7 TeV: $W^+$ , $W^-$ , Z in e, $\mu$ decays



Differential cross-section as function of lepton scattering polar angle  $\theta$  in lab frame - good separation between pdfs

[qu] ↓ ↑ 5.2 ATLAS s = 7 TeV. 4.6 fb Data ABM12 σtid ₩± CT14 HERAPDF2.0 5 JR14 MMHT2014 ☆ NNPDF3.0 4.8 68% CL ellipse area 4.6 stat ⊕ syst uncertainty stat ⊕ syst ⊕ lumi uncertainty 0.46 0.48 0.5 0.52  $\sigma^{fid}_{Z/\gamma^* \rightarrow ||^{+}|^{-}}$  [nb]

> Experimental errors better than theoretical/modelling uncertainties



arXiv:1612.03016

## W mass measurement



First LHC analysis, using wellunderstood 2011 data (7 TeV) ~15M W→ℓv decays

Used both lepton transverse momentum,  $p_{\tau}(\ell)$ , and transverse mass,  $m_{\tau}$ , as variables sensitive to  $m_{w}$ 

- Lepton calibration using high statistics
   Z→ℓℓ sample
- Hadronic recoil (→p<sub>T</sub><sup>miss</sup>) also calibrated against Z→ℓℓ
- LEP Z mass crucial input (2 MeV error)
- Detailed analysis of modelling uncertainties



$$m_{\rm T} = \sqrt{2p_{\rm T}^{\ell}p_{\rm T}^{\rm miss}(1-\cos\Delta\phi)},$$

## W mass measurement

## First LHC analysis, using wellunderstood 2011 data (7 TeV) ~15M W→ℓv decays

Used both lepton transverse momentum,  $p_{\tau}(\ell)$ , and transverse mass,  $m_{\tau}$ , as variables sensitive to  $m_{w}$ 

- Lepton calibration using high statistics
   Z→ℓℓ sample
- Hadronic recoil (→p<sub>T</sub><sup>miss</sup>) also calibrated against Z→ℓℓ
- LEP Z mass crucial input (2 MeV error)
- Detailed analysis of modelling uncertainties





## W mass results



Combining the e and  $\mu$  channels, charge signs and methods, overall:

 $m_W = 80370 \pm 19 \text{ MeV} \pm 7 \text{ (stat.)} \pm 11 \text{ (exp. syst.)} \pm 14 \text{ (mod. syst.)} \text{ MeV}$ 

Measurement precision of 19 MeV (0.024%) equals best previous, from CDF



## **Electroweak precision test**



Within the SM framework,  $m_{w}$  is related to other quantities via:

 $\Delta r$  includes radiative effects (loops), and so depends on  $m_{H}$  and  $m_{top}$ 



## **Electroweak precision test**



60

Within the SM framework,  $m_{w}$  is related to other quantities via:

 $\Delta r$  includes radiative effects (loops), and so depends on  $m_{H}$  and  $m_{top}$ 

Alternatively recast other results into a prediction of  $m_w$  vs  $m_{top}$  (grey ellipse)

Compare with direct measurements from ATLAS

## Remarkable consistency - SM test at level of electroweak loop corrections



## **Massive diboson production**

Run-1 puzzle to describe inclusive diboson cross-sections

 Measurements tended to lie above next-toleading order (NLO) calculations
 NNLO calculations → ~+20% corrections and better agreement

Example: WZ leptonic decays NNLO calculations describe data much better than NLO

This run-1 puzzle appears to be solved!



# $\begin{bmatrix} q' & -W & q' & W \\ LO & -Z & q' & Z \\ g_{0} & -Z & q' & Z \\ \hline g_{0} & -Z & 0 & W \\ \hline g_{0} & -Z & 0 & V \\ \hline 000000 & -Z & V \\ \hline 000000 & Z \\ \hline 00000 & Z \\ \hline 0000 & Z \\ \hline 00000 & Z \\ \hline 0000 & Z$

## cross-section and b-tagging efficiency simultaneously Precision ±(3.9-4.4)% (7-13 TeV) betters NNLO+NNLL predictions (~5%)





## **Standard Model Production Cross Section Measurements**

Status: March 2017

(25)



### **ATLAS Exotics Searches\* - 95% CL Exclusion**

Status: August 2016

| Status: August 2016 $\int \mathcal{L} dt = (3.2 - 20.3) \text{ fb}^{-1}$ $\sqrt{s} = 8, 13 \text{ TeV}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                  |                                                                                                                                                                                                                   |                                               |                                                                                 |                                                                                                                                                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                         | Model                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <i>l</i> ,γ                                                                                                                      | Jets†                                                                                                                                                                                                             | $\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$     | ∫£ dt[fb                                                                        | <sup>-1</sup> ] Limit                                                                                                                                                                                                                                                                                          | •                                                     |                                                                                                                                                                                                                                                                                                                                                                     | Reference                                                                                                                                                                                             |
| Extra dimensions                                                                                        | ADD $G_{KK} + g/q$<br>ADD non-resonant $\ell\ell$<br>ADD QBH $\rightarrow \ell q$<br>ADD QBH<br>ADD BH high $\sum p_T$<br>ADD BH multijet<br>RS1 $G_{KK} \rightarrow \ell\ell$<br>RS1 $G_{KK} \rightarrow \gamma\gamma$<br>Bulk RS $G_{KK} \rightarrow WW \rightarrow qq\ell\nu$<br>Bulk RS $G_{KK} \rightarrow HH \rightarrow bbbb$<br>Bulk RS $g_{KK} \rightarrow tt$<br>2UED / RPP                                                                  | $ \begin{array}{c} - \\ 2 e, \mu \\ 1 e, \mu \\ - \\ 2 e, \mu \\ 2 \gamma \\ 1 e, \mu \\ - \\ 1 e, \mu \\ 1 e, \mu \end{array} $ | $\geq 1 j$<br>-<br>1 j<br>2 j<br>$\geq 2 j$<br>$\geq 3 j$<br>-<br>-<br>1 J<br>4 b<br>$\geq 1 b, \geq 1 J/2$<br>$\geq 2 b, \geq 4 j$                                                                               | Yes<br><br><br><br>Yes<br><br>2j Yes<br>j Yes | 3.2<br>20.3<br>15.7<br>3.2<br>3.6<br>20.3<br>3.2<br>13.2<br>13.3<br>20.3<br>3.2 | Mp         6.           Ms         4.7 TeV           Mth         5.2 T           Mth         5.2 T           Mth         5.2 T           GKK mass         2.68 TeV           GKK mass         3.2 TeV           GKK mass         3.2 TeV           GKK mass         2.2 TeV           KK mass         1.46 TeV | .58 TeV<br>V<br>ReV<br>8.7 TeV<br>8.2 TeV<br>9.55 TeV | $\begin{array}{l} n = 2 \\ n = 3 \; \text{HLZ} \\ n = 6 \\ n = 6 \\ n = 6, \; M_D = 3 \; \text{TeV, rot BH} \\ n = 6, \; M_D = 3 \; \text{TeV, rot BH} \\ k/\overline{M}_{Pl} = 0.1 \\ k/\overline{M}_{Pl} = 0.1 \\ k/\overline{M}_{Pl} = 1.0 \\ k/\overline{M}_{Pl} = 1.0 \\ \text{BR} = 0.925 \\ \text{Tier (1,1), BR}(A^{(1,1)} \rightarrow tt) = 1 \end{array}$ | 1604.07773<br>1407.2410<br>1311.2006<br>ATLAS-CONF-2016-069<br>1606.02265<br>1512.02586<br>1405.4123<br>1606.03833<br>ATLAS-CONF-2016-062<br>ATLAS-CONF-2016-049<br>1505.07018<br>ATLAS-CONF-2016-013 |
| Gauge bosons                                                                                            | $\begin{array}{l} \operatorname{SSM} Z' \to \ell\ell \\ \operatorname{SSM} Z' \to \tau\tau \\ \operatorname{Leptophobic} Z' \to bb \\ \operatorname{SSM} W' \to \ell\nu \\ \operatorname{HVT} W' \to WZ \to qq\nu\nu \ \mathrm{model} \\ \operatorname{HVT} W' \to WZ \to qqqq \ \mathrm{model} \\ \operatorname{HVT} V' \to WH/ZH \ \mathrm{model} \ \mathrm{B} \\ \operatorname{LRSM} W'_R \to tb \\ \operatorname{LRSM} W'_R \to tb \\ \end{array}$ | $2 e, \mu$ $2 \tau$ $-$ $1 e, \mu$ $A  0 e, \mu$ $B  -$ multi-channe<br>$1 e, \mu$ $0 e, \mu$                                    | -<br>2 b<br>-<br>1 J<br>2 J<br>el<br>2 b, 0-1 j<br>≥ 1 b, 1 J                                                                                                                                                     | -<br>-<br>Yes<br>Yes<br>-<br>Yes              | 13.3<br>19.5<br>3.2<br>13.3<br>13.2<br>15.5<br>3.2<br>20.3<br>20.3              | Z' mass     4.05 TeV       Z' mass     2.02 TeV       Z' mass     1.5 TeV       W' mass     4.74 TeV       W' mass     2.4 TeV       W' mass     3.0 TeV       V' mass     3.1 TeV       W' mass     1.92 TeV       W' mass     1.76 TeV                                                                       | V                                                     | $g_V = 1$<br>$g_V = 3$<br>$g_V = 3$                                                                                                                                                                                                                                                                                                                                 | ATLAS-CONF-2016-045<br>1502.07177<br>1603.08791<br>ATLAS-CONF-2016-061<br>ATLAS-CONF-2016-082<br>ATLAS-CONF-2016-055<br>1607.05621<br>1410.4103<br>1408.0886                                          |
| CI                                                                                                      | Cl qqqq<br>Cl ℓℓqq<br>Cl uutt                                                                                                                                                                                                                                                                                                                                                                                                                          | _<br>2 e, µ<br>2(SS)/≥3 e,,                                                                                                      | 2 j<br>_<br>u ≥1 b, ≥1 j                                                                                                                                                                                          | _<br>Yes                                      | 15.7<br>3.2<br>20.3                                                             | Λ<br>Λ<br>Λ 4.9 Te                                                                                                                                                                                                                                                                                             | eV.                                                   | <b>19.9 TeV</b> $\eta_{LL} = -1$<br><b>25.2 TeV</b> $\eta_{LL} = -1$<br>$ C_{RR}  = 1$                                                                                                                                                                                                                                                                              | ATLAS-CONF-2016-069<br>1607.03669<br>1504.04605                                                                                                                                                       |
| MD                                                                                                      | Axial-vector mediator (Dirac DM)<br>Axial-vector mediator (Dirac DM)<br>$ZZ_{\chi\chi}$ EFT (Dirac DM)                                                                                                                                                                                                                                                                                                                                                 | 0 e, μ<br>0 e, μ, 1 γ<br>0 e, μ                                                                                                  | $\begin{array}{c} \geq 1  j \\ 1  j \\ 1  J, \leq 1  j \end{array}$                                                                                                                                               | Yes<br>Yes<br>Yes                             | 3.2<br>3.2<br>3.2                                                               | mA         1.0 TeV           mA         710 GeV           MA         550 GeV                                                                                                                                                                                                                                   |                                                       | $\begin{array}{l} g_q{=}0.25, \ g_\chi{=}1.0, \ m(\chi) < 250 \ {\rm GeV} \\ g_q{=}0.25, \ g_\chi{=}1.0, \ m(\chi) < 150 \ {\rm GeV} \\ m(\chi) < 150 \ {\rm GeV} \end{array}$                                                                                                                                                                                      | 1604.07773<br>1604.01306<br>ATLAS-CONF-2015-080                                                                                                                                                       |
| ΓQ                                                                                                      | Scalar LQ 1 <sup>st</sup> gen<br>Scalar LQ 2 <sup>nd</sup> gen<br>Scalar LQ 3 <sup>rd</sup> gen                                                                                                                                                                                                                                                                                                                                                        | 2 e<br>2 μ<br>1 e,μ                                                                                                              | ≥ 2 j<br>≥ 2 j<br>≥1 b, ≥3 j                                                                                                                                                                                      | _<br>Yes                                      | 3.2<br>3.2<br>20.3                                                              | LQ mass     1.1 TeV       LQ mass     1.05 TeV       LQ mass     640 GeV                                                                                                                                                                                                                                       |                                                       | $egin{array}{ll} eta = 1 \ eta = 1 \ eta = 1 \ eta = 0 \end{array}$                                                                                                                                                                                                                                                                                                 | 1605.06035<br>1605.06035<br>1508.04735                                                                                                                                                                |
| quarks                                                                                                  | $ \begin{array}{l} VLQ \ TT \rightarrow Ht + X \\ VLQ \ YY \rightarrow Wb + X \\ VLQ \ BB \rightarrow Hb + X \\ VLQ \ BB \rightarrow Zb + X \\ VLQ \ QQ \rightarrow WqWq \\ VLQ \ T_{5/3} T_{5/3} \rightarrow WtWt \end{array} $                                                                                                                                                                                                                       | 1 e, µ<br>1 e, µ<br>2/≥3 e, µ<br>1 e, µ<br>2(SS)/≥3 e, J                                                                         | $\geq 2 \text{ b}, \geq 3 \text{ j}$<br>$\geq 1 \text{ b}, \geq 3 \text{ j}$<br>$\geq 2 \text{ b}, \geq 3 \text{ j}$<br>$\geq 2/\geq 1 \text{ b}$<br>$\geq 4 \text{ j}$<br>$u \geq 1 \text{ b}, \geq 1 \text{ j}$ | Yes<br>Yes<br>Yes<br>Yes<br>Yes               | 20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>3.2                             | T mass         855 GeV           Y mass         770 GeV           B mass         735 GeV           B mass         755 GeV           Q mass         690 GeV           T <sub>5/3</sub> mass         990 GeV                                                                                                     |                                                       | T in (T,B) doublet<br>Y in (B,Y) doublet<br>isospin singlet<br>B in (B,Y) doublet                                                                                                                                                                                                                                                                                   | 1505.04306<br>1505.04306<br>1505.04306<br>1409.5500<br>1509.04261<br>ATLAS-CONF-2016-032                                                                                                              |
| fermions                                                                                                | Excited quark $q^* \rightarrow q\gamma$<br>Excited quark $q^* \rightarrow qg$<br>Excited quark $b^* \rightarrow bg$<br>Excited quark $b^* \rightarrow Wt$<br>Excited lepton $\ell^*$<br>Excited lepton $\nu^*$                                                                                                                                                                                                                                         | 1γ<br>-<br>1 or 2 e, μ<br>3 e, μ<br>3 e, μ, τ                                                                                    | 1 j<br>2 j<br>1 b, 1 j<br>1 b, 2-0 j<br>-<br>-                                                                                                                                                                    | -<br>-<br>Yes<br>-<br>-                       | 3.2<br>15.7<br>8.8<br>20.3<br>20.3<br>20.3                                      | q' mass     4.4 TeV       q' mass     5.6       b' mass     2.3 TeV       b' mass     1.5 TeV       '' mass     3.0 TeV       v'' mass     1.6 TeV                                                                                                                                                             | TeV                                                   | only $u^*$ and $d^*$ , $\Lambda = m(q^*)$<br>only $u^*$ and $d^*$ , $\Lambda = m(q^*)$<br>$f_g = f_L = f_R = 1$<br>$\Lambda = 3.0 \text{ TeV}$<br>$\Lambda = 1.6 \text{ TeV}$                                                                                                                                                                                       | 1512.05910<br>ATLAS-CONF-2016-069<br>ATLAS-CONF-2016-060<br>1510.02664<br>1411.2921<br>1411.2921                                                                                                      |
| Other                                                                                                   | LSTC $a_T \rightarrow W\gamma$<br>LRSM Majorana $\nu$<br>Higgs triplet $H^{\pm\pm} \rightarrow ee$<br>Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$<br>Monotop (non-res prod)<br>Multi-charged particles<br>Magnetic monopoles                                                                                                                                                                                                                      | $1 e, \mu, 1 \gamma$ $2 e, \mu$ $2 e (SS)$ $3 e, \mu, \tau$ $1 e, \mu$ $-$ $-$                                                   | -<br>2j<br>-<br>1b<br>-                                                                                                                                                                                           | Yes<br><br><br>Yes<br><br>                    | 20.3<br>20.3<br>13.9<br>20.3<br>20.3<br>20.3<br>7.0                             | ar mass     960 GeV       N <sup>0</sup> mass     2.0 TeV       H <sup>±±</sup> mass     570 GeV       H <sup>±±</sup> mass     400 GeV       spin-1 invisible particle mass     657 GeV       multi-charged particle mass     785 GeV       monopole mass     1.34 TeV                                        |                                                       | $m(W_R) = 2.4$ TeV, no mixing<br>DY production, BR $(H_L^{\pm\pm} \rightarrow ee)=1$<br>DY production, BR $(H_L^{\pm\pm} \rightarrow t\tau)=1$<br>$a_{non-res} = 0.2$<br>DY production, $ q  = 5e$<br>DY production, $ g  = 1g_D$ , spin 1/2                                                                                                                        | 1407.8150<br>1506.06020<br>ATLAS-CONF-2016-051<br>1411.2921<br>1410.5404<br>1504.04188<br>1509.08059                                                                                                  |
| $10^{-1}$ 1 1 Mass scale [TeV]                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                  |                                                                                                                                                                                                                   |                                               |                                                                                 |                                                                                                                                                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                       |

\*Only a selection of the available mass limits on new states or phenomena is shown. Lower bounds are specified only when explicitly not excluded.

†Small-radius (large-radius) jets are denoted by the letter j (J).

## ATLAS Preliminary

# "Simple" search: two jet final state



## Highest-mass central dijet event - m(jj)=8.2 TeV



Run: 305777 Event: 4144227629 2016-08-08 08:51:15 CEST

# **Dijet angular distributions**





## ATLAS Exotics Searches\* - 95% CL Exclusion

Status: August 2016



\*Only a selection of the available mass limits on new states or phenomena is shown. Lower bounds are specified only when explicitly not excluded.

†Small-radius (large-radius) jets are denoted by the letter j (J).

#### ATLAS Preliminary

 $\int \mathcal{L} dt = (3.2 - 20.3) \text{ fb}^{-1}$   $\sqrt{s} = 8, 13 \text{ TeV}$ 

## **SUSY Searches**

# ATLAS

**ATLAS** Preliminary  $\sqrt{s} = 7, 8, 13 \text{ TeV}$ 

#### ATLAS SUSY Searches\* - 95% CL Lower Limits

Status: March 2017

|                                                   | Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $e, \mu, \tau, \gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Jets                                                                                                                              | $E_{ m T}^{ m miss}$                                                 | ∫ <i>L dt</i> [fb                                                            | <sup>-1</sup> ] Mass limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\sqrt{s} = 7, 8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>TeV</b> $\sqrt{s} = 13$ TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Reference                                                                                                                                                                                                                                         |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inclusive Searches                                | $ \begin{array}{l} \text{MSUGRA/CMSSM} \\ \bar{q}\bar{q}, \bar{q} \rightarrow q \bar{\chi}_{1}^{0} \\ \bar{q}\bar{q}, \bar{q} \rightarrow q \bar{\chi}_{1}^{0} \\ (\text{compressed}) \\ \bar{g}\bar{g}, \bar{g} \rightarrow q \bar{\chi}_{1}^{0} \\ \bar{g}\bar{g}, \bar{g} \rightarrow q \bar{q} \bar{\chi}_{1}^{0} \\ \bar{g}\bar{g}, \bar{g} \rightarrow q \bar{q} \bar{\chi}_{1}^{+} \rightarrow q q W^{\pm} \bar{\chi}_{1}^{0} \\ \bar{g}\bar{g}, \bar{g} \rightarrow q \bar{q} (\mathcal{U}/\nu) \bar{\chi}_{1}^{0} \\ \bar{g}\bar{g}, \bar{g} \rightarrow q q W Z \bar{\chi}_{1}^{0} \\ \bar{g} \text{MSB} (\bar{\ell} \text{ NLSP}) \\ \text{GGM (bing NLSP)} \\ \text{GGM (bing sino-bino NLSP)} \\ \text{GGM (higgsino-bino NLSP)} \\ \text{GGM (higgsino NLSP)} \\ \text{GGM (higgsino NLSP)} \\ \text{Gravitino LSP} \end{array} $                                                                                      | $\begin{array}{c} 0\text{-}3 \ e, \mu/1\text{-}2 \ \tau \\ 0 \\ \text{mono-jet} \\ 0 \\ 3 \ e, \mu \\ 2 \ e, \mu \ (\text{SS}) \\ 1\text{-}2 \ \tau + 0\text{-}1 \\ 2 \\ \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2-10 jets/3 ℓ<br>2-6 jets<br>1-3 jets<br>2-6 jets<br>2-6 jets<br>4 jets<br>0-3 jets<br>ℓ 0-2 jets<br>2 jets<br>2 jets<br>mono-jet | b Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes | 20.3<br>36.1<br>36.1<br>13.2<br>13.2<br>13.2<br>3.2<br>20.3<br>13.3<br>20.3  | \$\bar{q}\$         \$\bar{q}\$ <t< th=""><th>1.85 TeV<br/>1.57 TeV<br/>2.02 TeV<br/>2.01 TeV<br/>1.7 TeV<br/>1.6 TeV<br/>2.0 TeV<br/>1.65 TeV<br/>1.37 TeV<br/>1.8 TeV</th><th><math display="block">\begin{split} &amp; m(\hat{q}) \!=\! m(\hat{g}) \\ &amp; m(\tilde{\xi}_1^0) \! &lt;\! 200  GeV,  m(1^{ss}  gen, \tilde{q}) \!=\! m(2^{sd}  gen, \tilde{q}) \\ &amp; m(\tilde{\xi}_1^0) \! &lt;\! 200  GeV \\ &amp; m(\tilde{\xi}_1^0) \! &lt;\! 200  GeV \\ &amp; m(\tilde{\xi}_1^0) \! &lt;\! 200  GeV \\ &amp; m(\tilde{\xi}_1^0) \! &lt;\! 400  GeV \\ &amp; m(\tilde{\xi}_1^0) \! &lt;\! 500  GeV \\ &amp; cr(NLSP) \! &lt;\! 0.1  nm \\ &amp; m(\tilde{\xi}_1^0) \! &lt;\! 950  GeV,  cr(NLSP) \! &lt;\! 0.1  nm,  \mu \! &lt;\! 0 \\ &amp; m(\tilde{\xi}_1^0) \! &lt;\! 950  GeV,  cr(NLSP) \! &lt;\! 0.1  nm,  \mu \! &lt;\! 0 \\ &amp; m(\tilde{\xi}_1^0) \! &lt;\! 950  GeV,  cr(NLSP) \! &lt;\! 0.1  nm,  \mu \! &lt;\! 0 \\ &amp; m(\tilde{\xi}_1^0) \! &lt;\! 950  GeV,  cr(NLSP) \! &lt;\! 0.1  nm,  \mu \! &lt;\! 0 \\ &amp; m(NLSP) \! &lt;\! 1.8 \times 10^{-4}  eV,  m(\tilde{g}) \! =\! n(\tilde{g}) \! =\! 1.5  TeV \end{split}</math></th><th>1507.05525<br/>ATLAS-CONF-2017-022<br/>1604.07773<br/>ATLAS-CONF-2017-022<br/>ATLAS-CONF-2017-022<br/>ATLAS-CONF-2016-037<br/>ATLAS-CONF-2016-037<br/>1607.05979<br/>1606.09150<br/>1507.05493<br/>ATLAS-CONF-2016-066<br/>1503.03290<br/>1502.01518</th></t<> | 1.85 TeV<br>1.57 TeV<br>2.02 TeV<br>2.01 TeV<br>1.7 TeV<br>1.6 TeV<br>2.0 TeV<br>1.65 TeV<br>1.37 TeV<br>1.8 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{split} & m(\hat{q}) \!=\! m(\hat{g}) \\ & m(\tilde{\xi}_1^0) \! <\! 200  GeV,  m(1^{ss}  gen, \tilde{q}) \!=\! m(2^{sd}  gen, \tilde{q}) \\ & m(\tilde{\xi}_1^0) \! <\! 200  GeV \\ & m(\tilde{\xi}_1^0) \! <\! 200  GeV \\ & m(\tilde{\xi}_1^0) \! <\! 200  GeV \\ & m(\tilde{\xi}_1^0) \! <\! 400  GeV \\ & m(\tilde{\xi}_1^0) \! <\! 500  GeV \\ & cr(NLSP) \! <\! 0.1  nm \\ & m(\tilde{\xi}_1^0) \! <\! 950  GeV,  cr(NLSP) \! <\! 0.1  nm,  \mu \! <\! 0 \\ & m(\tilde{\xi}_1^0) \! <\! 950  GeV,  cr(NLSP) \! <\! 0.1  nm,  \mu \! <\! 0 \\ & m(\tilde{\xi}_1^0) \! <\! 950  GeV,  cr(NLSP) \! <\! 0.1  nm,  \mu \! <\! 0 \\ & m(\tilde{\xi}_1^0) \! <\! 950  GeV,  cr(NLSP) \! <\! 0.1  nm,  \mu \! <\! 0 \\ & m(NLSP) \! <\! 1.8 \times 10^{-4}  eV,  m(\tilde{g}) \! =\! n(\tilde{g}) \! =\! 1.5  TeV \end{split}$                                                                                                       | 1507.05525<br>ATLAS-CONF-2017-022<br>1604.07773<br>ATLAS-CONF-2017-022<br>ATLAS-CONF-2017-022<br>ATLAS-CONF-2016-037<br>ATLAS-CONF-2016-037<br>1607.05979<br>1606.09150<br>1507.05493<br>ATLAS-CONF-2016-066<br>1503.03290<br>1502.01518          |
| 3 <sup>rd</sup> gen.<br><i>§</i> med.             | $\begin{array}{l} \tilde{g}\tilde{g},  \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g},  \tilde{g} \rightarrow t t \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g},  \tilde{g} \rightarrow b t \tilde{\chi}_{1}^{1} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0<br>0-1 <i>e</i> ,μ<br>0-1 <i>e</i> ,μ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 b<br>3 b<br>3 b                                                                                                                 | Yes<br>Yes<br>Yes                                                    | 36.1<br>36.1<br>20.1                                                         | ře<br>ře<br>ře                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.92 TeV<br>1.97 TeV<br>1.37 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | m(k˜1)<600 GeV<br>m(k˜1)<200 GeV<br>m(k˜1)<200 GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ATLAS-CONF-2017-021<br>ATLAS-CONF-2017-021<br>1407.0600                                                                                                                                                                                           |
| 3 <sup>rd</sup> gen. squarks<br>direct production | $ \begin{array}{l} \tilde{b}_{1}\tilde{b}_{1}, \ \tilde{b}_{1} \rightarrow b\tilde{x}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \ \tilde{b}_{1} \rightarrow b\tilde{x}_{1}^{\pm} \\ \tilde{r}_{1}\tilde{r}_{1}, \ \tilde{r}_{1} \rightarrow b\tilde{x}_{1}^{\pm} \\ \tilde{r}_{1}\tilde{r}_{1}, \ \tilde{r}_{1} \rightarrow b\tilde{x}_{1}^{\pm} \\ \tilde{r}_{1}\tilde{r}_{1}, \ \tilde{r}_{1} \rightarrow c\tilde{x}_{1}^{0} \\ \tilde{r}_{1}\tilde{r}_{1}, \ \tilde{r}_{1} \rightarrow c\tilde{x}_{1}^{0} \\ \tilde{r}_{2}\tilde{r}_{1}, \ \tilde{r}_{2} \rightarrow c\tilde{x}_{1}^{0} \\ \tilde{r}_{2}\tilde{r}_{2}, \ \tilde{r}_{2} \rightarrow \tilde{r}_{1} + Z \\ \tilde{r}_{2}\tilde{r}_{2}, \ \tilde{r}_{2} \rightarrow \tilde{r}_{1} + L \end{array} $                                                                                                                                                                      | 0<br>2 e, µ (SS)<br>0-2 e, µ<br>0-2 e, µ<br>0<br>2 e, µ (Z)<br>3 e, µ (Z)<br>1-2 e, µ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 b<br>1 b<br>1-2 b<br>0-2 jets/1-2 b<br>mono-jet<br>1 b<br>1 b<br>4 b                                                            | Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes                 | 3.2<br>13.2<br>4.7/13.3<br>20.3<br>3.2<br>20.3<br>36.1<br>36.1               | b₁         840 GeV           b₁         325-685 GeV           ī₁         117-170 GeV         200-720 GeV           ī₁         90-198 GeV         205-950 GeV           ī₁         90-323 GeV         150-600 GeV           ī₂         290-790 GeV         320-880 GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{split} & m(\tilde{\xi}_1^0) \! < \! 100  \text{GeV} \\ & m(\tilde{\xi}_1^0) \! < \! 150  \text{GeV},  m(\tilde{\xi}_1^0) \! = \! m(\tilde{\xi}_1^0) \! + \! 100  \text{GeV} \\ & m(\tilde{\xi}_1^0) \! = \! 1  \text{GeV} \\ & m(\tilde{\xi}_1^0) \! = \! 1  \text{GeV} \\ & m(\tilde{\xi}_1^0) \! = \! 1  \text{GeV} \\ & m(\tilde{\xi}_1^0) \! = \! 5  \text{GeV} \\ & m(\tilde{\xi}_1^0) \! = \! 5  \text{GeV} \\ & m(\tilde{\xi}_1^0) \! = \! 5  \text{GeV} \\ & m(\tilde{\xi}_1^0) \! = \! 0  \text{GeV} \\ & m(\tilde{\xi}_1^0) \! = \! 0  \text{GeV} \end{split}$                                                                                                                                                                                                                                                                                                                                                           | 1606.08772<br>ATLAS-CONF-2016-037<br>1209.2102, ATLAS-CONF-2016-077<br>1506.08616, ATLAS-CONF-2017-020<br>1604.07773<br>1403.5222<br>ATLAS-CONF-2017-019<br>ATLAS-CONF-2017-019                                                                   |
| EW<br>direct                                      | $ \begin{split} \bar{\ell}_{L,R} \bar{\ell}_{L,R}, \bar{\ell} \rightarrow \bar{\ell} \tilde{\chi}_{1}^{0} \\ \bar{\chi}_{1}^{-} \bar{\chi}_{1}^{-}, \bar{\chi}_{1}^{+} \rightarrow \bar{\ell} \nu(\ell \bar{\nu}) \\ \bar{\chi}_{1}^{+} \bar{\chi}_{1}^{0}, \bar{\chi}_{1}^{+} \rightarrow \bar{\tau} \nu(\ell \bar{\nu}) \\ \bar{\chi}_{1}^{+} \bar{\chi}_{2}^{0} \rightarrow \bar{\ell}_{L} \nu \bar{\ell}_{L} \ell(\bar{\nu}) , \ell \bar{\nu} \bar{\ell}_{L} \ell(\bar{\nu}\nu) \\ \bar{\chi}_{1}^{+} \bar{\chi}_{2}^{0} \rightarrow W \bar{\chi}_{1}^{0} Z \tilde{\chi}_{1}^{0} \\ \bar{\chi}_{1}^{+} \bar{\chi}_{2}^{0} \rightarrow W \bar{\chi}_{1}^{0} h \bar{\chi}_{1}^{0} , h \rightarrow b \bar{b} / W W / \tau \\ \bar{\chi}_{2}^{0} \bar{\chi}_{3}^{0}, \bar{\chi}_{2,3}^{0} \rightarrow \bar{\ell}_{R} \ell \\ GGM (bino NLSP) weak prod. \\ GGM (bino NLSP) weak prod. \end{split} $                                  | $\begin{array}{c} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \tau \\ 3 \ e, \mu \\ 2 \ 3 \ e, \mu \\ 2 \ 3 \ e, \mu \\ 4 \ e, \mu, \gamma \\ 4 \ e, \mu, \gamma \\ 1 \ e, \mu + \gamma \\ 2 \ \gamma \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>0<br><br>0-2 jets<br>0-2 b<br>0<br><br>-                                                                                     | Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes                 | 20.3<br>13.3<br>14.8<br>13.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3 | $\tilde{\ell}$ 90-335 GeV $\tilde{k}_{1}^{\pm}$ 640 GeV $\tilde{k}_{1}^{\pm}$ 580 GeV $\tilde{k}_{1}^{\pm}, \tilde{k}_{2}^{\pm}$ 1.0 TeV $\tilde{k}_{1}^{\pm}, \tilde{k}_{2}^{\pm}$ 425 GeV $\tilde{k}_{2,3}^{\pm}$ 635 GeV $\tilde{k}_{2,3}^{\pm}$ 635 GeV $\tilde{W}$ 115-370 GeV $\tilde{W}$ 590 GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\mathfrak{m}(\tilde{k}_1^0) = \mathfrak{m}(\tilde{k}_2^\pm) = \mathfrak{m}(\tilde{k}_2^0) = \mathfrak{m}$ | $\begin{array}{l} \mathfrak{m}(\tilde{k}^{2}_{1}^{0}){=}0  \text{GeV} \\ 1  \text{GeV}, \mathfrak{m}(\tilde{\ell}, \tilde{\nu}){=}0.5(\mathfrak{m}(\tilde{k}^{1}_{1}^{1}){+}\mathfrak{m}(\tilde{k}^{0}_{1}^{0})) \\ \mathfrak{m}(\tilde{k}^{2}_{1}){=}0  \text{GeV}, \mathfrak{m}(\tilde{\tau}, \tilde{\nu}){=}0.5(\mathfrak{m}(\tilde{k}^{1}_{1}^{1}){+}\mathfrak{m}(\tilde{k}^{0}_{1})) \\ \mathfrak{m}(\tilde{k}^{2}_{1}), \mathfrak{m}(\tilde{k}^{2}_{1}){=}0, \mathcal{m}(\tilde{k}^{2}_{1}){=}0, \tilde{\ell}  \text{decoupled} \\ \mathfrak{m}(\tilde{k}^{1}_{1}){=}\mathfrak{m}(\tilde{k}^{2}_{2}), \mathfrak{m}(\tilde{k}^{0}_{1}){=}0, \tilde{\ell}  \text{decoupled} \\ \mathfrak{m}(\tilde{k}^{0}_{1}^{1}), \mathfrak{m}(\tilde{k}^{0}_{1}){=}0, \mathfrak{m}(\tilde{\ell}, \tilde{\nu}){=}0.5(\mathfrak{m}(\tilde{k}^{0}_{2}^{0}){+}\mathfrak{m}(\tilde{k}^{0}_{1})) \\ \mathfrak{cr<1} mm \\ \mathfrak{cr<1} mm \end{array}$ | 1403.5294<br>ATLAS-CONF-2016-096<br>ATLAS-CONF-2016-093<br>ATLAS-CONF-2016-096<br>1403.5294, 1402.7029<br>1501.07110<br>1405.5086<br>1507.05493                                                                                                   |
| Long-lived<br>particles                           | $\begin{array}{c} \mbox{Direct} \bar{\chi}_1^+ \bar{\chi}_1^- \mbox{prod., long-lived} \bar{\lambda} \\ \mbox{Direct} \bar{\chi}_1^+ \bar{\chi}_1^- \mbox{prod., long-lived} \bar{\lambda} \\ \mbox{Stable, stopped} \bar{g} \mbox{R-hadron} \\ \mbox{Stable} \bar{g} \mbox{R-hadron} \\ \mbox{Metastable} \bar{g} \mbox{R-hadron} \\ \mbox{Metastable} \bar{g} \mbox{R-hadron} \\ \mbox{GMSB, stable} \bar{\tau}, \bar{\chi}_1^0 \rightarrow \bar{\tau}(\bar{e}, \bar{\mu}) + \tau \\ \mbox{GMSB, } \bar{\chi}_1^0 \rightarrow \bar{\tau}(\bar{e}, \bar{\mu}) - \bar{\tau}(\bar{e}, \bar{\mu}) \\ \mbox{gg}, \bar{\chi}_1^0 \rightarrow \bar{\tau}(\bar{e}, \bar{\mu}) \\ \mbox{GGM} \mbox{gg}, \bar{\chi}_1^0 \rightarrow Z\bar{G} \\ \end{array}$                                                                                                                                                                                 | $ \begin{array}{c} \overset{(+)}{\underset{l}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}{\overset{(+)}}}}}}}}}}}}}}}}}}}}}}}}}}}} } } } } $ | 1 jet<br>-<br>1-5 jets<br>-<br>-<br>-<br>-<br>μμ -<br>ts -                                                                        | Yes<br>Yes<br>-<br>-<br>Yes<br>-<br>Yes                              | 36.1<br>18.4<br>27.9<br>3.2<br>3.2<br>19.1<br>20.3<br>20.3<br>20.3           | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.58 TeV<br>1.57 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{split} & m(\tilde{k}_1^+)-m(\tilde{k}_1^+)-160 \; MeV, \tau(\tilde{k}_1^+)=0.2 \; ns \\ & m(\tilde{k}_1^+)-m(\tilde{k}_1^0)-160 \; MeV, \tau(\tilde{k}_1^+)<15 \; ns \\ & m(\tilde{k}_1^0)=100 \; GeV, 10 \; \mu s < \tau(\tilde{g}) < 1000 \; s \\ & m(\tilde{k}_1^0)=100 \; GeV, \tau > 10 \; ns \\ & 10 \cdot tan \rho c \cdot 50 \\ & 11 < \tau(\tilde{k}_1^0) < 3ns, \; SPS8 \; model \\ & 1 < \tau(\tau(\tilde{k}_1^0) < 740 \; mm, m(\tilde{g})=1.3 \; TeV \\ & 6 < \tau(\tau(\tilde{k}_1^0) < 480 \; mm, m(\tilde{g})=1.1 \; TeV \end{split}$                                                                                                                                                                                                                                                                                                                                                                              | ATLAS-CONF-2017-017<br>1506.05332<br>1310.6584<br>1606.05129<br>1604.04520<br>1411.6795<br>1409.5542<br>1504.05162                                                                                                                                |
| RPV                                               | $ \begin{split} LFV & pp \rightarrow \bar{\mathbf{v}}_\tau + X, \bar{\mathbf{v}}_\tau \rightarrow e\mu/e\tau/\mu 1 \\ Bilinear & RPV CMSSM \\ \tilde{X}_1^+ \tilde{X}_1^-, \tilde{X}_1^+ \rightarrow W \tilde{X}_1^0, \tilde{X}_1^0 \rightarrow eev, e\mu v, \\ \tilde{X}_1^+ \tilde{X}_1^-, \tilde{X}_1^+ \rightarrow W \tilde{X}_1^0, \tilde{X}_1^0 \rightarrow \tau \tau v_e, e\tau v \\ \tilde{g} \tilde{s}, \tilde{g} \rightarrow q q \\ \tilde{g} \tilde{s}, \tilde{g} \rightarrow q q \\ \tilde{g} \tilde{s}, \tilde{g} \rightarrow q \tilde{x}_1^0, \tilde{X}_1^0 \rightarrow q q q \\ \tilde{g} \tilde{s}, \tilde{g} \rightarrow \tilde{t} \tilde{v}_1^0, \tilde{X}_1^0 \rightarrow q q q \\ \tilde{g} \tilde{s}, \tilde{g} \rightarrow \tilde{t} \tilde{v}_1, \tilde{t}_1 \rightarrow b s \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b s \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \ell \end{split} $ | $r = e\mu, e\tau, \mu\tau$ 2 e, $\mu$ (SS)<br>$\mu\mu\nu = 4 e, \mu$<br>$r_{\tau} = 3 e, \mu + \tau$<br>0 4<br>1 e, $\mu = 8$<br>1 e, $\mu = 8$<br>0<br>2 e, $\mu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                   | Yes<br>Yes<br>Yes<br>ets -<br>b -<br>b -                             | 3.2<br>20.3<br>13.3<br>20.3<br>14.8<br>14.8<br>36.1<br>36.1<br>15.4<br>20.3  | \$\vec{v}_r\$           \$\vec{a}_k^2\$           \$\vec{a}_1^4\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.9 TeV<br>1.45 TeV<br>TeV<br>1.55 TeV<br>1.65 TeV<br>1.65 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{split} &\mathcal{X}_{311}^{c}=0.11, \mathcal{X}_{132/133/233}=0.07 \\ &m(\tilde{g})=m(\tilde{g}), c_{T,SF}<1 \text{ mm} \\ &m(\tilde{x}_{1}^{(2)})>400 \text{GeV}, \mathcal{X}_{128}\neq0 (k=1,2) \\ &m(\tilde{x}_{1}^{(2)})>0.2\times m(\tilde{x}_{1}^{(2)}), \mathcal{X}_{133}\neq0 \\ &\text{BR}(\iota)=\text{BR}(\iota)=\text{BR}(\iota)=0\% \\ &m(\tilde{x}_{1}^{(2)})=800 \text{ GeV} \\ &m(\tilde{x}_{1}^{(2)})=1 \text{ TeV}, \mathcal{X}_{112}\neq0 \\ &m(\tilde{x}_{1})=1 \text{ TeV}, \mathcal{X}_{323}\neq0 \\ &\text{BR}(\tilde{t}_{1}\rightarrow be/\mu)>20\% \end{split}$                                                                                                                                                                                                                                                                                                                                           | 1607.08079<br>1404.2500<br>ATLAS-CONF-2016-075<br>1405.5086<br>ATLAS-CONF-2016-057<br>ATLAS-CONF-2016-057<br>ATLAS-CONF-2017-013<br>ATLAS-CONF-2017-013<br>ATLAS-CONF-2017-013<br>ATLAS-CONF-2016-022, ATLAS-CONF-2016-084<br>ATLAS-CONF-2015-015 |
| Other                                             | Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>2</b> <i>c</i>                                                                                                                 | Yes                                                                  | 20.3                                                                         | č 510 GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $m(\tilde{\chi}_1^0)$ <200 GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1501.01325                                                                                                                                                                                                                                        |
| Only phen                                         | Drive a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on $10^{-1}$ 1 Mass scale [TeV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                   |                                                                      |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                   |

phénomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

# A look to the future





## Phase-I upgrades

LHC luminosity (collision rate) has exceeded LHC design already by 40%

Could exceed design luminosity by a factor ~2.5 in "Run-3"

→ Phase-1 upgrades give us better trigger performance (better selectivity in hardware within ~3  $\mu$ s), and also provide better tracking close to the interaction point

Main ATLAS Phase-I upgrades:

- New inner pixel layer installed already in 2014
- New track & calorimeter trigger electronics

• New "small muon wheel" (9.3m diameter) Big international hardware & electronics projects in their own right (total capital cost 35 MCHF)





NSW design


Shutdown/Technical stop Protons physics Commissionina

Ions





**HL-LHC** accelerator upgrade was approved by CERN Council in June 2016 (cost: 930M CHF)

JFMAMJJJASONDJFMAMJJJASONDJFMAMJJJASONDJFMAMJJJASONDJFMAMJJJASOND

5-7 times the original design, until ~2035

Accumulate 10x more data than in Runs 1-3 combined - era of high precision, and very high pileup!

Must upgrade detectors!



## **Current ATLAS**







D Charlton / Birmingham - May 2017 - Ockham Lecture

### Phase-II tracking detector: ITk



**Technical Design** 

All silicon-sensor tracker:

- inner layers pixel sensors
- outer layers strip sensors

Sensor and systems R&D ongoing for some years

## **Beyond LHC: the FCC project**

Concept for a 100 TeV pp collider in a new 100km tunnel around CERN & Geneva, with luminosity up to  $3 \times 10^{35}$  cm<sup>-2</sup> s<sup>-1</sup>

- direct new physics sensitivity to ~10 TeV scale, way beyond LHC
- additionally  $e^+e^-$  and  $e^-p$  options
- could start operation around 2040
- large community developing, regular workshops, large attendances

FCC-hh



SPS

LHC

## **Beyond LHC: the FCC project**

Concept for a 100 TeV pp collider in a new 100km tunnel around CERN & Geneva, with luminosity up to  $3 \times 10^{35}$  cm<sup>-2</sup> s<sup>-1</sup>

- direct new physics sensitivity to ~10 TeV scale, way beyond LHC
- additionally  $e^+e^-$  and  $e^-p$  options
- could start operation around 2040
- large community developing, regular workshops, large attendances



# **Closing words**



The ATLAS and CMS collaborations are 25 this year

- After a long gestation and now eight years since first collisions
- The LHC is in "mature production" phase
  - Energy close to design
  - Luminosity beyond design, and increasing still

With the large Run-2 samples being collected, the physics programme is also changing to a more mature phase

- Luminosity doubling time becoming longer (1-2y)
- Simpler search topologies are being explored, results out or coming soon from 2015+2016 data
- Beyond that, the focus is shifting to more complex searches and precision measurements
- But we only have about 2% of the final statistics from the LHC!

# **Closing words**



The ATLAS and CMS collaborations are 25 this year

- After a long gestation and now eight years since first collisions
- The LHC is in "mature production" phase
  - Energy close to design
  - Luminosity well above design, and increasing still

With the large Run-2 samples being collected, the physics programme is also changing to a more mature phase

- Luminosity doubling time becoming longer (1-2y)
- Simpler search topologies are being explored, results out or coming soon from 2015+2016 data
- Beyond that, the focus is shifting to more complex searches and precision measurements
- But we only have about 2% of the final statistics from the LHC!

The LHC remains the world's discovery - and precision particle collider at the energy frontier

#### D Charlton / Birmingham - May 2017 - Ockham Lecture

## Dark matter search - Photon+p<sub>+</sub><sup>miss</sup>

Many signatures in which one can search for dark matter production at LHC

Many rely on producing it (and not observing it) with other particles  $\rightarrow$  missing-momentum signature

One example:  $\gamma + p_{\tau}^{miss}$ 











83

#### Dark matter searches



